
Identification of intelligent computational
models by evolutionary and gradient based

learning algorithms

Ph.D. Thesis Booklet

János Botzheim

Supervisor:
László T. Kóczy, Ph.D., D.Sc.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Budapest, 2007

1 Introduction, objectives
The computational intelligence methods play increasingly significant role in engineering

and other applied systems modelling, control and in performing decision making and opti-
misation tasks related to them. Such intelligent computational models were created which
can help efficiently solve high complexity modelling, control, and optimisation tasks. There
are several engineering areas and applied science, e.g. control, telecommunication, logistics
where the usage of classical mathematical analytical model is precluded or it would be too
complex in the computational sense. The tasks can be divided into different categories ac-
cording to mathematical intractability. In the first category there are those tasks where the
analytical model of the system is at least theoretically known. These are problems where
the algorithm needed for the solution is not tractable in theoretical sense, meaning that its
computational complexity is higher than polynomial, or such problems where although the
model is known, but no closed solution can be given for them. In the second group there are
those problems where the analytical model is not known, perhaps it does not even exist at all,
because the system’s behaviour is non-deterministic. In the third, most untractable category
there are those tasks where the human psyche, and the personal element are important. These
are, for example, the human-machine systems. It is interesting that lots of these problems can
be solved by human experts even if their solution is only suboptimal.

Scientists and engineers have tried to find automatisms for such problems for long. The
solution became possible only after the invention of computers that caused a big impulse
for researching such methods which try to imitate the elements of human intelligence. In
the 1950s classical artificial intelligence methods appeared which were based on symbolic
logic and they provided solutions for small-size, demonstrative tasks, but not for real-world
problems, because they could not overcome the limitations of computational complexity. In
the mid 1960s several modern intelligent methods were proposed which were called later
soft computing. The aim of these methods is to provide good approximate solutions for the
problems mentioned above taking care of the not too big computational complexity at the
same time. The three main components of soft computing are the fuzzy systems [8, 9], the
artificial neural networks [6, 22], and the different kind of evolutionary algorithms [4, 5].

Within the wide research area of computational intelligence, the investigation of model
identification methods is one of the most current research topics, which goal is to determine
different parameters and structure of computational intelligence based approximate models
such as fuzzy rule bases and artificial neural networks. The goal of the thesis is to develop
identification methods based on numerical data that can produce results better in terms of
quality criteria (e.g. mean square error) relevant for the given applications than other tech-
niques known from the literature. Model identification contains basically two steps. In the
first phase the task is to find the minimal set of variables describing right the given engineer-
ing problem. In the second phase a suitable model in terms of a given criterion is determined
in the state space of these variables. In this thesis I mainly deal with the second phase, es-
pecially for those problems where the identification of an arbitrary dimensional static model
is based on numerical data. I determine models built up by different techniques by differ-
ent identification methods, which can be alternatives for each other or one may be more
favourable than the others. The thesis discusses mostly the identification of fuzzy rule based

1

systems. The aim is to create a (quasi)-optimal rule base in terms of a chosen quality crite-
rion based on measured or observed numerical sample data. Usually in the practice there are
numerical input-output data available which can be used for identifying the rule based model
more or less precisely. There may be such situations, too, where an initial rule base cre-
ated by human expert(s) has to be (quasi)-optimised, fine-tuned based on numerical patterns.
The model identification is actually an optimisation problem and for this purpose beside the
learning algorithms based on different classical mathematical techniques such as the calcula-
tion of the gradient, there is an increasingly interest in evolutionary optimisation techniques
offering fast and acceptable convergence. A novel improvement of one of these methods,
namely the bacterial evolutionary algorithm is discussed in the thesis. I show the applicabil-
ity of the new method for the identification of Mamdani-type fuzzy rule bases [13]. Beside
the bacterial approach I propose a gradient based learning algorithm, namely the Levenberg-
Marquardt algorithm [11, 14] for optimising the fuzzy rule base. I also propose a completely
new, combined method, the Bacterial Memetic Algorithm, which is a combination of the
Bacterial Evolutionary and the Levenberg-Marquardt algorithm. In addition to the extraction
of fuzzy rule based models by numerical data, another aim of the thesis is the identification
and parameter optimisation of some kind of artificial neural networks. I propose a new tech-
nique called Bacterial Programming for the design process of B-spline neural networks [1].
This approach combines the advantages of genetic programming and bacterial evolutionary
algorithm. Finally, an objective of the thesis is the investigation of the first phase of the model
identification process, where the task is to find the minimal set of variables describing right
the given engineering problem.

2 Brief overview of the applied techniques
In this section I briefly introduce the most frequently used techniques in the thesis,

namely Fuzzy Systems, Bacterial Evolutionary Algorithms, and the Levenberg-Marquardt
method.

2.1 Fuzzy systems
Human reasoning and other related phenomena cannot be accurately described by binary

logic. The desire for extending binary logic to multiple valued ones came up a long time ago.
The basic idea was that instead of using the ,,true” and ,,false” logical values only, the use of
other values between true and false should also be allowed. There are many statements that
cannot be evaluated as true or false, only their respective ,,degree of truth” can be determined.
This idea led L. A. Zadeh to the creation of fuzzy logic in 1965 [21]. Nowadays, in computers
and in many areas of life, the classical binary (Aristotlean or Boolean) logic is used. However,
if we want to create more intelligent tools, better results can be achieved if the behaviour
of the systems is described in a way that is closer to human thinking. Fuzzy logic is an
extension of the classical logic. A fuzzy logic variable may assume any value between 0
and 1. Here, 0 means that the statement is ,,totally false”, while 1 means that it is ,,totally
true”. According to this definition, the value 0.5 corresponds to ,,half true”, and the value
0.9 to ,,almost true”. The operations of classical logic can also be extended to fuzzy logic.

2

Based on this concept, fuzzy sets can be defined, fuzzy rules and fuzzy inference systems
can be created. A fuzzy set A defined over a universe of discourse X is characterised by
the so-called membership function (which is the extension of the characteristic function of
ordinary sets). The membership function assigns a real value from the closed unit interval
to every element of X describing the degrees for elements x to which they are belonging to
the fuzzy set A. There are some well-known inference techniques, however, the Mamdani
method is the most commonly used one in practical applications [13]. The inference engine
may be viewed as a special kind of generalised function generator as it maps the set of all
possible input fuzzy sets into the set of all possible fuzzy outputs. At the beginning of the
inference the degree of matching between the observation and the rules is determined. Each
component of the observation vector is compared to the same component of the antecedent of
each rule. After the degree of matching has been calculated in each dimension, the resultant
for the whole antecedent is determined. The degree of applicability of a rule is affected by the
degree of matching of its each dimension. The degree of matching shows how important the
role of the rule will be in the calculation of the conclusion for the given observation. After the
degree of firing was determined for each rule, each conclusion is separately calculated. This
can be made by cutting the consequent fuzzy set of the rule at height of the firing degree. The
conclusion for the whole rule base can be computed by taking the union of the previously
calculated sub-conclusions. After this, the output is converted to a so-called ,,crisp” value
by a defuzzification method. There are many different defuzzification methods described in
the literature, in this thesis the Centre of Gravity (COG) method is applied, which is one
of the most commonly used defuzzification techniques in practical applications. Beside the
Mamdani type fuzzy system in the thesis I also deal with Takagi-Sugeno type systems [20],
where the consequent part of the rules is an input-output function rather than a fuzzy set.

2.2 Bacterial evolutionary algorithms
There are several optimisation methods inspired by processes in the nature. The advan-

tage of these algorithms is their ability to solve and quasi-optimise problems with non-linear,
high-dimensional, multi-modal, and discontinuous character. It has been shown that evolu-
tionary algorithms are efficient tools for solving non-linear, multi-objective and constrained
optimisations. These algorithms have the ability to explore large admissible spaces, without
demanding the use of derivatives of the objective functions, such as the gradient-based train-
ing methods. Their principles are based on the search for a population of solutions, which
tuning is done using mechanisms similar to biological recombination. The original Genetic
Algorithm was developed by Holland [7] and was based on the process of evolution of bi-
ological organisms. A more recent approach is the Bacterial Evolutionary Algorithm which
was inspired by the microbial evolution phenomenon [16, 17].

First the initial (random) bacteria population is created. The population consists of Nind

bacteria. After this there is an evolutionary cycle with Ngen generations, where in each gen-
eration the bacterial mutation is applied to each bacterium one by one, and the gene transfer
is applied in the population.

The bacterial mutation is applied to each bacterium one by one. First, Nclones copies
(clones) of the individual are generated. Then a certain part of the bacterium is randomly

3

selected and the parameters of this selected part are randomly changed in each clone (muta-
tion). Next all the clones and the original bacterium are evaluated by an error criterion. The
best individual transfers the mutated part into the other individuals. This cycle is repeated for
the remaining parts, until all parts of the bacterium have been mutated and tested. At the end
the best rule base is kept and the remaining Nclones are discharged. At the end of this process
we get a better individual than the original one, or in the worst case, when all mutation cycles
were unsuccessful the individual will be the same as at the beginning.

The gene transfer operation allows the recombination of genetic information between
two bacteria. First the population must be divided into two halves. The better bacteria are
called the superior half, the other bacteria are called the inferior half. One bacterium is ran-
domly chosen from the superior half, this will be the source bacterium, and another is ran-
domly chosen from the inferior half, this will be the destination bacterium. A part from the
source bacterium is chosen and this part will overwrite a part of the destination bacterium or
simply it will be added, if the length of the individuals can be different. This cycle is repeated
for Ninf times, where Ninf is the number of ,,infections” per generation.

2.3 Levenberg-Marquardt algorithm
The Levenberg-Marquardt method was proposed originally by Levenberg [11] and Mar-

quardt [14] for least-square estimation of non-linear parameters. The method can be used for
adjusting the weights of neural networks [18] and for other optimisation problems as well.

In each step of the algorithm the calculation of the Jacobian matrix is needed, which
contains the partial derivatives of the output computed by the patterns of the given network,
system or optimisation problem according to the parameters (weights in case of neural net-
works):

J =
∂y(xp)

∂wT
.

For calculating the parameter values as w[k +1] = w[k]+ s[k], s[k], the LM update, is given
as the solution of:

(JT [k]J[k] + αI)s[k] = −JT [k]e[k], (1)

where e[k] is the error vector in the k-th step, which is e[k] = y[k] − t[k], the difference
between the output calculated by the model (e.g. neural network) and the desired output for
each pattern.

In equation (1) α is a regularisation parameter, which controls both the search direction
and the magnitude of the update. The search direction varies between the Gauss-Newton
direction and the steepest direction, according to the value of α. If α → 0, then the algo-
rithm converges to the Gauss-Newton method, if α → ∞, then it gives the steepest descent
approach.

Equation (1) can be recast as:

s[k] = −
[

J[k]√
αI

]+ [
e[k]
0

]
, (2)

where operator + means the pseudo-inverse of the matrix. The complexity of the calculation
of s[k] is O(n3), where n is the number of columns of the Jacobian matrix.

4

In each iteration step the determination of the elements of the Jacobian matrix is needed,
i.e. the partial derivatives need to be calculated.

The value of parameter α is changeable during the optimisation process. Thus, the k-th
iteration step of the algorithm based on [3] is as follows:

1. Given w[k] and α[k]
(In the initialisation arbitrary positive value for α can be chosen, thus α[1] > 0)

2. Determining J[k] and e[k]

3. Calculation of s[k] based on (2)

4. Calculation of the so-called trust region, r[k] as follows: r[k] =
E(w[k])−E(w[k]+s[k])

E(w[k])− 1
2
‖J[k]s[k]+e[k]‖2 , where E = ‖e[k]‖2

2

5. The value of parameter α is adjusted dynamically depending on the value of
r[k]:

• If r[k] < 0.25 then α[k + 1] = 4α[k]

• If r[k] > 0.75 then α[k + 1] = α[k]/2

• Else α[k + 1] = α[k]

6. If r[k] ≤ 0 then w[k + 1] = w[k], else w[k + 1] = w[k] + s[k]

If the stopping condition is fulfilled or a predefined maximal generation number is
reached then the algorithm stops, otherwise it continues with the (k + 1)-th iteration step.

3 New methods and approaches in the identification of in-
telligent computational models

In this section I briefly introduce my own results and the statements based on the results.

3.1 Applying bacterial evolutionary algorithm in conjunction with rule
reduction operators

In this subsection I introduce the improvement of the bacterial evolutionary algorithm
proposed by Nawa and Furuhashi [16]. Instead of the triangular shaped membership func-
tions I use the more general and widely used trapezoidal shaped membership functions, and
I also propose novel rule reduction operators which can help optimise the size of the rule
base, too.

Statement group 1. I have introduced the bacterial evolutionary algorithm in conjunction
with novel rule reduction operators for optimising Mamdani type fuzzy rule base using trape-
zoidal shaped membership functions and COG type defuzzification method.

My publications related to this statement can be found under [B6, B7, B8, B12, B18,
B20].

5

Figure 1: The encoding method

3.1.1 The proposed algorithm

The first step is to determine how the problem can be encoded in a bacterium (chromo-
some). The task is to find the optimal fuzzy rule base for a pattern set. Thus, the parameters
of the fuzzy rules must be encoded in the bacterium. The parameters of the rules are the
breakpoints of the trapezoids, thus, a bacterium will contain these breakpoints. Each rule has
4(n+1) parameters, where n is the number of rule inputs. For example, the encoding method
of a fuzzy system with two inputs and one output can be seen in Figure 1. In Figure 1 the
number of rules in the rule base is N . For example Rule 3 in Figure 1 means:

R3 : If x1 is A31(4.3; 5.1; 5.4; 6.3) and x2 is A32(1.2; 1.3; 2.7; 3.1) then
y is B3(2.6; 3.8; 4.1; 4.4).

In the evolutionary process between the bacterial mutation and gene transfer step I pro-
pose using rule reduction operators for each individuals.

When a membership function becomes too narrow, the rule using it must be deleted. The
evaluation criterion is as follows:

liµi

(
aj + bj + cj + dj

4

)
≥ βlj, (3)

where li and lj are the lengths of the medians of the membership functions of the given input
or output variables in the i-th and j-th rule, and β is the annihilation parameter. The larger is
the value of β the more severe is the annihilation criterion.

If two membership functions, belonging to the same variable are near to each other, and
the difference between the lengths of their median is small enough, then they are fused in a
single membership function. There are two criteria of fusion:∣∣∣∣ lilj − 1

∣∣∣∣ < γ and |f | < γ, (4)

where li and lj are the lengths of the median of the membership functions of the given
variable in the i-th and j-th rule, and f is the distance between the centres of li and lj . To
execute fusion both criteria must be satisfied, but only one parameter, γ is used. The smaller

6

is the value of γ the more severe is the criterion of fusion. The parameters of the fused
membership function will be:

zfus =
zili + zjlj

li + lj
, (5)

where z stands for the four breakpoints (a, b, c and d) of a trapezoidal membership function.
If two rules have the same antecedents but a different consequent, the membership func-

tions of the output variable are fused in one output membership function by using Equation
(5).

If two rules are identical the second one is deleted. After the fusion operators it can hap-
pen that the antecedent parts of two rules become the same. In this case the algorithm merges
their consequent parts, thus the two rules become identical, one of them can be eliminated.
So the effect of the fusions can be seen after applying these two other operators.

Statement 1.1. I have developed novel rule reduction operators for optimising the size of
the rule base.

3.1.2 Testing the method

I have done simulations in order to test and analyse the operators in the algorithm. I
applied the following widely used test function, where the goal is to approximate this six
dimensional function as close as possible:

y = x1 +
√

x2 + x3x4 + 2e2(x5−x6), (6)

where x1 ∈ [1; 5], x2 ∈ [1; 5], x3 ∈ [0; 4], x4 ∈ [0; 0.6], x5 ∈ [0; 1], x6 ∈ [0; 1.2].
In the bacterial operators I used the following error function to evaluate the individuals

and I used this function to compare the simulation results:

E =
1

m

m∑
i=1

|ti − yi|
Imax − Imin

, (7)

where ti is the desired output for the i-th pattern, yi is the output of the model for the i-th
pattern, m is the number of patterns, Imax is the upper and Imin is the lower bound of the
interval of the output variable, so the error is normalised by the length of the output interval
rather than the actual value of the output.

The simulation results for the best bacterium can be seen in Table 1. The fusion parameter
is γ = 5%, the initial rule number is 10, the number of individuals is 10, the number of clones
is 20, the number of infections is 4. The table shows the average result of 10 runnings. With
the increase of the value of β the remaining rule number increased too, because the criteria
of annihilation became more severe.

Statement 1.2. I have developed a computer program for bacterial evolutionary algorithm
in conjunction with novel rule reduction operators which is able to optimise the rule base of
Mamdani type fuzzy rule based systems using trapezoidal shaped membership functions.

Statement 1.3. I have performed simulations for a reference problem used in the literature
in order to analyse the effects of the rule reduction operators.

7

Table 1: Effect of the annihilation parameter β

β average number training test
of rules error error

5 4.7 5.23 8.94
6 5.4 5.02 8.47
8 7.6 4.52 8.32

10 7.8 4.13 8.17

3.2 The application of the Levenberg-Marquardt algorithm for opti-
mising Mamdani type fuzzy rule bases

The Levenberg-Marquardt (LM) algorithm is a general optimisation method for solving
such problems where the derivatives of the objective function are known. The algorithm
has good convergence properties in local search. In this subsection I introduce the novel
application of the algorithm for determining the parameters of Mamdani type fuzzy rule
base using trapezoidal shaped membership functions and COG type defuzzification method.

Statement group 2. I have proposed a new local optimisation algorithm, namely the
Levenberg-Marquardt algorithm for determining the parameters of Mamdani type fuzzy rule
base using trapezoidal shaped membership functions and COG type defuzzification method,
and I have shown that the method has more favourable properties than other techniques
known from the literature.

My publications related to this statement can be found under [B2, B9, B16, B17, B18,
B20].

3.2.1 Determination of the Jacobian matrix

In each iteration step of the algorithm the calculation of the Jacobian matrix is needed,
all partial derivatives have to be computed. The number of rules is constant. Trapezoidal
membership functions are used which can be written in the following form:

µij(xj) =
xj − aij

bij − aij

Ni,j,1(xj) + Ni,j,2(xj) +
dij − xj

dij − cij

Ni,j,3(xj). (8)

In this equation aij , bij , cij , dij denote the four parameters of the membership function be-
longing to the i-th rule and the j-th input variable. The ai, bi, ci, di values belong to the output
variable in the i-th rule, Ni,j,k functions are rectangular window functions. As in the original
Mamdani algorithm, the standard t-norm (min) is used in the inference mechanism meaning
that the degree of matching of the i-th rule in case of an n-dimensional crisp x vector is:

wi =
n

min
j=1

µij(xj). (9)

The output of the fuzzy inference:

y(x)=1
3

∑R
i=1 3wi(d

2
i−a2

i)(1−wi)+3w2
i (cidi−aibi)+w3

i (ci−di+ai−bi)(ci−di−ai+bi)∑R
i=1 2wi(di−ai)+w2

i (ci+ai−di−bi)
. (10)

8

The number of rules is R, and n is the number of input dimensions. One row of the Jacobian
matrix belongs to one pattern. The p-th row can be written in the following form:

J =

[
∂y(x(p))

∂a11

∂y(x(p))

∂b11

· · · ∂y(x(p))

∂a12

· · · ∂y(x(p))

∂d1

· · · ∂y(x(p))

∂dR

]
, (11)

where p is the identifier of the pattern and

∂y(x(p))

∂aij

=
∂y

∂wi

∂wi

∂µij

∂µij

∂aij

(12)

for the first breakpoint of the trapezoid and similarly for the other bij , cij and dij parameters,
too. From Equation (9) it can be seen that the wi values depend only on the membership
functions, and each membership function depends only on four parameters (breakpoints).
So, the derivatives of wi will be:

∂wi

∂µij

=

{
1, if µij = minn

k=1 µik

0, otherwise.
(13)

The derivatives of the membership functions for parameter aij will be:

∂µij

∂aij

=
x

(p)
j − bij

(bij − aij)2
Ni,j,1(x

(p)
j) (14)

and can be calculated similarly for the other parameters as well. ∂y
∂wi

and the derivatives of
the output membership functions parameters have to be also computed. From Equation (10)
the following can be written:

∂y

∂wi

=
1

3

D ∂Fi

∂wi
−N ∂Gi

∂wi

D2
(15)

and similarly for the other aij , bij , cij and dij parameters, where D is the denominator of
Equation (10) and N is its numerator. Fi is the i-th member of the sum in the numerator, Gi

is the i-th member of the sum in the denominator. The derivatives will be as follows:
∂Fi

∂wi

= 3(d2
i − a2

i)(1− 2wi) + 6wi(cidi − aibi) + 3w2
i [(ci − di)

2 − (ai − bi)
2]

∂Gi

∂wi

= 2(di − ai) + 2wi(ci + ai − di − bi) (16)

∂Fi

∂ai

= −6wiai + 6w2
i ai − 3w2

i bi − 2w3
i (ai − bi)

∂Gi

∂ai

= −2wi + w2
i

∂Fi

∂bi

= −3w2
i ai + 2w3

i (ai − bi)
∂Gi

∂bi

= −w2
i

∂Fi

∂ci

= 3w2
i di − 2w3

i (di − ci)
∂Gi

∂ci

= w2
i (17)

∂Fi

∂di

= 6widi − 6w2
i di + 3w2

i ci + 2w3
i (di − ci)

∂Gi

∂di

= 2wi − w2
i .

The number of columns of the Jacobian matrix is 4(n + 1)R, the number of rows is equal to
the number of patterns.

9

Statement 2.1. I have determined the partial derivatives of the output of the fuzzy infer-
ence systems using trapezoidal shaped membership functions and COG type defuzzification
method according to the parameters of the model, and I have also determined the whole
Jacobian matrix based on these derivatives.

3.2.2 The application of the method

I have performed simulations for reference problem used in the literature and I have
compared the new method with the error-backpropagation (BProp) method [19].

The first reference problem is the so-called pH problem, which is a one-dimensional
problem. The aim of this example is to approximate the inverse of a titration-like curve. The
other reference problem is the Inverse Coordinate Transformation (ICT) problem. This two
dimensional example illustrates an inverse kinematical transformation between two Carte-
sian coordinates and one of the angles of a two-links manipulator. The training set contains
101 patterns for the pH problem, 110 patterns for the ICT problem. Mean Square of Error
(MSE) is used as error criterion to test the algorithm.

In the first experiment only two membership functions parameters will be adjusted. These
are the b and c parameters belonging to the first input membership function of the first rule.
The results for the ICT problem can be seen in Table 2. From this table we can conclude that
the LM converges much faster than the BProp method. In the second experiment the aim is
to estimate every parameter in the fuzzy rule based system. The LM approach provided good
results in this case, too.

Statement 2.2. I have developed a new computer program for local optimisation of the
parameters of Mamdani type fuzzy rule base using trapezoidal shaped membership functions
and COG type defuzzification method.

Statement 2.3. I have performed investigations by applying simulations for modelling ref-
erence problems obtained from the literature. I found that the new method thus developed
had given much better convergence results in terms of mean square error than the backprop-
agation algorithm in all of the investigated cases. Based on these results and on theoretical
considerations I expect that the advantages of my proposed new method will appear in other
specific applications, too.

Table 2: Summary of the results for the ICT problem

method initial final initial final iterations
point point MSE MSE

LM {0.40; 0.70} {0.100; 0.239} 0.890 0.8650 4
LM {0.30; 0.40} {0.190; 0.256} 0.870 0.8651 4
LM {0.50; 0.65} {0.113; 0.218} 0.890 0.8653 7

BProp {0.40; 0.70} {0.155; 0.301} 0.890 0.8652 21
BProp {0.30; 0.40} {0.162; 0.279} 0.870 0.8650 14
BProp {0.50; 0.65} {0.156; 0.283} 0.890 0.8650 24

10

3.3 The application of bacterial memetic algorithm for optimising
Mamdani type fuzzy rule bases

The bacterial approach is an evolutionary type method which performs global search,
however, the solution found by the algorithm converges pretty slowly. The Levenberg-
Marquardt algorithm is a gradient-based technique, which can find a more accurate solution,
however, it is a local searcher, thus, this method often find only the local optimum, nearest
to the initial point of state space. Combining the evolutionary and gradient-based approaches
might be useful in improving the performance of the basic evolutionary algorithm, which
may find the global optimum with sufficient precision in this combined way. Combinations
of evolutionary and local-search methods are usually referred to as memetic algorithms [15].
I propose the combination of the bacterial approach and the Levenberg-Marquardt algorithm
for optimising fuzzy rule base. I named this new combination Bacterial Memetic Algorithm.

Statement group 3. I have introduced the bacterial memetic algorithm which is a novel
optimisation method. I have applied the method for determining the parameters of the mem-
bership functions of Mamdani type fuzzy rule base using trapezoidal shaped membership
functions and COG type defuzzification method, and I have shown by simulation experi-
ments, that the new method thus developed was faster and more effective than the bacterial
evolutionary algorithm in all of the investigated cases. Based on these results and on theo-
retical considerations I expect that the advantages of my proposed new method will appear
in other specific applications, too.

My publications related to this statement can be found under [B1, B3, B11, B19].

3.3.1 The proposed algorithm

I applied the Levenberg-Marquardt algorithm for each individual between the bacterial
mutation and gene transfer steps. I proposed two versions of the algorithm. In the first version
the size of the rule base is constant during the process. In the second version of the algorithm
the length of the bacteria is changeable and can be different from each other. The goal is not
only to optimise the rules but the automatic determination of the optimal size of the rule base,
too. In this case the bacterial mutation and gene transfer operators can cause the change of
the length of bacteria. In the bacterial mutation after the clones are created we can randomly
choose from three different things in the clones. The length of the clone will either increase,
decrease or remain the same. If it increases, a new rule with random parameters is added to
the bacterium besides changing the parameters of the selected rule. If it will decrease, then a
rule is deleted. If the length remains the same, then only the parameters are changed (this is
same as in the original algorithm).

In the gene transfer we can randomly choose from two different cases: the part (rule)
from the source bacterium will either overwrite a rule of the destination bacterium or will
be added to the destination bacterium as a new rule. These improved bacterial mutation and
gene transfer operators allow the increasing and decreasing of the length of the bacteria. In
the evaluation criterion not only the approximate error calculated by the rule base must be
considered, but the size of the rule base, too. More rule provides generally lower error but it
increases the complexity of the model, thus the goal is to decrease the number of rules, too.

11

By the Bayesian Information Criterion (BIC) both goals can be achieved, namely the claim
for low error and for low complexity can be described in one equation:

BIC = m · ln(MSE) + n · ln(m), (18)

where m is the number of training patterns, n is the number of rules.

Statement 3.1. I have developed a novel optimisation method named as bacterial memetic
algorithm.

3.3.2 The application of the algorithm

I applied the same reference problems as in the previous subsections and I compared the
proposed algorithm with such a Bacterial Evolutionary Algorithm (BEA) which is similar
to the Bacterial Memetic Algorithm (BMA) however it does not contain the Levenberg-
Marquardt method. The performance specifications for the candidate with the lowest MSE
value over all sessions in case of constant rule number are shown in Table 3. The parameters
of the algorithms were set as follows: population size: 10, number of clones: 8, number of
infections: 4, and number of rules: 3. In the Bacterial Memetic Algorithm, the Levenberg-
Marquardt step runs in 10 iterations in every generation. Both algorithms were set to run
for 10 sessions, the number of generations was 20 in each session. For every study case,
the BMA gives the lowest MSE value fuzzy model not only for the training data but for
the validation pattern set, too. Figure 2 shows MSE evolution lines for a particular simula-
tion sessions for the six dimensional problem. The improvement caused by the Levenberg-
Marquardt procedure in the memetic technique can be seen well from the simulations.

The other, more general version of the algorithm automatically sets the optimal size of
the rule base, too. The performance specifications for the best candidate can be seen in Table
4. The maximum allowed bacterium length (number of rules) is 10. The number of rules can
be seen in the table, too. The obtained results show the same as above, namely that the BMA
provides significantly better result.

Statement 3.2. I have developed a computer program realising the bacterial memetic algo-
rithm, and I have applied it for optimising the rules of Mamdani type fuzzy rule base using
trapezoidal shaped membership functions.

Table 3: Specifications for the fuzzy model with the lowest MSE value found after all sessions

specifications BEA BMA problem
MSE-training 4.5 · 10−5 1.5 · 10−5 pH

MSE-test 7.6 · 10−3 3 · 10−5 pH
MSE-training 3.4 · 10−1 8.5 · 10−2 ICT

MSE-test 2.0 · 10−1 2.0 · 10−2 ICT
MSE-training 2.5 · 101 2.0 · 101 6 dim.

MSE-test 2.6 · 101 2.3 · 101 6 dim.

12

Figure 2: MSE evolution lines for the six dimensional problem

Table 4: Best candidates in case of changing rule number

specifications pH ICT 6 dim.
BEA BMA BEA BMA BEA BMA

MSE-training 2.73 · 10−3 4.7 · 10−7 8.42 · 10−1 1.04 · 10−2 2.07 4.10 · 10−1

MSE-test 5.12 · 10−3 6.07 · 10−7 1.26 2.60 · 10−3 2.66 9.9 · 10−1

number of rules 9 8 2 5 7 10

Statement 3.3. I have performed investigations by applying simulations for modelling ref-
erence problems obtained from the literature. I found that the bacterial memetic algorithm
thus developed had given (in general much) better convergence results than the bacterial
evolutionary algorithm.

3.4 Optimising the parameters of Takagi-Sugeno type fuzzy systems
In the previous subsections I proposed different methods for identifying Mamdani type

fuzzy systems. In this subsection I briefly formulate similar ideas for Takagi-Sugeno type
systems.

The structure of the parameters in the rules of Takagi-Sugeno systems is different in
the antecedent and in the consequent parts, thus they can be handled in different way. The
structure of the antecedent part is the same as in case of Mamdani type systems, thus for
the antecedent parameters the combination of the bacterial and the Levenberg-Marquardt
approach can be used, and least-square techniques for the linear rule consequent parameters.
The latter is applied due to the fact that it delivers a global optimum of linear parameters in
the least squares sense and hence is favourable among algorithms which can be stuck in local
minima.

Statement group 4. I have proposed a new optimisation algorithm for determining the pa-
rameters of Takagi-Sugeno type fuzzy rule base using trapezoidal and Gaussian shaped mem-

13

bership functions. I have shown by applying simulations that the method has more favourable
properties than other techniques known from the literature in the investigated cases. Based
on these results and on theoretical considerations I expect that the advantages of my pro-
posed new method will appear in other specific applications, too.

My publication related to this statement can be found under [B10].
The goal is now to train non-linear antecedent parameters as well as linear consequent

parameters in a hybrid and iterative manner, in order to gain good approximation accuracy
with reasonable model complexity. In the encoding of the optimisation problem the bac-
terium contains only the antecedents fuzzy sets of the rules. I investigate not only trapezoidal
but Gaussian shaped membership functions, too. The parameters of the rule antecedent parts
are the center and widths of the Gaussian fuzzy sets in case of Gaussian shaped membership
functions. The length of the individuals (the number of rules) is constant. Within the initiali-
sation component only the antecedent parameters of the fuzzy systems are initialised, i.e. in
order to start the antecedent learning scheme, the consequent parameters have to be trained
for this initial setting. This is because in the antecedent learning the consequent parameters
are used for the evaluation of the optimisation function. The antecedent and consequent pa-
rameters are optimised cyclically, one after the other. After the stopping criterion is fulfilled,
consequent learning is carried out once more, as an eventual last change in the antecedent
parts should be compensated.

The antecedent learning is done by bacterial memetic algorithm. For the Levenberg-
Marquardt step in BMA the determination of the elements of the Jacobian matrix is needed,
thus the partial derivatives need to be calculated for Gaussian and trapezoidal shaped mem-
bership functions.

Statement 4.1. I have determined the partial derivatives of the output of the Takagi-Sugeno
type fuzzy models using trapezoidal and Gaussian shaped membership functions according
to the antecedent parameters of the model, and I have also determined the whole Jacobian
matrix based on these derivatives.

For consequent learning the Least Squares Approach [12] is applied. This is feasible as
the consequent parameters are linear and therefore the mean squared error optimisation prob-
lem can be solved analytically and globally. Principally there are two possibilities for linear
consequent learning: global learning, where the complete parameter vector representing all
linear consequent parameters in all rules is optimised, and local learning, where each rule is
treated separately. From various analytical and empirical examinations local learning turned
out to be superior to global one in a lot of aspects, so I propose the local learning approach
for optimising the consequent parameters.

I used the six dimensional problem for testing the algorithm. The method provided good
results comparing with other approaches.

Statement 4.2. I have developed a new computer program for separated optimisation of the
antecedent and consequent parameters of Takagi-Sugeno type fuzzy systems.

Statement 4.3. I have performed investigations by applying simulations. I found that the
new method thus developed had given better results in terms of mean square error than
other techniques known from the literature.

14

3.5 The application of bacterial programming for the identification of
B-spline neural networks

The design process of B-spline neural network involves six design phases. The deter-
mination of the two last phases can be envisaged as a non-linear least-squares problem, and
therefore completely supervised training algorithms can be employed for their determination.
The Levenberg-Marquardt method is suitable for this purpose [18]. The first four phases con-
stitute a very complex combinatorial problem. There are different constructive algorithms to
help in this task. Among others the genetic programming technique was proposed [2]. In this
subsection I propose a new method for B-spline neural networks design, namely the Bacte-
rial Programming approach which is a fusion of the principles of Genetic Programming [10]
and Bacterial Evolutionary Algorithm.

Statement group 5. I have introduced a new optimisation method, namely the bacterial
programming technique. I have applied the method for optimising the structure of B-spline
neural networks. I found by concrete simulations that the method provided better results than
other techniques known from the literature.

My publications related to this statement can be found under [B4, B12, B13, B14].

3.5.1 The proposed method

In bacterial programming like in genetic programming, the individuals are represented
by expression tree, but bacterial programming uses not the operators of genetic programming
known from the literature (crossover, mutation), but the operators of bacterial evolutionary
algorithm (bacterial mutation, gene transfer).

The hierarchical structure of B-spline neural network can be represented better by ex-
pression tree than by a string encoded into a chromosome. Figure 3 shows a sample expres-
sion tree for B-spline neural network. In B-splines design, sub-models must be added (+),
sub-models of higher dimensionality must be created from smaller sub-models (×), and sub-
models of higher dimensionality must be split into lower dimensional sub-models (/). This
is the set of primitive functions that is defined for B-splines design. The node terminals do
not represent only one input variable, but also the spline order, the number of interior knots,
and their locations. In case of the B-spline network shown in Figure 3 for instance the left-
most leaf of the tree means that this terminal node contains the input variable 3, its spline
order is 1, the number of its interior knots is 2, and they are located in positions 0 and 0.4.
The output of this model can be computed as the addition of three sub-models, so that:

y(X) = f(X3 ×X2) + f(X1 ×X2) + f(X1),

where Xi denotes the input variable i, so the model contains two bi-dimensional and one
one-dimensional sub-models.

The evolutionary process is the same as in case of bacterial evolutionary algorithm but
here the individuals are trees. The initial population contains randomly created trees. The
number of individuals is Nind. After this there is an evolutionary cycle which applies the
bacterial mutation and the gene transfer operators. The terminal criterion is usually the max-
imum number of generations (Ngen).

15

Figure 3: A sample expression tree for B-spline networks

The bacterial mutation is applied to each bacterium one by one. First, Nclones copies
(clones) of the bacterium are generated. Then, a certain part of the bacterium is randomly
selected and the parameters of this selected part are randomly changed in each clone (muta-
tion). In the new method, because coding is given by an expression tree, there are two types
of parts: function and terminal parts. In the function mutation at a node, the whole sub-tree
beneath this node is replaced by a new randomly generated one. However, terminal mutation
affects only the given node. Next, all the clones and the original bacterium are evaluated by
an error criterion. The best individual transfers the mutated part into the other individuals.
This cycle is repeated for the remaining parts until all of the parts of the bacterium have been
mutated and tested. Mutation is applied once to the selected part, meaning that neither the
selected nodes nor the sub-tree in case of function mutation, will be chosen once again for
mutation, in the same generation. At the end, the best bacterium is kept and the remaining
Nclones are discharged.

The gene transfer is similar as before. After splitting the population one bacterium is
randomly chosen from the superior sub-population (source bacterium) and one from the
inferior sub-population (destination bacterium). A randomly selected sub-tree of the source
bacterium will overwrite a randomly selected sub-tree of the destination bacterium. There
is no limitation for the size of the selected sub-tree, it can be even a sub-tree containing
only one terminal node. This three step process (splitting, selection of source and destination
bacterium, gene transfer) is repeated for Ninf times.

Bayesian Information Criterion (18) is used for evaluating the bacteria.

Statement 5.1. I have developed the bacterial programming technique.

16

Table 5: Model structure for the lowest Bayesian Information Criterion value found after all
sessions for the ICT problem

GP BP
sub-models (1× 2)(1)(2) (2× 1)(1)
complexity 106 106

BIC −1533.9 −2048.3
MSE 1.3 · 10−8 8.8 · 10−11

Figure 4: Empirical probability distribution function for the generic six dimensional function

3.5.2 The application of the method

Genetic programming solves the problem with more favourable results than the previ-
ously applied constructive algorithms. Thus, I compared the bacterial programming (BP)
with the genetic programming (GP).

In the first experiments results were generated in order to decide the best values for the
BP parameters. After this I compared the two approaches by applying the three reference
problems previously used.

Results obtained for the ICT problem can be seen in Table 5. The table shows the result
for the best individual, which has the lowest BIC value found after all sessions.

The main advantage of the bacterial approach can be deduced from the results of the six
dimensional problem. These results show that the bacterial method gives good performance
for problems with larger input dimension. I confirmed the obtained results by statistical anal-
ysis, too. Figure 4 shows empirical probability distribution function for the six dimensional
problem, using both algorithms. While the best individuals have only BIC values with GP
between about−600 and−500, they have the same values between−700 and−630 with the
BP.

Statement 5.2. I have developed a computer program realising bacterial programming tech-
nique for optimising the structure of B-spline neural network.

Statement 5.3. I have performed investigations by applying simulations for modelling refer-
ence problems obtained from the literature. I found that the bacterial programming technique
thus developed had given better results in terms of all criteria than the genetic programming
technique.

17

3.6 Feature selection by bacterial evolutionary algorithms
An increase in the dimensionality of the input space increases the complexity of the

learning problem. When features with only minor or no relation at all to the output space are
involved, the resulting function might tend to overfit the training data. It is often efficient to
reduce the number of features in advance. Feature selection can be described as the task of
identifying an optimal subset of m out of the available n features.

Statement group 6. I have applied the bacterial evolutionary algorithm for the feature se-
lection task and I have shown by applying simulations that the algorithm combined with
different regression methods is able to determine the optimal feature set of high dimensional
problems.

My publications related to this statement can be found under [B5, B15].
I propose two versions of the algorithm. In the first version the goal is to select a prede-

fined number of features, while in the other version the number of features is free, it has to
be optimised by the algorithm as well. The bacterium consists of a vector of integers, where
these integers are the identifiers of the features.

The features encoded into the bacterium and the training pattern set are used to evalu-
ate the bacteria. In the second version of the method the length of the bacterium has to be
considered also in the evaluation.

The evolutionary process is same as before. However, in the bacterial mutation and gene
transfer operator, when a part of a bacterium is changed (e.g. in a clone in case of the bacterial
mutation or in a destination bacterium in case of the gene transfer), we must take care that
the new part is unique within the selected bacterium. In the second version of the algorithm
the operators were improved similarly as in the third subsection allowing the change of the
length of the individuals. There are new parameters in the operators, in the bacterial mutation
the length of the segment selected for mutation is also a parameter and the maximal allowed
changing in the clones is a parameter, too. Similarly in the gene transfer a new parameter
is the length of the segment obtained from the source bacterium, and the maximal allowed
changing in the length of the destination bacterium is another new parameter, too.

Statement 6.1. I have developed an encoding method to bacterial evolutionary algorithm
applied for the feature selection task and I have improved the bacterial operators fitting to
the task.

I have performed simulations for testing the method. In the first version of the algorithm
three regression problems were used. The three regression methods used for analysing the
behaviour of the algorithm are as follows: the first is a simple least-square optimiser, the other
two are fuzzy rule base identification models. The goal for all of the regression methods is to
find a solution for three high-dimensional problems. The first test function was defined over
a 20-dimensional data, the other two were defined over a 50-dimensional space. The goal
was the selection of predefined number of variables. The bacterial evolutionary algorithm
solved the task successfully.

After this I tested the improved version of the algorithm on an 80-dimensional function.
The algorithm converged to the optimal solution in each running, and only 40 generations
were needed for that. Already in the tenth generation good solutions were found.

18

Statement 6.2. I have implemented a computer program for solving the feature selection
task.

Statement 6.3. I have used the algorithm combined with three different regression methods,
and I have performed simulations for different high dimensional test functions to determine
the optimal variable set of the functions.

4 Summary and outlook
The goal of the thesis was to develop identification methods based on numerical data that

can produce results better in terms of quality criteria (e.g. mean square error) relevant for
the given applications than other techniques known from the literature. The thesis discusses
mostly the identification of fuzzy rule based systems. The aim of the identification is to create
an optimal rule set based on numerical patterns. In the first five statements I dealt with such
methods which create suitable fuzzy or neural model in the state space of some variables in
terms of a given criterion. In the sixth statement I dealt with the preliminary step of the model
identification process which goal is to find the minimal set of variables describing the given
problem properly. I showed in the statements that the bacterial approach and the Levenberg-
Marquardt method provide better solution for the identification, optimisation task than other
methods known from the literature. I used some evaluation criteria for testing the methods.
In the improved versions of the algorithms I proposed not only the optimisation of constant
number of rules, or in case of the feature selection task, constant number of dimensions,
but the optimisation of the size of the rule base, too. For this purpose I showed novel rule
reduction operators in the first statement, and I proposed such kind of modification of the
bacterial operators in the third and sixth statements, which allow changing the length of the
individual in the evolutionary process.

The main goal of my further research is the identification of hierarchical fuzzy rule bases.
Beside the hierarchical structure, the application of sparse rule bases is also practical, the
complexity of the model can be further decreased by applying this kind of rule bases. One
of the most important tasks in the further research will be the automatic identification of
hierarchical interpolative fuzzy systems used in applications with high complexity. These
new research directions may significantly increase the efficient applications of intelligent
computational models both in the fields of scientific research and industrial utilisation.

References
[1] M. Brown and C. Harris. Neurofuzzy Adaptive Modelling and Control. Prentice-Hall,

1994.

[2] C. Cabrita, A. E. Ruano, and C. M. Fonseca. Single and multi-objective genetic program-
ming design for B-spline neural networks and neuro-fuzzy systems. In Proceedings of
the IFAC Workshop on Advanced Fuzzy-Neural Control 2001, AFNC01, pages 75–80,
Valencia, Spain, Oct. 2001.

19

[3] R. Fletcher. Practical Methods of Optimization. Wiley, 2000.

[4] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence. IEEE Press, Piscataway, 1995.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Massachusetts, 1989.

[6] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.

[7] J. H. Holland. Adaption in Natural and Artificial Systems. The MIT Press, Cambridge,
Massachusetts, 1992.

[8] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice
Hall, Upper Saddle River, New Jersey, 1995.

[9] L. T. Kóczy and D. Tikk. Fuzzy rendszerek. TypoTEX, Budapest, 2000.

[10] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[11] K. Levenberg. A method for the solution of certain non-linear problems in least squares.
Quart. Appl. Math., 2(2):164–168, 1944.

[12] L. Ljung. System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall
Inc., Upper Saddle River, New Jersey 07458, 1999.

[13] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. Int. J. Man-Mach. Stud., 7:1–13, 1975.

[14] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J.
Soc. Indust. Appl. Math., 11(2):431–441, Jun. 1963.

[15] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts: To-
wards memetic algorithms. Technical Report Caltech Concurrent Computation Program,
Report. 826, California Institute of Technology, Pasadena, California, USA, 1989.

[16] N. E. Nawa and T. Furuhashi. Fuzzy system parameters discovery by bacterial evolu-
tionary algorithm. IEEE Transactions on Fuzzy Systems, 7(5):608–616, Oct. 1999.

[17] N. E. Nawa, T. Hashiyama, T. Furuhashi, and Y. Uchikawa. Fuzzy logic controllers
generated by pseudo-bacterial genetic algorithm. In Proceedings of the IEEE Int. Conf.
Neural Networks (ICNN97), pages 2408–2413, Houston, 1997.

[18] A. E. Ruano, C. Cabrita, J. V. Oliveira, and L. T. Kóczy. Supervised training algorithms
for B-spline neural networks and neuro-fuzzy systems. International Journal of Systems
Science, 33(8):689–711, 2002.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

20

[20] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to mod-
eling and control. IEEE Trans. Syst. Man Cybern., 15(1):116–132, 1985.

[21] L. A. Zadeh. Fuzzy sets. Inf. Control, 8:338–353, 1965.

[22] J. M. Zurada. Introduction to Artificial Neural Systems. West Publishing Co., St. Paul,
1992.

Publications
[B1] J. Botzheim, C. Cabrita, L. T. Kóczy, and A. E. Ruano. Fuzzy rule extraction by

bacterial memetic algorithms. International Journal of Intelligent Systems. Accepted.

[B2] J. Botzheim, C. Cabrita, L. T. Kóczy, and A. E. Ruano. Estimating fuzzy membership
functions parameters by the Levenberg-Marquardt algorithm. In Proceedings of the
IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2004, pages 1667–
1672, Budapest, Hungary, July 2004.

[B3] J. Botzheim, C. Cabrita, L. T. Kóczy, and A. E. Ruano. Fuzzy rule extraction by
bacterial memetic algorithms. In Proceedings of the 11th World Congress of Interna-
tional Fuzzy Systems Association, IFSA 2005, pages 1563–1568, Beijing, China, July
2005.

[B4] J. Botzheim, C. Cabrita, L. T. Kóczy, and A. E. Ruano. Genetic and bacterial pro-
gramming for B-spline neural networks design. Journal of Advanced Computational
Intelligence and Intelligent Informatics, 11(2):220–231, February 2007.

[B5] J. Botzheim, M. Drobics, and L. T. Kóczy. Feature selection using bacterial opti-
mization. In Proceedings of the International Conference on Information Processing
and Management of Uncertainty in Knowledge-based Systems, IPMU 2004, pages
797–804, Perugia, Italy, July 2004.

[B6] J. Botzheim, B. Hámori, and L. T. Kóczy. Extracting trapezoidal membership func-
tions of a fuzzy rule system by bacterial algorithm. In B. Reusch, editor, Computa-
tional Intelligence, Theory and Applications, volume 2206 of Lecture Notes in Com-
puter Science, pages 218–227. Springer-Verlag, Berlin-Heidelberg, 2001.

[B7] J. Botzheim, B. Hámori, L. T. Kóczy, and A. E. Ruano. Bacterial algorithm applied
for fuzzy rule extraction. In Proceedings of the International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-based Systems, IPMU
2002, pages 1021–1026, Annecy, France, July 2002.

[B8] J. Botzheim and L. T. Kóczy. Model identification by bacterial optimization. In
Proceedings of the 5th International Symposium of Hungarian Researchers on Com-
putational Intelligence, pages 91–102, Budapest, Hungary, November 2004.

21

[B9] J. Botzheim, L. T. Kóczy, and A. E. Ruano. Extension of the Levenberg-Marquardt
algorithm for the extraction of trapezoidal and general piecewise linear fuzzy rules. In
Proceedings of the 2002 IEEE World Congress on Computational Intelligence, WCCI
2002, pages 815–819, Honolulu, Hawaii, May 2002.

[B10] J. Botzheim, E. Lughofer, E. P. Klement, L. T. Kóczy, and T. D. Gedeon. Separated
antecedent and consequent learning for Takagi-Sugeno fuzzy systems. In Proceed-
ings of the 2006 IEEE World Congress on Computational Intelligence, WCCI 2006,
pages 10478–10484, Vancouver, Canada, July 2006.

[B11] C. Cabrita, J. Botzheim, T. D. Gedeon, A. E. Ruano, L. T. Kóczy, and C. M. Fonseca.
Bacterial memetic algorithm for fuzzy rule base optimization. In Proceedings of the
World Automation Congress, WAC 2006, Budapest, Hungary, July 2006.

[B12] C. Cabrita, J. Botzheim, A. E. Ruano, and L. T. Kóczy. Genetic programming and
bacterial algorithm for neural networks and fuzzy systems design. In Proceedings
of the IFAC International Conference on Intelligent Control Systems and Signal Pro-
cessing, ICONS 2003, pages 500–505, Faro, Portugal, April 2003.

[B13] C. Cabrita, J. Botzheim, A. E. Ruano, and L. T. Kóczy. Design of B-spline neural net-
works using a bacterial programming approach. In Proceedings of the International
Joint Conference on Neural Networks, IJCNN 2004, pages 2313–2318, Budapest,
Hungary, July 2004.

[B14] C. Cabrita, J. Botzheim, A. E. Ruano, and L. T. Kóczy. A hybrid training method for
B-spline neural networks. In Proceedings of the IEEE International Symposium on
Intelligent Signal Processing, WISP 2005, pages 165–170, Faro, Portugal, September
2005.

[B15] M. Drobics and J. Botzheim. A bacterial evolutionary algorithm for feature selection.
FLLL/SCCH Master and PhD Seminar, Johannes Kepler University, Linz, Austria,
June 2005.

[B16] L. T. Kóczy and J. Botzheim. Fuzzy rule base model identification techniques. In
Proceedings of the 3rd International Symposium of Hungarian Researchers on Com-
putational Intelligence, pages 13–24, Budapest, Hungary, November 2002.

[B17] L. T. Kóczy and J. Botzheim. Hierarchical interpolative fuzzy model identification.
In Proceedings of the 18th Hungarian-Korean Joint Seminar, pages 17–27, Budapest,
Hungary, October 2002.

[B18] L. T. Kóczy and J. Botzheim. Fuzzy models, identification and applications. In Pro-
ceedings of the IEEE 3rd International Conference on Computational Cybernetics,
ICCC 2005, pages 13–19, Mauritius, April 2005.

[B19] L. T. Kóczy, J. Botzheim, and T. D. Gedeon. Fuzzy models and interpolation. In
M. Nikravesh, J. Kacprzyk, and L. A. Zadeh, editors, Forging New Frontiers: Fuzzy

22

Pioneers I & II, volume 217 of Studies in Fuzziness and Soft Computing, pages 111–
131. Springer, Berlin-Heidelberg, 2007.

[B20] L. T. Kóczy, J. Botzheim, A. E. Ruano, A. Chong, and T. D. Gedeon. Fuzzy rule
extraction from input/output data. In P. Sincak, J. Vascak, and K. Hirota, editors,
Machine Intelligence Quo Vadis?, volume 21 of Advances in Fuzzy Systems - Appli-
cations and Theory, pages 199–216. World Scientific, Singapore, 2004.

23

