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The design phase of B-spline neural networks is a
highly computationally complex task. Existent heuris-
tics have been found to be highly dependent on the ini-
tial conditions employed. Increasing interest in bio-
logically inspired learning algorithms for control tech-
niques such as Artificial Neural Networks and Fuzzy
Systems is in progress. In this paper, the Bacterial
Programming approach is presented, which is based
on the replication of the microbial evolution phe-
nomenon. This technique produces an efficient topol-
ogy search, obtaining additionally more consistent so-
lutions.

Keywords: constructive algorithms, B-splines, bacterial
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1. Introduction

B-spline neural networks offer definite advantages over
more commonly used neural networks, such as multilayer
perceptrons or radial basis function networks. B-spline
networks store the information locally, which means that
learning in one part of the input space affects the rest only
minimally. For this reason, they are suitable for on-line
adaptive modeling and control applications. Their grid-
based structure makes them transparent, thus, in contrast
to other networks, it is possible to understand the knowl-
edge stored in these networks. B-spline networks have
better generalization capability in high dimensional prob-
lems than some radial basis function models [1]. They
can be used easily in control applications and nonlinear
modeling (see e.g. [19]) because their locally structured
scheme provides fast convergence and suitable complex-
ity properties.

The design process for B-spline networks involves two
different phases: the determination of the best topology,
which can be seen as a system identification problem,
and the determination of its parameters, which can be
envisaged as a parameter estimation problem. This lat-

ter issue, the determination of the net parameters (linear
weights and interior knots) is the simplest task and is usu-
ally solved using gradient or hybrid schemes [3, 17]. The
former issue, the topology determination, is an extremely
complex task, especially if dealing with real-world prob-
lems. The current paper deals with this topology deter-
mination task. The aim here is to devise a “tractable”
model, in terms of computational efficiency, which de-
livers a “good” compromise, in terms of accuracy. A
key issue of the identification process is to find a suitable
balance between computational complexity and accuracy.
This issue is discussed in K´oczy and Zorat [10], where the
‘Fuzzy Cat and Mouse’ problem is analyzed, the task of
optimizing the fuzzy rule base of a cat hunting a random
moving mouse. It is shown that in many special cases a
well-defined optimum exists.

Nature inspired some evolutionary optimization algo-
rithms suitable for global optimization of even non-linear,
high-dimensional, multimodal, and discontinuous prob-
lems. The original Genetic Algorithm (GA) was devel-
oped by Holland [9] and was based on the process of evo-
lution of biological organisms. Recognized as a power-
ful global search technique, genetic algorithms have been
applied to wide variety of problems. They exhibit a re-
markable balance between search domain exploration and
exploitation [8]. On one hand, every part of the domain is
searched enough and on the other hand, the search effort
is concentrated around the best solutions and their neigh-
borhood, producing even better solutions. Recently, ap-
proaches like Genetic Programming (GP) [11] and Bacte-
rial Evolutionary Algorithm (BEA) [14] present an alter-
native to the former algorithms. GP optimization uses the
same operators as GA, though it requires an expression
tree for gene representation as a combination of functions
[5]. On the other hand, operations of the bacterial evo-
lutionary algorithm were inspired by the microbial evo-
lution phenomenon. In this paper the Bacterial Program-
ming is introduced, which is a fusion of the principles of
BEA and GP.

Evolutionary algorithms are useful tools for identifica-
tion problems, they can help with finding a good com-
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Fig. 1. Structure of a lattice-based network.

promise between the accuracy and the complexity of the
model. The bacterial approach was successfully applied
for fuzzy model identification by various authors [2, 14].
The goal of the paper is to show that this technique is ap-
plicable for B-spline neural networks’ design, too. At a
higher level, the principles of B-spline neural networks
and rule based fuzzy systems are the same. This par-
allelism between these two different model types allows
learning algorithms derived for B-spline networks to be
employed for fuzzy models and vice versa under certain
conditions [17].

The structure of the paper is as follows. Section 2 de-
scribes the topology of B-spline neural networks. Section
3 makes an overview of Genetic Programming applied to
B-spline neural networks. Section 4 introduces our pro-
posed new technique, the Bacterial Programming. Simu-
lation results are given in Section 5 and conclusions are
drawn in Section 6.

2. B-Spline Neural Networks

B-spline neural networks belong to the class of net-
works termedgrid or lattice-based associative memories
networks (AMN). This type of networks is composed of
three layers: anormalized input space layer, abasis func-
tions layer and alinear weight layer (Fig. 1).

2.1. Normalized Input Layer
The normalized input layer can take different forms but

is usually a grid on which the basis functions are defined.
In order to define a grid in the input space, vectors ofknots
must be defined, one for each input axis. There are usually
different numbers of knots for each dimension, and they
are generally placed at different positions.

The interior knots for the ith axis areλ i� j� j � 1� � � � �ri.
They are arranged in such a way that:

xmin
i � λi�1 � λi�2 � �� � � λi�ri � xmax

i . . . . (1)

wherexmin
i andxmax

i are the minimum and maximum val-
ues of theith input, respectively.

At the extremes of each axis, a set ofki exterior knots
must be given which satisfy:

λi���ki�1� � �� � � λi�0 � xmin
i . . . . . . . (2)

xmax
i � λi�ri�1 � �� � � λi�ri�ki � . . . . . . . (3)

These exterior knots are needed to generate the basis func-
tions that are close to the boundaries. These knots usu-
ally coincide with the extreme of the input axes, or are
equidistant. The network input space is

�
xmin

1 �xmax
1

�
�

�� ��
�
xmin

n �xmax
n

�
, and so the exterior knots are only used

for defining these basis functions at the extreme of the
grid.

The jth interval of theith input is denoted asIi� j and is
defined as:

Ii� j �

�
�λi� j�1 λi� j� for j � 1� � � � �ri

�λi� j�1 λi� j� if j � ri �1�
. . . (4)

This way, within the range of theith input, there areri �1
intervals (possibly empty, if the knots coincide), which

means that there arep� �
n
∏
i�1

�ri �1� n-dimensional cells

in the grid.

2.2. The Basis Functions Layer
The output of the hidden layer is determined by a set of

p B-spline basis functions defined on then-dimensional
grid. B-spline functions possess easy local adjusting, cal-
culation and implementation.

The shape, size and distribution of the basis functions
are characteristics of the particular AMN employed, and
the support of each basis function is bounded. In B-spline
neural networks, theorder of the spline implicitly sets the
size of the basis function’s support and its shape. The
support of univariate B-spline basis function of orderk
equalsk intervals. Hence, each input is assigned tok basis
functions.

The jth univariate basis function of orderk is denoted
N j

k �x�, and it is defined by the following relationships:

N j
k �x� �

�
x�λ j�k

λ j�1�λ j�k

�
N j�1

k�1�x�

�

�
λ j � x

λ j �λ j�k�1

�
N j

k�1�x� . . . (5)

N j
1�x� �

�
1 if x � I j
0 otherwise� . . . . . . . . (6)

Multivariate basis functions are formed by taking theten-
sor product of the univariate basis functions (seeFig. 2).
Therefore, each multivariable basis function is formed
from the product ofn univariate basis functions, one from
each input axis, and every possible combination of uni-
variate basis function is taken:

N j
k �x� �

n

∏
i�1

N j
ki�i

�xi�� . . . . . . . . . . (7)

The number of basis functions of orderki defined on an
axis with ri interior knots isri � ki. Therefore, the total
number of basis functions for a multivariate B-spline is

p �
n
∏
i�1

�ri � ki�.

This number depends exponentially on the size of the
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Fig. 2. Bivariate B-spline function.

input, hence the B-splines are only applicable for prob-
lems where the input dimension is small (typically� 5).

2.3. The Weight Layer
The output of an AMN is a linear combination of the

outputs of the basis functions. The linear coefficients are
the adjustable weights, and as the mapping is linear, find-
ing the weights is just a linear optimization problem. The
output is therefore:

y �
p

∑
i�1

aiwi � aT w . . . . . . . . . . . (8)

whereai � Ni
k�x�� i � 1� � � � � p. As only p�� �

n
∏
i�1

ki are

active at any one time, the calculation of Eq. (8) can be
reduced to:

y �
p��

∑
i�1

aact�i� �x�wact�i� . . . . . . . . . (9)

whereaact�i�(x) denotes theith active basis function for
inputx.

2.4. Sub-Modules
To overcome the “curse of dimensionality”, it is com-

mon to employ, instead of a single module covering all
inputs, a linear sum of smaller sub-models, each one with
a lower input dimensionality. The output of such a net-
work is:

y�x� �
nu

∑
u�1

Su
�
xu
�

. . . . . . . . . . . (10)

whereSi(xi� denotes theith sub-model, andxi is the set of
input variables (i) which compose sub-modeli.

2.5. B-Spline Neural Networks Design
The design of a B-spline network involves the follow-

ing design phases:

1. The determination of the number of its sub-models;
2. For each sub-model, the set of its inputs;

Fig. 3. General layout for an expression tree.

3. The order of the splines for each input;

4. The number of the interior knots for each input;

5. The location of the interior knots for each input;

6. The values of the linear output weights.

The determination of the two last points can be envis-
aged as a non-linear least-squares problem, and therefore
complete supervised training algorithms can be employed
for their determination (for more details see [17]). The
former points constitute a very complex combinatorial
problem. There are different constructive algorithms to
help in this task, such as theASMOD (Adaptive Spline
Modelling of Observed Data) algorithm [18], theMARS
(Multivariate Adaptive Regression Splines) algorithm [7],
the LOLIMOT [16] algorithm and the genetic program-
ming technique [4]. This paper proposes a new method
for B-spline neural networks design, namely theBacte-
rial Programming approach, and compares this algorithm
with the genetic programming technique.

3. Genetic Programming

There exist various optimization algorithms, which
were inspired by processes in the nature. The advantage
of these algorithms is their ability to solve and quasi-
optimize problems with non-linear, high-dimensional,
multimodal, and discontinuous character. These pro-
cesses can easily be applied in optimization problems
where one individual corresponds to one possible solution
of the problem. In the original genetic algorithm an in-
dividual is represented by a sequence of numbers, for ex-
ample a sequence of bits. This sequence is calledchromo-
some. The GA uses three operators: selection, crossover,
and mutation. A more recent approach is genetic pro-
gramming, which uses the same operators as GA, though
the individuals are represented by the so called expression
tree (seeFig. 3). This tree is composed of the function
nodes (inner ones) and the terminal nodes (outer ones),
representing the functions and their input arguments, re-
spectively.
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Fig. 4. A sample expression tree for B-spline networks.

3.1. Genetic Programming for B-Splines Design
As mentioned in the previous sections, in B-splines de-

sign, sub-models must beadded (+), sub-models of higher
dimensionality must becreated from smaller sub-models
(*), and sub-models of higher dimensionality must besplit
into lower dimensional sub-models (/). This is the set of
primitive functions that are defined for B-splines design.

In contrast with the application of GP to other neural
networks, the node terminals do not represent only one
input variable, but also thespline order, the number of
interior knots, andtheir locations. Fig. 4 shows the com-
position of the nodes in such a tree. For the tree given in
Fig. 4, for instance the left-most leaf of the tree means that
this terminal node contains the input variable 3, its spline
order is 1, the number of its interior knots is 2, and they
are located in 0 and 0.4 positions. One would expect the
model’s output to be given as a function of the addition
of 3 sub-models, two of each would be bi-dimensional, so
that:

y�X� � f �X3�X2�� f �X1�X2�� f �X1��

whereXi denotes the input variablei.
Obviously these functions and terminals must be well

defined, so that they may receive any value as argument
returned by another set of functions or terminals in the
lower sub-trees.

Whenever any model presents a complexity higher than
the number of samples within the training set, it is desir-
able to perform a convenient change in its structure so that
this candidate may still participate in the evolution and be
not completely discarded. In order to obtain a valid can-
didate, during evaluation, the expression tree is traversed
and, at every node, the complexity value of the tree be-
neath it is evaluated. If this value is greater than the num-
ber of input patterns, the complexity will be reduced in
the following way:

1. By replacing the tensor product function by the ad-
dition function if the inner node is a tensor product
function.

2. By replacing the addition function by the lower sub-
tree that corresponds to the least complex ramifica-
tion.

Steps 1 and 2 are performed until the candidate is desig-
nated valid. This means that some functions and terminals

Fig. 5. Flowchart of Genetic Programming.

in the tree may be discarded.
The evolutionary process involves the following steps:

� The creation of an initial population, and the deter-
mination of the size of the population;

� The evaluation of the candidates usingBayes
InformationCriterion [16], and their fitness assign-
ment;

� The application of some of genetic operators, such
as:

Selection: Pairs of parent trees are selected based on
their fitness for reproduction.

Crossover: A node in the tree is selected at random
and exchanging the associated sub-trees produces
a pair of offspring trees.

Mutation: This is performed by either replacing a
node selected at random by a sub-tree generated
randomly or by changing its type.

Replacement: All parents are replaced by the off-
spring (generational approach).

� The termination criterion, which is usually the max-
imum number of generations defined.

The cycle of evolution is summarized inFig. 5. Muta-
tion on a function implies the replacement of the tree node
with a randomly generated sub-tree of maximum length 2.
Mutation on a terminal can be of 6 different types, which
are:

1. Full replacement of the terminal.
2. Variable identification replacement.
3. Splines order replacement.

4. Random displacement of an interior knot.
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5. Addition of N interior knots placed randomly.N is
fixed to 5.

6. Removal ofN interior knots. In the absence of inte-
rior knots, no actual operation is executed.

For simplification purposes, the terminal mutation rates
will be described as a vector pmut-terminal�[%1 %2 %3 %4
%5 %6], where %i designates theith type mutation rate.

4. Bacterial Programming

A slightly different evolutionary technique is called
bacterial evolutionary algorithm. This algorithm was in-
troduced by Japanese researchers in the late 90’s [14]. The
first version of this algorithm was the Pseudo-Bacterial
Genetic Algorithm (PBGA) [15] which proposed a modi-
fied mutation operator called bacterial mutation, based on
the natural phenomenon of microbial evolution. The Bac-
terial Evolutionary Algorithm (BEA) introduced a new
operator called gene transfer operator. While PBGA in-
corporates bacterial mutation and crossover operator, the
BEA substitutes the classical crossover with the gene
transfer operation. Both of these new operators were in-
spired by bacterial evolution. Bacteria can transfer genes
to other bacteria. The bacterial mutation performs local
optimization whilst the gene transfer allows the bacteria
to directly transfer information to the other individuals in
the population.

Based on these bacterial operations but using the tree
structures similar to the ones in the genetic programming,
we propose a new technique (cf. also [6]). We named this
technique Bacterial Programming (BP).

4.1. The Evolutionary Process
The evolutionary process of BP involves the following

steps:

1. The creation of an initial population, and the deter-
mination of the size of the population.

2. Application of bacterial mutation for each bacterium.
3. Application of gene transfer operation to the current

population.
4. If the terminal criterion is achieved, the algorithm

stops, otherwise it continues from step 2.
5. The terminal criterion is usually the maximum num-

ber of generations.

The cycle of evolution is summarized inFig. 6.

4.2. The Encoding Method
Bacterial programming employs the same operators

that a bacterial algorithm uses in its search procedure.
However, from our point of view this approach is much
useful for this type of neural networks because, instead of
coding the network parameters in bit strings, it requires a
tree structure, composed offunction andterminal nodes.
One bacterium is represented by one such expression tree.
This tree structure, as well as the characteristics of the
nodes, evolves from generation to generation.

Fig. 6. Flowchart of Bacterial Programming.

4.3. Bacterial Mutation

The bacterial mutation is applied to each bacterium one
by one. First,Nclonescopies (clones) of the bacterium are
generated. Then, a certain part of the bacterium is ran-
domly selected and the parameters of this selected part
are randomly changed in each clone (mutation). In the
new method, because coding is given by an expression
tree, there are two types of parts: function and terminal
parts. Next, all the clones and the original bacterium are
evaluated by an error criterion. The best individual trans-
fers the mutated part into the other individuals. This cycle
is repeated for the remaining parts until all of the parts of
the bacterium have been mutated and tested. At the end,
the best bacterium is kept and the remainingNclones are
discharged. By the help of this operation, the bacterium
will be at least as good as before, but in most of the cases
it will be better. Bacterial mutation is more efficient than
classical mutation in GA because of the nature of cloning.
Every clone brings a new chance to find a better solution
anywhere in the search space, thus wider space can be ex-
plored.

Figures 7 and 8 illustrate the mutation procedure.
From Fig. 7, it can be seen that after a function muta-
tion at a node, the whole sub-tree beneath this node is
replaced by a new randomly generated one, using the
“grow” method [12]. However, terminal mutation affects
only the given node.

In bacterial programming, mutation is applied once to
the selected part, meaning that neither the selected nodes
nor the sub-tree in case of function mutation, will be cho-
sen once again for mutation, in the same generation. The
terminal mutations in the clones can be any of the same
six different types as in genetic programming.
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Fig. 7. Mutation on a function part: the individual’s selected
node sub-tree is changed randomly.

Fig. 8. Mutation on a terminal part: only the selected node
changed randomly given the terminal mutation rates.

4.4. Gene Transfer

The aim of the gene transfer operation is to exchange
genetic information between two bacteria. This procedure
is somewhat similar to the crossover operation used in ge-

Fig. 9. The gene transfer procedure.

netic programming.
First, the population must be divided into two halves,

where the “better” bacteria are called the superior half,
whereas the other is referred to as inferior half. Neither
fitness assignment nor any selection method is performed
to candidates, as is often the case in GP. Next, one bac-
terium called the “source bacterium” is randomly chosen
from the superior half, while the other is randomly se-
lected from the inferior half. This will be termed the “des-
tination bacterium”. A part from the source bacterium is
chosen and this part will overwrite a part of the destina-
tion bacterium.

Gene transfer is repeated forNinf times, whereNinf is
the number of “infections”, per generation. Since the des-
tination bacterium represents the worst part of the pop-
ulation, by accepting phenotypes from the better part,
this operation leads to better solutions. Gene transfer
shows some advantages over the crossover in GA. A supe-
rior bacterium gives information to an inferior bacterium,
while the inferior one does not give back any informa-
tion to the superior one. Thus, here we will definitely not
lose the superior individual, which can happen in the GA,
because of the exchange of information between two par-
ents. The gene transfer operation is illustrated inFig. 9.

4.5. Bacterium Evaluation
The bacteria can be evaluated with different criteria,

such asRMS (Root-Mean-Square) in the training set, or
Cross-Validation; the most usual criteria are however,in-
formation criteria, which balance the accuracy obtained
against the model complexity. Some of the most em-
ployed are:

� Final Prediction Error;

� Akaike Information Criterion;
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� Minimum Description Length;

� Structural Risk Minimization;

� Bayesian Information Criterion.

This last criterion is used in this work and is described as:

BIC � m ln�RMS��n ln�m� . . . . . . . (11)

wherem denotes the number of training samples andn the
model complexity (number of basis functions).

4.6. Parameters

An evolutionary computational algorithm needs to be
fine-tuned. There are different techniques for the steps de-
scribed earlier (and also different parameters) that should
be selected for the particular application. A preliminary
experimental study was conducted and the main conclu-
sions are summarized here:

� As it is often the case, the larger is the size of the pop-
ulation, and the number of generations employed, the
better are the results obtained.

� The parameter of bacterial mutation is the number of
clones (Nclones�. The larger is theNclones, the more
effective is the bacterial mutation.

� From all the terminal mutations referred above, the
one related with knots addition appears to be the
most important.

5. Simulation Results

In this section three problems are used in order to il-
lustrate the power of the new method. In [4] the genetic
programming is compared with some other methods ap-
plied for B-spline design task, such as the ASMOD [18],
the MARS [7], and the LOLIMOT [16] algorithms. This
paper focuses only for the comparison of the genetic pro-
gramming with the newly proposed bacterial program-
ming technique.

5.1. The pH Problem

The aim of this example is to approximate the inverse
of a titration-like curve. This type of non-linearity relates
the pH (a measure of the activity of the hydrogen ions
in a solution) with the concentration (x) of chemical sub-
stances.

5.2. The Inverse Coordinate Transformation Prob-
lem (ICT)

This example illustrates an inverse kinematic transfor-
mation between 2 Cartesian coordinates and one of the
angles of a two-links manipulator.

For a more complete description of the examples refer
to [17].

5.3. A Six Dimensional Generic Function

This example is widely used as a target function and the
output is given by the following expression (see e.g. [2]):

y � x1� x0�5
2 � x3x4�2e2�x5�x6��

where
x1 � �1�5�, x2 � �1�5�, x3 � �0�4�,
x4 � �0�0�6�, x5 � �0�1�, x6 � �0�1�2�.

5.4. BP Parameter Values Selection

To start, results were generated in order to decide the
best values for the BP parameters. The parameters for
the BP are the number of individuals (Nind), the number
of clones (Nclones), the number of infections (Ninf), and
the number of generations (Ngen). The training patterns
used were taken from the pH problem known from the
literature (cf. [17]).

Therefore, 10 sessions were executed and results for the
mean values for the BIC, MSE (Mean Square of the abso-
lute Error), MSRE (Mean Square of the Relative Error),
and PMRE (Percentage of Mean Relative Error) values
were obtained.

The MSRE and PMRE were defined as follows:

MSRE �
1

N pat

N pat

∑
i�1

�ti� yi�
2

y2
i

;

PMRE �
100

N pat

N pat

∑
i�1

���� ti� yi

yi

����� . . . . . . (12)

whereti refers to the desired output andyi is the model
output for theith pattern, respectively, andN pat is the
number of patterns. These relative errors can be useful
when the output has a wide range because they consider
the error of each pattern relatively to the model’s output.
Nevertheless, the BIC and MSE values are more impor-
tant in the simulation results because the individuals are
evaluated with the BIC criterion, and BIC includes some-
how the MSE instead of the relative errors.

Both the number of individuals, and generations are 20.
Firstly, the number of clones was adjustable to 5, 10 and
15 clones, using a number of infections of 5.

Secondly, the number of infections was adjustable, set
to 5, 10 and 15 infections, using a number of 8 clones.

The results presented inTable 1 show that, in general,
the more the number of clones the better is the accuracy
of the output, as expected. However, the more clones we
apply the more computation we need. So, we need to find
some optimal balance and avoid using too many clones.

When one analyses the values inTable 2, it can be as-
sumed that the results are not as different from each other
as in the case of the number of clones’ issue. More infec-
tions may lead the population into local optima because
of the premature convergence. A low value forN inf may
provide better result in general, and it needs less compu-
tation.
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Table 1. Mean values for BIC, MSE, MSRE, PMRE and
model complexity adjusting parameterNclones.

Nclones 5 10 15
BIC �1695�9 �1834�3 �1913
MSE 3.6�10�8 6.9�10�9 2.3�10�9

MSRE 5.8�10�2 2.9�10�3 1.2�10�3

PMRE 1.2 2.7�10�1 1.7�10�1

Complexity 57.8 73 81

Table 2. Mean values for BIC, MSE, MSRE, PMRE and
model complexity adjusting parameterNinf .

Ninf 5 10 15
BIC �1823�9 �1792�8 �1934�3
MSE 8.4�10�9 4.2�10�8 2.2�10�9

MSRE 7.1�10�3 7.4�10�2 3.4�10�3

PMRE 4.1�10�1 9.1�10�1 3.3�10�1

Complexity 75.9 76.2 87.4

Table 3. Parameters definition for both algorithms.

Parameters GP BP
Ninf – 5

Nclones – 8
Nind 160 20
Ngen 20 20

Crossover rate 50% of population –
Mutation rate 0.8 –

5.5. Comparison Between BP and GP

In this section, the aim is to show results obtained from
the GP and BP when applied to academic problems used
as benchmark.

As in the former section, 10 sessions were executed and
the mean values for the BIC, MSE, MSRE and PMRE
were obtained. The number of patterns used is 101, 110,
and 200 for the pH, ICT and the six dimensional generic
function problem, respectively.

In order to obtain the same computational complexity
by the two algorithms, the values for the parameters used
are as shown inTable 3.

The terminal type mutation rate is: [5%, 10%, 5%,
10%, 60%, 10%], for both algorithms.

From the values used for the parameters, it can be seen
that the size of the population in the BP is much smaller.
However, setting a number of 8 clones gives similar com-
putational complexity because in the bacterial mutation
we use 8 clones for each bacterium. One advantage of the
BP approach is that we do not need to handle big popula-
tion; the evolution of only 20 bacteria is enough to com-
pare the methods.

Table 4. Mean values for MSE, MSRE, PMRE and model
complexity obtained for the pH problem.

GP BP
BIC �1784�6 �1786�7
MSE 1.1�10�8 1.3�10�8

MSRE 1.3�10�2 2.6�10�2

PMRE 6.1�10�1 6.9�10�1

Complexity 82.6 72.4

Table 5. Model structure for the lowest BIC value found
after all sessions for the pH problem.

GP BP
Sub-models (1) (1)
Complexity 33 40

BIC �1903�1 �1874�3
MSE 1.4�10�9 1.8�10�9

MSRE 2.7�10�3 7.5�10�5

PMRE 5.3�10�1 1.0�10�1

�W� 3.3 3.6

Table 6. Mean values for MSE, MSRE, PMRE and model
complexity obtained for the ICT problem.

GP BP
BIC �1344�4 �1539�7
MSE 2.5�10�7 8.6�10�8

MSRE 1.6�105 2.1�103

PMRE 1331.6 125.8
Complexity 33.4 31.7

5.5.1. The pH problem

In Table 4the mean values obtained for the pH problem
can be seen. In this case, the results of GP and BP seem
to be similar. However, the complexity is lower in the BP
case. InTable 5the model structure for the best individual
is shown in the case of BP and GP also. From this result it
can be diagnosed that both algorithms show similar final
values. The reason for this is that the pH problem is only
a one dimensional problem, thus the structure of B-spline
neural network is not so complex, and so both methods
can solve the design task easily.

5.5.2. The Inverse Coordinate Transformation Problem

Results for the ICT problem can be seen inTables 6
and7. BP gives better results not only in the mean case
but also if the best individual is considered (the individual
with the lowest BIC). Though GP shows lower values for
the best individuals regarding the relative errors, however,
the evolution processes are driven by the BIC criterion
(which contains the MSE in some way) both for GP and
BP, thus the BIC and MSE criteria are more important.
According to these criteria our method gives better results.
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Table 7. Model structure for the lowest BIC value found
after all sessions for the ICT problem.

GP BP
Sub-models (1x2) (1) (2) (2x1) (1)
Complexity 106 106

BIC �1533�9 �2048�3
MSE 1.3�10�8 8.8�10�11

MSRE 1.6�10�7 22.45
PMRE 1.3�10�2 79.7
�W� 686.7 2.6�107

Table 8. Mean values for MSE, MSRE, PMRE and model
complexity obtained for the six dimensional generic function
problem.

GP BP
BIC �380�1 �552�9
MSE 2.0�10�1 2.7�10�2

MSRE 2.1�10�3 5.2�10�4

PMRE 2.1 0.98
Complexity 38.8 44.6

Table 9. Model structure for the lowest BIC value found
after all sessions for the six dimensional generic function
problem.

GP BP
(5) (4) (6x5) (5x2)

Sub-models (2) (3x4) (6x1) (3x6)
(5x3x6) (3x1) (3x4) (1)

Complexity 98 156
BIC �593�2 �702
MSE 3.8�10�3 4.8�10�4

MSRE 7.3�10�5 1.2�10�5

PMRE 6.6�10�1 2.4�10�1

�W� 423.8 128.4

5.5.3. A Six Dimensional Generic Function

The main advantage of the bacterial approach can be
deduced from the results of the six dimensional problem.
The results show that the bacterial method gives good per-
formance for problems with larger input dimension. From
Tables 8and9one can see that the BP is better comparing
the mean values and the best individuals.

In Figs. 10and11 the desired output (target) and the
error can be seen for each pattern considering the best in-
dividual for GP and BP, respectively. Comparing these
pictures we can see that our technique gives the smaller
error.

5.6. Statistical Approach
In the previous simulations we could see that the Bacte-

rial Programming is more efficient than the Genetic Pro-

Fig. 10. Target output and error for the six dimensional
generic function problem, using GP.

Fig. 11. Target output and error for the six dimensional
generic function problem, using BP.

gramming. The reason for that is the different nature of
the operations in the BP approach. Bacteria can explore
bigger part of the search space because of the effective
clones in the bacterial mutation.

In this subsection some hypotheses tests are presented
as shown in the table below. A significance level for rejec-
tion of α � 5% was used, giving a 95% rate of confidence
on the null hypotheses.

To assess the equality of solutions, the most-popular
two sample method was applied, the Mann-Whitney test
[13]. This test supplies the p-value which represents
the probability of obtaining equal value samples drawn
from two different algorithms. Also, to ascertain whether
both algorithms have equal medians, the location method
known as the Median test was conducted. Given the num-
ber of runs and the cumulative sum of ranks from sam-
ples from one of the algorithms, the Median test poses a
judgment on the probability of having different, smaller
or bigger medians between two populations.

The results shown inTable 10 indicate how similar the
performance is for both algorithms when using the one
dimensional pH problem, since the p-value is high. When
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Table 10. Statistical inference obtained for the BP and GP
using both the Mann-Whitney and the Median test methods.

Problem Mann-Whitney
test (p-value)

Median test

pH 0.7624 Different
medians

ICT 0.0156 Different
medians

Six dimensional
generic function

0.00194 Lower Median
for BP
than for GP

Fig. 12. Empirical probability distribution function for the
pH problem.

using multi-variable problems it looks as if the probability
of obtaining similar results was depreciated, since the p-
value is lower than the 5% rejection boundary. Moreover,
it happens that the six dimensional problem presents not
only a different but also lower median value, which means
that in most of the times a better evaluation criterion will
be obtained.

Figures 12-14 relate to the empirical probability dis-
tribution functions for each of the problems, using both
algorithms. From the figures the same conclusions can be
done as in the previous subsection. For the one dimen-
sional problem the two approaches give similar results.
For the two dimensional ICT problem, the best individ-
uals’ BIC values are between approx.�2050 and�1750
with BP, and between approx.�1500 and�1420 with GP,
which means that the GP method provides much poorer
result than our technique. InFig. 14 the six dimensional
problem is shown. While the best individuals have only
BIC values with GP between about�600 and�500, they
have the same values between�700 and�630 with the
BP.

Fig. 13. Empirical probability distribution function for the
ICT problem.

Fig. 14. Empirical probability distribution function for the
generic six dimensional problem.

6. Conclusions

In B-spline neural networks design one important task
is to find the best topology. Different algorithms were in-
troduced previously, which try to solve this task. In this
paper, the bacterial programming is introduced, which ap-
plies the bacterial operators instead of the original genetic
operators. The bacterial mutation optimizes the local por-
tions of the individual. The gene transfer operator sub-
stitutes the traditional crossover operator and allows the
transfer of information between different individuals. So,
while the bacterial mutation is working on one individual,
and tries to optimize this bacterium, the gene transfer is
applied to the whole bacterium population, avoiding the
local minima solutions. If more clones are being applied
in the bacterial mutation, then better results are received.
In the gene transfer operation, it is fundamental not to use
a too high infection value in order to avoid that the popu-
lation can be trapped in a local minimum.

The operations of the bacterial programming seem to
be more effective than the operations of the classical ge-
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netic programming. In the bacterial mutation we have
more chance to find a better solution because of the large
number of clones. In the gene transfer we do not lose good
individuals, because the information flow is directed from
the superior sub-population to the inferior one. Another
advantage of the bacterial approach is that no selection
process is needed. Fewer individuals in the population
are sufficient than in case of the genetic algorithms. If the
dimensionality of the problem is increasing then we need
to increase the number of individuals and/or the number
of generations in order to reach as good results as for the
lower dimensional problem. If we consider a problem
with a given number of input dimensions, then the compu-
tational demand of the method grows if the values of the
parameters are larger, however, the accuracy of the model
is better in this case. If we intend to reach higher accu-
racy then the values of the numerical parameters have to
be increased, thus the computational demand is higher in
this case.

The advantage of our technique is that it is efficient
in higher dimensional problems, too. Bacterial Program-
ming turns out to be an effective tool for optimization.
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