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Abstract— In this paper a method is proposed for construct-
ing hierarchical fuzzy rule bases in order to model black box
systems defined by input-output pairs, i.e. to solve supervised
machine learning problems. The resultant hierarchical rule
base is the knowledge base, which is constructed by using
structure constructing evolutionary techniques, namely, Genetic
and Bacterial Programming Algorithms. Applying hierarchical
fuzzy rule bases is a way of reducing the complexity of
the knowledge base, whereas evolutionary methods ensure a
relatively efficient learning process. This is the reason of the
investigation of this combination.

I. INTRODUCTION

This paper proposes a method for constructing hierarchical
fuzzy rule bases in order to model black box systems defined
by input-output pairs, i.e. to solve a certain type of super-
vised machine learning problems. The resultant hierarchical
rule base is the knowledge base, which is constructed by
using structure constructing evolutionary techniques, namely,
Genetic and Bacterial Programming Algorithms.

There are two key elements in machine learning sys-
tems: the learning architecture including the structure of the
knowledge base and the learning algorithm applied during
the learning process, i.e. the technique that optimizes the
knowledge base according to the particular problem. Hence,
in order to establish a learning system having favorable
properties (low knowledge complexity, high accuracy, fast
learning process, etc.) these elements must be chosen so that
they outperform other alternatives of knowledge bases and
learning algorithms.

For interpretability purposes, i.e. after the learning process
to have a quasi-interpretable knowledge base, this paper
considers only knowledge bases in the form of fuzzy rule
bases.

The classical approaches of fuzzy control deal with dense
rule bases where the universe of discourse is fully covered by
the antecedent fuzzy sets of the rule base in each dimension,
thus for every input there is at least one activated rule. The
main problem is the high computational complexity of these
traditional approaches.
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If a fuzzy model contains k variables and maximum T
linguistic terms in each dimension, the order of the number of
necessary rules is O(T k). This expression can be decreased
either by decreasing T , or k, or both. Of course, these are
very different in terms of the efficiency of the complexity
reduction. The first way (decreasing T ) leads to sparse
rule bases and rule interpolation, a method that was first
introduced by Kóczy and Hirota (see e.g. [1], [2]). The
second, more effective way (decreasing k) aims to reduce
the dimension of the sub-rule bases by using meta-levels or
hierarchical fuzzy rule bases (e.g. [3], [4]). The combination
of these two methods leads to the decreasing of both T and
k, and was introduced in [5].

The scope of this paper focuses only on the second men-
tioned way of complexity reduction, namely, the application
of hierarchical fuzzy rule bases. Future work may aim to
consider the combination of interpolative and hierarchical
systems.

Nature inspired evolutionary optimization algorithms suit-
able for global optimization of even non-linear, high-
dimensional, multimodal, and non-continuous problems. The
original Genetic Algorithm (GA) was developed by Hol-
land [6] and was based on the process of evolution of
biological organisms. Recognized as a powerful global search
technique, genetic algorithms have been applied to a wide
variety of problems. They exhibit a remarkable balance
between search domain exploration and exploitation [7]. On
one hand, every part of the domain is searched and on
the other hand, the search effort is concentrated around
the best solutions and their neighborhood, producing even
better solutions. Bacterial Evolutionary Algorithm (BEA) [8]
inspired by the microbial evolution phenomenon is similar,
but based on results in the literature appearing more effective
technique than GA (e.g. [9], [10], [11]). Approaches like Ge-
netic Programming (GProg) [12] and Bacterial Programming
(BProg) [13], present an alternative to the former algorithms.
These techniques use the same operators as GA and BEA,
respectively, though they require expression trees for gene
representation, which could model hierarchical fuzzy rule
bases, for example.

Evolutionary algorithms are useful tools for identification
problems, they can help with finding a good compromise
between the accuracy and the complexity of the model. In
case of non-hierarchical rule bases, genetic and bacterial
approaches were successfully applied for fuzzy rule based
learning by various authors [8], [14]. This is the reason why
Genetic and Bacterial Programming is applied in our work
as the learning algorithms that optimize the knowledge base.
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Since so far no method has been invented to obtain the
main properties (efficiency, accuracy, etc.) of such complex
systems exactly, they can be figured out mostly by simula-
tion. Therefore, in order to discover the capabilities of the
established hierarchical fuzzy rule based learning systems,
simulation runs were carried out.

The next section gives a brief overview of the algorithms
and techniques used. The third section proposes a method for
constructing and optimizing hierarchical fuzzy rule bases by
Genetic and Bacterial Programming approaches. The simula-
tion results and the observed behavior will be discussed in the
fourth section. Finally, in the last section we will summarize
our work and draw some conclusions.

II. OVERVIEW OF THE TECHNIQUES AND ALGORITHMS

In order to carry out this investigation, it is necessary to
have familiarity with some theoretical fields including the
concept of hierarchical fuzzy rule bases, structure construct-
ing evolutionary optimization techniques (GProg, BProg) and
machine learning.

The following subsections aim to give a brief overview
of some important points of these theoretical aspects, which
will be repeatedly referred to later in the paper.

A. Hierarchical fuzzy rule based systems

The basic idea of using hierarchical fuzzy rule bases is the
following [3], [4]. Often the multi-dimensional input space
X = X1 × X2 × · · · × Xm can be decomposed, so that
some of its components, e.g. Z0 = X1 × X2 × · · · × Xp

determine a subspace of X(p < m), so that in Z0 a partition
Π = D1, D2, . . . , Dn can be determined:

⋃n
i=1Di = Z0.

In each element of Π, i.e. in each Di, a sub-rule base Ri

can be constructed with local validity. In the worst case, each
sub-rule base refers to exactly X/Z0 = Xp+1×· · ·×Xm. The
complexity of the whole rule base O(Tm) is not decreased,
as the size of R0 is O(T p), and each Ri, i > 0, is of order
O(Tm−p), O(T p)×O(Tm−p) = O(Tm).

A way to decrease the complexity would be finding
in each Di a proper subset of Xp+1 × · · · ×Xm, so that
each Ri contains only less than m − p input variables. In
some concrete applications in each Di a proper subset of
Xp+1, . . . , Xm can be found so that each Ri contains only
less than m − p input variables, and the rule base has the
structure shown in Table I., where zi ∈ Zi, Z0 ×Zi being a
proper subspace of X for i = 1, .., n.

If the number of variables in Zi is ki < m − p and
maxn

i=1 ki = K < m− p, then the resulting complexity will
be O(T p+K) < O(Tm), so the structured rule base might
lead to a reduction of the complexity.

The task of finding such a partition is often difficult, if
not impossible, (sometimes such a partition does not even
exist), however there are cases when, locally, some variables
unambiguously dominate the behavior of the system, and
consequently the omission of the other variables allows an
acceptably accurate approximation.

B. Structure constructing evolutionary techniques

1) Genetic Programming: There are various optimization
algorithms, which were inspired by processes in the nature.
The advantage of these algorithms is their ability to solve and
quasi-optimize problems with non-linear, high-dimensional,
multimodal, and discontinuous character. These processes
can easily be applied in optimization problems where one
individual corresponds to one possible solution of the prob-
lem. In the original Genetic Algorithm (GA) [6] an individual
is represented by a sequence of numbers, for example a
sequence of bits. This sequence is called chromosome. GA
uses three operators: selection, crossover, and mutation. A
more recent approach is Genetic Programming (GProg) [12],
which uses the same operators as GA, though the individuals
are represented by the so called expression tree. This tree is
composed of the non-terminal nodes (also called as inner or
function nodes) and the terminal nodes (leaves).

The evolutionary process involves the following steps:
a) creation of an initial population
b) evaluation of the candidates
c) application of genetic operators:

• selection: pairs of trees are selected based on their
fitness for reproduction

• crossover: nodes in the trees are selected at ran-
dom and the sub-trees belonging to the selected
nodes are exchanged producing a pair of offspring
trees

• mutation: this is performed by either replacing a
node selected at random by a sub-tree generated
randomly or by changing the inner properties of
the node

• replacement: substituting the created offsprings to
the population

d) test of the termination criteria (e.g. reaching the max-
imum number of generations, or the time limit) and

TABLE I
HIERARCHICAL RULE BASE

R0: If z0 is D1 then use R1

If z0 is D2 then use R2

. . .
If z0 is Dn then use Rn

R1: If z1 is A11 then y is B11

If z1 is A12 then y is B12

. . .
If z1 is A1r1 then y is B1r1

R2: If z2 is A21 then y is B21

If z2 is A22 then y is B22

. . .
If z2 is A2r2 then y is B2r2

. . .

Rn: If zn is An1 then y is Bn1

If zn is An2 then y is Bn2

. . .
If zn is Anrn then y is Bnrn
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if any of the termination criteria is achieved, the
algorithm stops, otherwise it continues from step b)

The cycle of evolution is summarized in Fig. 1.

Fig. 1. Flowchart of Genetic Programming

2) Bacterial Programming: Compared to GA, a slightly
different evolutionary technique is called Bacterial Evolu-
tionary Algorithm (BEA). This algorithm was introduced
by Nawa and Furuhashi in [8]. The first version of this
algorithm was called Pseudo-Bacterial Genetic Algorithm
(PBGA) [15] which proposed a modified mutation operator
called bacterial mutation, based on the natural phenomenon
of microbial evolution. Bacterial Evolutionary Algorithm
introduced a new operator called gene transfer operator.
While PBGA incorporates bacterial mutation and crossover
operator, the BEA substitutes the classical crossover with
the gene transfer operation. Both of these new operators
were inspired by bacterial evolution. Bacteria can transfer
genes to other bacteria. The bacterial mutation performs local
optimization whilst the gene transfer allows the bacteria to
directly transfer information to the other individuals in the
population.

Based on these bacterial operations, but using the tree
structures similar to the ones in the Genetic Programming, a
new technique was proposed, named Bacterial Programming
(BProg) [13].

The evolutionary process of BProg involves the following
steps:

a) creation of an initial population
b) application of bacterial operators:

• bacterial mutation: this is performed by either
replacing a node selected at random by a sub-
tree generated randomly or by changing the inner
properties of the node

• gene transfer: nodes in the trees are selected at
random in the selected superior individual and

the sub-trees belonging to the selected nodes are
copied to the selected inferior individual

c) test of the termination criteria (e.g. reaching the max-
imum number of generations, or the time limit) and
if any of the termination criteria is achieved, the
algorithm stops, otherwise it continues from step b)

The cycle of evolution is summarized in Fig. 2.

Fig. 2. Flowchart of Bacterial Programming

C. Supervised machine learning

Supervised machine learning [16] means a process where
parameters of a ’model’ are being adjusted so that its behav-
ior becomes similar to the behavior of the ’system’, which
is to be modeled. Since the behavior can be characterized
by input-output pairs, the aim of the learning process can be
formulated so that the model should give similar outputs for
the input as the original system does.

The model can be, for example, a simple function (e.g. a
polynomial function), where the parameters are the coeffi-
cients, or it can be a neural network, where the parameters
are the weights, or it can be a hierarchical fuzzy rule base
together with an inference engine [17]. In this case the
parameters determine the structure of the rule base as well
as the membership functions of the rules in the rule base. In
our work we applied a hierarchical fuzzy rule base containing
trapezoidal membership functions.

If a function φ(x) denotes the system and f(x,p) denotes
the model, where x ∈ X is the input vector and p is the
adjustable parameter vector, the previous requirement can be
expressed as follows:

∀x∈X : φ(x)
!≈ f(x,p)

In a supervised case the learning happens using a set
of training samples (input-output pairs). If the number of
samples is m, the input in the ith sample is xi, the desired
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output is di = φ(xi) and the output of the model is yi =
f(xi,p), the following formula can be used:

∀i∈ [1,m] : di
!≈ yi

The error (ε) shows how similar the model to the system
is (see Fig. 3). It is the function of the parameter vector, so
it can be denoted by ε(p). A widely applied definition for
the error is the Mean Squared Error (MSE):

ε(p) =

m∑
i=1

(di − yi)2

m

Obviously, the task is to minimize this ε(p) function. It
can be done by numerical optimization algorithms.

Fig. 3. Supervised machine learning

This way machine learning problems can be traced back
to optimization problems.

III. THE ENCODING METHOD

This section describes the method how the individuals
represent the applicant hierarchical fuzzy rule bases, i.e. how
the rule bases are encoded.

The non-terminal (inner) nodes hold the antecedent parts
of one or more rules. In case of each non-terminal node
the number of considered input dimensions (number of
decision variables) is a random value, whose maximum can
be parameterized. A decision variable can only be such
a dimension, which has not been decision variable in the
ancestors of the current node. (This way the size of the
expression tree becomes limited.) The consequent part of a
rule is a child node of the particular node, which can be either
a non-terminal or a terminal node. Thus, the number of rules
a non-terminal node holds is determined by the number of the
children of the particular node. The number of children of the
nodes is a random value, whose maximum, i.e. the maximum
number of rules belonging to a node, can be parameterized.

Each terminal node (leaf) holds one single fuzzy set, as a
conclusion (output) set.

There can be non-terminal nodes as well as terminal nodes
on the same level, hence meta-rules and rules can appear
together (see Fig. 4).

Since a decision variable cannot be such a dimension,
which has already been a decision variable in any ancestor of
the current node, in case of crossover in GProg the transfered
nodes change their decision variables so that the new decision
variables be such dimensions, which have not been decision
variables in the ancestors. The same solution of this technical
difficulty is applied in gene transfer in BProg, too.

In case of mutation in GProg and bacterial mutation in
BProg there are no technical difficulties: only new sub-trees
or nodes must be generated with the consideration of the
above described encoding rules.

The applied inference algorithm is a simple extension
of the well-known Mamdani-inference technique [18]. This
extension is necessary, because there are child nodes in
the consequent parts of the rules. Since the conclusions of
sub-trees are fuzzy sets (specially, the contents of terminal
nodes can also be considered as conclusions), they can be
substituted into the consequent parts of the rules of the parent
nodes. This can be performed recursively.

Fig. 4. Tree of a hierarchical rule base (rules and meta-rules appear together
on the same levels)

IV. SIMULATION RESULTS

Simulation runs were carried out in order to discover
the important properties of the established learning systems
(speed of learning, accuracy of the resultant knowledge base,
etc.).

In our work a six dimensional learning problem was
applied that was also used in [8] to evaluate the performance
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of Bacterial Evolutionary Algorithm. This problem is to
approximate the following function:

f6dim = x1 +
√
x2 + x3x4 + 2e2(x5−x6)

x1, x2 ∈ [1, 5], x3 ∈ [0, 4], x4 ∈ [0, 0.6],

x5 ∈ [0, 1], x6 ∈ [0, 1.2].

In the simulations the parameters had the following values,
because after a number of test runs these values seemed to
be suitable. The number of individuals in a generation was
8 in both Genetic and Bacterial Programming algorithms.
The maximum number of rules belonging to a node, i.e. the
maximum number of children of a node, was set to 4 and
the maximum number of decision variables in a node was 3.
In case of genetic techniques the selection rate was 0.3 and
the mutation rate was 0.1, in case of bacterial techniques the
number of clones was 5 and 4 gene transfers were carried
out in each generation. The genetic methods applied elitist
strategy.

The numbers of training samples were 200 in the learning
processes.

Two type of simulation were carried out, which differed in
the termination criteria. The runs applying the first criterion
stopped after reaching the maximum number of generations,
which was 1000 generations, whereas the other optimization
processes stopped after reaching the time limit, which was
1000 seconds.

At the end of each optimization processes the accuracy of
the resultant rule bases was measured by using three error
definitions:
• Mean Squared Error (MSE):

1
m

m∑
i=1

(di − yi)2

• Mean Squared Relative Error (MSRE):

1
m

m∑
i=1

(di − yi)2

y2
i

• Mean Relative Error Percentage (MREP):

100
m

m∑
i=1

∣∣∣∣di − yi

yi

∣∣∣∣
The MSE, MSRE, and MREP values were calculated on the
test samples.

The computation time and the number of executed gener-
ations were also observed.

In case of both algorithms for each parameterization 10
runs were carried out. Then we took the mean of the obtained
values.

During the runs the fitness values of the best individuals
were monitored. These fitness values were calculated based
on the MSE values (measured on the training samples) as
follows:

F =
10

MSE + 1
=

10m
m∑

i=1

(di − yi)2 +m

.

The means of the fitness values of the best individuals
during the runs were presented in Fig. 5 and Fig 6. to get
a better overview. The horizontal axes show the executed
number of generations and the elapsed computation time in
seconds, respectively, and the vertical axes show the fitness
values of the best individuals at the current time.

In the figures the dashed line shows the results of GProg
and the solid line presents the graph of BProg.

The results of the simulation runs are presented in Table
II and Table III. In Table II ’Comp. time’ denotes the mean
of the computation time the optimization processes required
and in Table III ’No. of gen.’ denotes the mean of the number
of executed generations.

Fig. 5. Results for the six-dimensional learning problem in case of
generation limit

Fig. 6. Results for the six-dimensional learning problem in case of time
limit

As it can be observed, BProg outperformed GProg in
both simulation types (see Table II and Table III). In case
of the time limited runs GProg stuck in local optima and
its convergence speed became zero in 20 seconds, whereas
BProg had a positive convergence speed even after 1000
seconds and continued advancing to better fitness values (see
Fig. 6).

Compared to previous results produced by non-
hierarchical, Mamdani-inference based learning systems
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[11], the results given by the established hierarchical
learning systems are promising, however further simulations
and comparisons are needed.

TABLE II
RESULTS FOR THE SIX DIMENSIONAL LEARNING PROBLEM IN

CASE OF 1000 GENERATIONS

GProg BProg
MSE 5.4206 1.2774

MSRE 0.0835 0.0169
MREP 21.6679 9.8298

Comp. time 0.4 75.8

TABLE III
RESULTS FOR THE SIX DIMENSIONAL LEARNING PROBLEM IN

CASE OF THE 1000 SECONDS TIME LIMIT

GProg BProg
MSE 3.6465 1.0334

MSRE 0.0576 0.0157
MREP 18.0081 9.5196

No. of gen. 1172084 20183

V. CONCLUSIONS

Our work proposed a method for constructing hierarchi-
cal fuzzy rule bases in order to solve supervised machine
learning problems. The rule base was constructed by using
Genetic and Bacterial Programming algorithms.

Simulation runs were carried out to discover the properties
of the obtained learning systems. Bacterial Programming out-
performed Genetic Programming in both executed simulation
types.

Further research may aim to improve both the encoded
learning architecture and the applied optimization methods
(e.g. using gradient steps during the optimization process)
and to compare the established hierarchical fuzzy systems
with non-hierarchical ones.
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