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Abstract.  Machine learning tools, in particular support vector machines 
(SVM), Particle Swarm Optimisation (PSO) and Genetic Programming (GP), 
are increasingly used in pharmaceuticals research and development. They are 
inherently suitable for use with 'noisy', high dimensional (many variables) data, 
as is commonly used in cheminformatic (i.e. In silico screening), bioinformatic 
(i.e. bio-marker studies, using DNA chip data) and other types of drug research 
studies. These aspects are demonstrated via review of their current usage and 
future prospects in context with drug discovery activities. 

1 Introduction 

Pharmaceutical discovery and development is an evolving [Ratti & Trist, 2001] 
cascade of extremely complex and costly research encompassing many facets [Ng, 
2004]. Starting from therapeutic target identification and bioinformatics study 
[Whittaker, 2004; Lengauer, 2002], through candidate drug discovery and optimisa-
tion; to pre-clinical organism-level evaluations and beyond to extensive clinical trials 
assessing effectiveness and safety of new medicines. 

In recent years, with products of human genome project helping to reveal many 
new disease targets to which drug treatments might be aimed, all the major pharma-
ceutical companies have invested heavily in the routine ultra-High Throughput 
Screening (uHTS) of vast numbers of ‘drug-like’ molecules guided by cheminfor-
matic investigations [Lipinski,2004; Leeson, et al., 2004]. Due to the enormous ex-
pense of failures of candidate drugs late in their development, uHTS in vitro assays 
now cover liabilities such as possible side effects [Li, 2005] as well as therapeutic 
properties. In parallel with this, drug design and optimisation increasingly uses com-
puters within in silico (virtual) screening [Hou and Xu, 2004; Klebbe, 2004; Schnei-
der and Fechner, 2005]. ‘State-of-the-art’ in vitro experiments now employ DNA mi-
cro-array chips to simultaneously explore the expression of thousands of genes 
potentially involved in disease, treatment and toxicity [Butte, 2002]. Similar ad-
vancements are now becoming possible in proteomics [Schrattenholtz, 2004] and me-
tabolomics [Watkins & German, 2002] providing challenges in understanding meta-
bolic pathways and systems biology. Patient-level genetic and single nuclear 
polymorphism, SNPs [Roses, 2002], data has become more commonly available sup-
porting conventional observational data in epidemiology, clinical trial treatment re-
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sponse and early safety studies that continue as on-going pharmacovigilance 
[Gould,2003]. 

The curation and storage of all these individual types of data has become more 
automated, organised and consistent, providing for greater homogeneity and suitabil-
ity for exploration.  Increasingly, vast ‘integrated’ research datasets are constructed 
from larger more inhomogeneous combinations of data, from disparate sources and 
disciplines, to answer novel lines of inquiry, and for hypothesis generation, possibly 
not initially envisaged at the time of planning data collection. However, conventional 
multivariate statistical methods, i.e. principal components analysis and partial least 
squares, well established against smaller, lower-dimensional datasets, are being 
stretched. Whilst they remain of great utility and continue to be developed in more 
scaleable commercial tools, they are inherently linear, tending to render them less 
suitable toward a plethora of newer, ever more complex problem opportunities. Scien-
tists are thus increasingly using data-mining tools such as recursive partitioning and 
predictive modelling methods to underpin data exploration, using heavy computation 
to free-up and save scientist time. 

Consequently, evaluation and early uptake of novel predictive modelling ap-
proaches continues within pharmaceuticals research. Whilst uses of artificial neural 
networks and genetic algorithms are well established in older application areas [Jones, 
1999; Zupan and Gasteiger, 1999; Solmajer and Zupan, 2004], in non-expert hands 
these may yield suboptimal solutions presenting difficulties in newer areas, including 
situations when the form of the solution is unclear. More recent machine learning ap-
proaches, offer key advantages over these, and we here illustrate Support Vector Ma-
chines, Genetic Programming and Particle Swarm Optimisation. The current state of 
their pharmaceuticals R&D application is reviewed and their future prospects as-
sessed. 

2 Support Vector Machines 

The Support Vector Machine (SVM) arose from Prof.V.Vapniks’ concepts of struc-
tural risk minimisation and statistical learning theory [Vapnik, 1992]. An  algorithm 
based upon these ideas was first presented at COLT-92 [Boser et al., 1992], and a 
support vector classifier (SVC) formulation was first presented by [Vapnik, 1995]. 
Todays’ SVC, is a sophisticated synthesis of artificial neural network perceptron-like 
hyperplane classifier, backed by a sound theory of learning and convergence. It uses 
robust linear methods and can apply these within kernel spaces to achieve non-linear 
classifiers with excellent generalisation characteristics. 

The simplest SVCs  are ‘maximal margin’ binary classifiers, placing the optimal 
separating hyperplane, centrally giving the largest allowable separation between the 
nearest data points of opposite classes in the training set. They use uniform-class sub-
sets of these points (known as support vectors) to construct respective bounding hy-
perplanes defining a margin which models the decision surface. In accordance with 
statistical learning theory, for bias-variance trade off in learning, this margin-
maximisation is tied to a function-limiting to avoid over-fitting. In achieving this, 
SVCs are constrained to minimise an estimated upper bound on expected (not empiri-



cal) risk, as derived from statistical learning theory, assuming training data is drawn 
independently and identically distributed from some unknown distribution, 

 
 p(x,y): { (x1y1), …,(xl,yl)}   xi ∈ ℜ  , with class yi ∈ { -1 , +1 }. 
 
Linear SVCs use the dot product of pairs of input vectors as a distance measure. 

SVCs can also learn a linear hyperplane after projection of the input to a higher-
dimensional kernel-feature space. For efficiency, data mapping to kernel space is not 
explicitly made, although a sparse new space is effectively created aiding model con-
struction. Kernel spaces allow decision boundaries of apparently arbitrary shape in the 
input feature space and provide an opportunity to incorporate domain knowledge, 
enabling solutions to very complex problems of diverse nature [Shawe-Taylor and 
Cristianini, 2004]. 

Support Vector Regression (SVR) and SVC models achieve a data compression, 
comprising a linear combination of mapped training examples, the SV subset, using a 
discovered weighting of input features. Implementations of SVC and SVR are con-
structed as Linear Programming (LP) or Quadratic Programming (QP) problems using 
appropriate solver technology. ‘Soft margin’ SVMs  use error terms to handle con-
straint violations from data-points lying beyond their class ‘margin hyperplane’, to 
enable solutions for noisy, or non-linearly separable data. More specific details can be 
found in [Cristianini and Shawe-Taylor, 2000]. 

 
Pros Sound theory and formalism; use robust linear methods; global optimum for 

convergence; good accuracy, generalisation and robustness to noise; Few user pa-
rameters (regularisation parameter, C; kernel parameters), simplify parameterisation 
compared to neural nets; implicit feature selection; computationally weakly affected 
by input dimensionality; sparse solution gives fast prediction; Memory linear in the 
number of training examples. 

Cons Complex operation and model opaque to end user; optimal parameter con-
figuration is data dependent; cannot handle missing data; computational cost quad-
ratic with number of examples; QP implementations restricted to Mercer kernels; ef-
fectively non-parametric density estimators giving ‘point predictions’, with no 
confidences or distributions generated. 

  

2.1 SVM Applications in Pharmaceuticals Research   

2.1.1 SVM in Cheminformatics and Quantitative-Structure Activity 
Relationship (QSAR) Modelling. The role of cheminformatics in drug discovery has 
been reviewed by [Xu and Hagler, 2002]. An early task is the creation of virtually 
respresented molecules’ and assessment of their likely suitability for synthesis and 
viability for use in the body. [Byvatov et al. 2003, 2004; Zernov et al., 2003] studied 
this 'drug-likeness' and report that SVM predictions were more robust than those from 
neural networks, whilst [Takaoka et al., 2003] has employed SVC to predict chemists’ 
intuitive assessments. Cheminformatics combines chemical properties and high 
throughput screening measurements , often against novel targets , in large scale struct- 

 



-ture-activity modelling. Trained classifiers enable ‘virtual screening’ for discovering 
molecules with specific therapeutic target affinities from potentially millions of 
virtual representations. Ranking and simple enrichment of actives are key aspects as is 
the discovery of correlated descriptors, and  [Jorissen and Gilson, 2005] developed 
SVM-based capability to do this. 

Reducing the scale of subsequent ‘physical’ screening of synthesised molecules 
and the number of synthesis-biotesting cycles for their improvement is an ideal setting 
for ‘active learning’ and [Warmuth et al., 2003] have employed SVC in this context. 
Finding the bio-active conformations of active molecules is key to understanding their 
mechanisms of action and thus for improving specificity and selectivity, and [Byvatov 
et al., 2005] have used SVM methodology toward discovering and observing these 
molecular pharmacophore patterns. SVM uses in the wider field of chemistry have 
been covered by [Chen, 2004]. 

Predicting Activity Toward Therapeutic Targets. G-proteins provide such a key inter-
face to intra-cellular signal transduction that G-protein coupled receptors (GPCRs) are 
the major class of drug targets. [Suwa et al., 2004] provided physicochemical features 
of GPCRs and their ligands to a Radial Basis Function-SVC (RBF-SVC) to predict 
specific G-protein couplings with high degrees of success. [Cheng et al., 2004] used 
an RBF-SVR to predict both antagonist compound metabolism and inhibitory activity 
toward human glucagon receptor in order to select useful 3-d QSAR features. [Byva-
tov, et al., 2005] employed binary SVC optimised via active learning to enrich dopa-
mine receptor agonists then applied SVR to the enriched set to predict relative activi-
ties between D2 and D3 receptors to further identify a subset of compounds with 
required selectivity. [Takahashi et al., 2005] used SVC in a ‘one versus the rest’ con-
text to successfully predict D1 dopamine receptor agonists, antagonists and inactives. 
[Burbidge, 2004] applied SVM to a variety of QSAR problems and found good per-
formance can be achieved at the expense of sparsity, i.e. a large number of training 
points are support vectors. Having many support vectors can severely reduce predic-
tion speed in large-scale virtual screening, however [Burbidge et al., 2001a] devised 
an algorithm to counter this. 

Predicting Absorption Distribution Metabolism Excretion Toxic effects (ADMET): 
Amongst the first to investigate the utility of SVC in QSAR modeling, [Burbidge, et 
al., 2001b] favourably compared SVC to back-propagation and radial-basis function 
neural networks, C5.0 (boosted C4.5 decision trees) and K-nearest-neighbour classifi-
ers against human blood-brain barrier, human oral bioavailability and protein-binding 
classification problems. [Brenemann et al. 2003] have successfully applied SVM to 
CaCO2 cell permeability prediction. P-glycoprotein (P-gp) active molecular transport 
in bacterial cells may act as effective efflux pump for antibiotics which are substrates, 
resulting in drug resistance. [Xue et al., 2004a] used Gaussian SVC Recursive Feature 
Elimination (SVC-RFE) to predict P-gp substrates with ~80% CV accuracy, outper-
forming probabilistic neural nets and K-NN. [Xue et al., 2004b] used similar ap-
proach for predicting human intestinal absorption and serum albumin binding. [Doni-
ger et al., 2002]  demonstrated performance benefits of RBF-SVC with small C over 
neural networks in working from a small dataset to predict central nervous system 
(Blood Brain Barrier) permeability with an accuracy above 80%. In contrast to ex-
perience with SVC, over-fitting problems were reported for SVR with high C by 



[Norinder, 2003] who overcame them using simplex optimization techniques for pa-
rameter and feature selection to achieve good predictors for BBB penetration and hu-
man intestinal absortion. [Liu et al., 2005] report 73% accurracy predicting human 
oral drug absorption using carefully tuned Gaussian SVR. 

Avoiding Adverse Drug Reactions. [Yap et al., 2004] used Gaussian kernel SVC to 
classify drugs in terms of their potential to cause an adverse drug reaction, torsade de 
pointes (TdP). TdP involves multiple mechanisms and their SVM used linear solva-
tion energy relationship descriptors and was optimized by leave-one-out cross valida-
tion. Prediction accuracy on an independent set of molecules was in excess of 90% 
comparing favourably with that from K-NN, probabilistic ANN and C4.5. Accuracy 
of prediction of TdP-causing agents was substantially improved by SVM, whilst for 
non-TdP-causing agents discrimination remained comparable to the results obtained 
by other methods. [Xue et al., 2004b] also used SVC, but with RFE in the prediction 
of TdP inhibition. Chemical inhibition of Human Ether-a-go-go Related Gene 
(HERG) potassium channel is associated with heart arrhymia which can trigger TdP, 
and [Tobita, et al., 2005] have trained a standard RBF SVC using 2-D and molecular 
fragment features with thresholded pIC50 values to predict HERG inhibition. They 
report better then 90% accuracy. Non-Steroidal Anti-Inflammatory Drugs (NSAIDS) 
reduce inflammation by blocking cyclo-oxygenase (COX) enzymes and selective 
blocking of the COX-2 form reduces gastro-intestinal side effects associated with 
treatment. [Liu, et al., 2004] employed RBF SVC/SVR to discriminate between COX 
inhibitors. 

Predicting Physical Properties. [Lind & Maltseva, 2003] used molecular fingerprint 
data in an SVR employing a Tanimoto similarity kernel to estimate the aqueous solu-
bility of a set of organic molecules yielding an accuracy comparable to results from 
other reported methods with the same dataset. 

Metabolism and Toxic Effects. Cytochrome p450 enzymes are important chemical 
(and drug substrate) metabolisers within the body, and significant drug inhibition of 
these is to be avoided. [Merkwirth et al., 2004] compared ridge regression with indi-
vidual and ensemble K-NN or SVC in predicting CYP450 3A4 inhibitors using me-
dium sized IC50 data excluding substrate molecules. SVC, although computationally 
most demanding, achieved peak CV/OOT accuracies >90%, with little difference be-
tween individuals and ensembles. [Arimoto & Gifford, 2005] employed a larger 
thresholded HTS CYP3A4 IC50 dataset (with substrates) achieving more than 80% 
holdout accuracy. This is comparable with that from recursive partitioning and supe-
rior to logistic regression, K-NN and Bayes classifiers. [Kriegl et al., 2004] achieved 
similar (~70%) accuracies for CYP3A4 and CYP2D6 inhibition using RBF SVC and 
SVR, whilst [Kless & Eitrich, 2004] predicted CYP1A2 inhibition with about 90% 
leave one out cross validation accuracy using an SVM nearest-point algorithm. Yap & 
Chen, 2005 have since gained further improvements against  CYPs 3A4, 2D6 and 
2C9 inhibition using Consensus SVMs. Compared to Bayesian-regularised neural 
network and partial least squares discriminant analysis methods, [Sorich et al., 2003] 
found SVC best able to classify known substrates and non-substrates of 12 human 
'drug metabolising' UDP-glucuronosyltransferase (UGT) isoforms, concluding that 
SVCs were best delineators of the complexities between chemical structure and glu-
curonidation ability [Miners et al. 2004]. 



2.1.2 SVM in Bioinformatics. In their review of SVM usage in bioinformatics 
[Byvatov and Schneider, 2003] outlined the major applications up to that point, so 
here we will briefly re-visit and present an update. 

Gene Expression Micro-Array Data in the Prediction of Disease Traits. As with 
SNPs data, dimensionality P of this input can be extremely large (10Ks of  genes) 
whilst the number of examples N is relatively small (typically a few 10s to 100s). 
Whilst it is clear that SVMs are well suited to this kind of situation, [Malossini et al., 
2004] showed that performance can significantly degrade if some training examples 
are incorrectly labelled. Furthermore increasing the number of correctly labelled train-
ing examples does not counter the presence of incorrectly labelled examples. Large 
numbers of poorly correlated, correlated and irrelevant genes also diminish perform-
ance, making feature selection essential, and it was for this that [Guyon et al., 2002] 
invented Recursive Feature Elimination (RFE), employing SVC within a wrapper-
based approach. [Furlanello et al., 2003] developed a faster, ‘entropic’ form of this 
eliminating groups of uninteresting genes (rather than one) at a time, whilst [Fuja-
rewicz and Wiench, 2003] devised a heuristic SVC-based Recursive Feature Re-
placement (RFR) approach. RFR and RFE ‘distinctly outperformed’ all conventional 
methods and [Simek et al., 2004] found the former best for smaller gene subsets. 
[Ambroise and Mclachan, 2002] have, however, reported SVM-RFE gene selection 
bias. [Fung and Mangasarian, 2004] have since reported a fast linear programming 
SVC handling vast inputs and yet outputting models using very few features. Since 
their initial usage in this context [Furey et al., 2000], SVCs continue to be heavily 
used to successfully predict cancer cases using case-control gene expression training 
data for example, [Kun et al.,2003; Jarzab et al., 2005; Wang et al., 2005]. Chemo-
genomic studies (of functional relationships between genes and drugs) are also in-
creasing, for example, [Bao and Sun, 2002] used multiclass SVC to identify genes re-
lated to previously identified anti-cancer drug mechanisms and [Thukral et al., 2005] 
identified drug nephrotoxicity-related gene biomarkers. 

Receptor Classification and Protein Function Annotation. SVC prediction of the 
functional classes of proteins from sequence data is now quite common, and [Karchin 
et al., 2002] were first to achieve this for GPCR families and sub-families using effi-
cient hierarchical multi-class SVC tree (for a comparative evaluation of SVC multi-
category methods see [Statnikov et al., 2005]). More recently, [Bhasin and Raghava, 
2004a] trained 20 SVCs to differentiate GPCR from non-GPCR (99.5% accurracy) 
and classify to GPCR family (~91% accurracy) and sub-family (96% accurracy). 
They also report 96% accurracy predicting nuclear receptor sub-family  membership 
[Bhasin and Raghava, 2004b]. [Cai and Lin, 2003] have successfully  applied SVC to 
predicting nucleic-acid binding proteins from their amino acid sequence. [Dobson and 
Doig, 2005] developed SVM predictor of enzyme classes using simple structural at-
tributes, without sequence alignments. 

Gene Functional Classes and Annotation. Since [Brown et al., 2000] first employed 
SVC to predict functional classes of genes, others have continued this. [Vinayagam  et 
al., 2004] devised a large-scale gene annotation system exploiting the gene-ontology 
DAG structure using multiple SVCs for prediction correctness.  



Proteomics/Protein Expression. Apparently using default parameterisations, [Gay et 
al., 2002] found a variety of machine learning techniques to achieve a similar level 
performance for MALDI-TOF Mass Spectrometry (MS) peak intensity prediction, 
preferring C4.5 and a regression approach.  [Jong et al., 2004] examined the predict-
ability of cancers using SELDI-TOF mass spectronomy measurements from benign, 
prostate and ovarian cancer samples, achieving excellent specificity and sensitivity for 
ovarian cancer with linear SVC. [Seike et al., 2004] used SVC within a methodology 
to rank protein spots in expression profiles from 2D-DIGE (gel electrophoresis) in 
terms of their discrimatory ability for human cancers. [Prados et al., 2004] found SVC 
to out-perform K-NN, MLP decision tree approaches toward predicting ischemic and 
haemorrhagic stroke from 42 specimen SELDI-MS data and they applied linear-SVM 
weight interrogation to further identify a subset candidate biomarkers. [Bock and 
Gough, 2003] used SVC as an integral part of a learning system that generates pro-
tein-protein  interaction hypotheses, enabling the development of hypothesised pro-
tein interaction networks for bacterial ‘design organisms’. 

Other Bioinformatics Applications. [Schneider and Fechner, 2004] have reviewed 
machine learning approaches (including SVMs) to protein sub-cellular localisation for 
target identification in drug discovery. There is a growing use of SVC prediction of 
functionally critical sites within proteins. For example, sites of: phosphorylation [Kim 
et al., 2004], ATP-binding [Guo, et al., 2005], catalysis [Dubey et al., 2005] and fold-
ing [Han et al., 2005].  [Yang and Chou, 2004] achieved improved performance pre-
dicting protein cleavage sites by substituting a amino acid similarity matrix  for the 
kernel function, following in a history of kernel modifications in bioinformatics, for 
example string alignment (in protein homology, [Saigo et al., 2004]) and generalised 
string alignment kernels (in siRNA design for ‘gene-silencing’, [Teramoto et al., 
2005]). 

2.1.3 SVM in Clinical Diagnosis and Epidemiology 
Molecular Genetic Epidemiology. Single-Nucleotide Polymorphisms (SNPs) are 
common individual base changes within human DNA. Millions of SNPs have been 
identified. Unlike gene expression measures, SNPs represent unchanging patient-
specific variation that may relate to an individuals’ prognosis. [Kim and Kim, 
2001a,b] were amongst the first to propose an SVM methodology to predict disease 
using multiple SNP variations. Applying difference scoring to construct input vectors 
for  disease cases and controls by comparison to ‘averaged’ controls, they they dem-
onstrated feasibility of using SVC. [Yoon et al., 2003] developed this, adjusting dif-
ference scores at each SNP location by applying weights of chi values from chi-
squared test of control allele frequency. They predicted coronary heart disease using 
SNPs from 10 genes associated with coronary heart disease using polynomial SVC 
with modest results. They conclude that haplotype data would have been better. 
[Cohen et al., 2003] achieved similar peak accuracies of ~60% trying to predict a high 
ratio of low-density lipoprotein  to high-density lipoprotein using SNPs. [Schwender 
et al., 2004] faired no better with genotypically coded SNPs to predict breast cancer, 
using imputation to overcome the (common) missing data problem. However, remov-
ing examples with missing data, [Listgarten et al., 2004] used  SNPs from genes of 
potential relevance to breast cancer, and found that quadratic kernel SVCs  (~70% ac-



curracy) out-performed a variety of other methods in prediction of breast cancer, iden-
tifying a subset of SNPs that best differentiated  cases from controls. Comparing 
methods to predict SNP effect on protein function, [Krishnan and Westhead, 2003] 
report competitive results from polynomial SVC but favoured interpretable decision 
trees with prediction confidences. [Barrett, 2005] summarised the use of normalised 
binary dominant/recessively coded SNPs. He found SNPs associated with drug effect 
via iterative training and SNP-removal using 1-norm linear SVC weight-vector inter-
rogation. [Zhang et al., 2005] demonstrated successful SNP genotype auto-calling 
(data generation) using multiclass linear SVC for pre-processed data from a multiplex 
PCR-microarray system. 

Epidemiology. Apart from in the ‘molecular-related’ contexts (as above) the use of 
SVM in epidemiology remains in its infancy. Observing that variable interactions are 
often not considered in standard univariate analyses, [Fradkin, 2005] discusses the po-
tential of SVM models to provide an alternative to the standard  logistic regression 
method used to identify risk factors in cross-sectional studies. In the only reported 
study of SVM modelling of large epidemiological observational data, [Muchnik, 
2001] using  data covering 112 variables for over 67,000  breast cancer cases from the 
SEER database, computed multiple SVC models using variable perturbation to gener-
ate variable influence estimates to identify 40 ‘candidate epidemiological factors’ 
with significant influence on the survival time. 

Clinical Diagnostics. [Härdle and Moro, 2004] used SVM to model survival analy-
sis.They employed an anisotropic gaussian kernel to predict breast cancer survival 
with respect to two variables across time. [Zhao et al., 2004] used SVC to differenti-
ate anorexic from non-anorexic patients, based upon hair trace element data. [Kim 
and Kim, 2002] have used patient routine check-up and medical laboratory data to 
simulate predictions of  solidified breast, fatty liver and gastritis endpoints, outlining 
how SVC could be applied toward case-control data. There is currently a much wider 
use of SVC in clinical diagnostic areas where large complex data arises from sophisti-
cated equipment such as EEG (epilepsy: [Miwakeichi et al., 2001]; depression: 
[Kalatzis et al., 2004]), CT (colon cancer: [Jerebko, et al., 2005]), MRI (brain glioma: 
[Li et al., 2005]) and sonography (breast cancer: [Huang & Chen, 2005]). [Majumder 
et al., 2005] compared RBF SVC with RBF Relevance Vector Machines for the pre-
diction of early human oral cancers. Accuracies were very similar overall, although 
the Bayesian framework of the RVM  provides a posterior-probability for classifica-
tions. 

3 Evolutionary Computing 

In contrast to the rigorous mathematical approach of SVMs, evolutionary computation 
(of which genetic programming is the most advanced variant) appeals to metaphor. 
The basic idea is to use the ideas of Darwinian evolution within the computer. So we 
have a population of individuals. A fitness function calculates how good each member 
of the population is. The better ones are selected to be parents for the next generation. 
Children are created by crossover and/or mutation of the selected individuals from the 



previous generation. As in natural evolution, the children are not identical to their 
parents. Some are better, some are worse. So in the next generation, selection will 
again only allow the better individuals to pass their genes onto the next generation. 
Hopefully overtime and successive generations the population will improved until an 
individual with satisfactory performance is found. 

 
Such an elegant idea has occurred, apparently independently, to many computer 

scientists. So who was first is somewhat controversial. However Turing, Rechenberg, 
Holland and Fogel all make a claim for primacy. From its diverse starting points sev-
eral subfields of evolutionary computation (Evolution strategy, genetic algorithms, 
evolutionary programming, etc.) have thrived. Today, even some 40 years after the 
first papers where published, the field likes to think of itself as a new technique. 
However, because of its simple appeal, it has been successfully applied many times. 
Examples include: optimisation, particularly of engineering design, scheduling, eco-
nomic and financial modelling, fraud detection and data mining. Each sub-field lays 
stress on different aspects of evolution, e.g. crossover versus mutation, large or small 
populations and should we represent numbers as bits or as floating point numbers. We 
will concentrate upon a relative new comer, genetic programming. 

3.1 Genetic Programming 

Genetic programming, uses Holland’s crossover heavy Genetic Algorithm, to evolve 
programs [Koza 1992; Banzhaf, et al., 1998;,Langdon,1998; Langdon and Poli, 
2002]. So while other approaches require the software engineer to design an evolu-
tionary friendly way of representing their problem solution, GP does not force this 
representation to be fixed up front, instead it too can evolve. 
 

Pros Genetic programming combines a flexible problem representation with a 
powerful search mechanism. Many computational chemistry problems can be ex-
pressed as the problem of finding a computer program. E.g., given known properties 
of a chemical, can we predict some other property (particularly disease binding, toxi-
cology, blood take up). Having recast the problem, the genetic algorithm (GA, used 
by GP) is a powerful way of searching for a solution which requires minimal assump-
tions. 

Cons Genetic programming offers no guarantee that it will find a suitable solution 
within an acceptable amount of time. In practise GP has solved difficult but economi-
cally interesting problems (for which it is known that no guarantee is possible). While 
many of the new techniques require more computation time, computer power is in-
creasingly available. Indeed [Buontempo et al., 2005] and [Deutsch, 2003, page 49] 
shows conventional techniques can be out performed in a few minutes. However, 
from a commercial perspective, spending computer hours (e.g. over night) rather than 
man-days is a bargain [Bains et al., 2004]. 

3.1.1 Drug Research Applications of Genetic Programming.  In most Pharmaceu-
tical applications, the evolved programs are models. That is, while we can view them 
as programs which we run and which produce answers, mostly GP is restricted to pro-



ducing functions. These take known facts or measurements (e.g. number of positively 
charged ions, presence of aromatic rings, acidity) and produce a single number. Then 
we treat the number as a prediction. For example, a positive number might indicate 
that the evolved model predicts that the molecule inhibits normal enzyme activity. 
There is an increasing body of work using evolutionary computation in Biology. For 
example there are now at least two annual workshops. BioGEC (2002-05) is held in 
conjunction with the GECCO conference and EvoBIO (2003-05) which is co-sited 
with EuroGP. Genetic programming figures heavily in both. The June 2004 special is-
sue of the GP journal featured biological applications. 

GP in Cheminformatics and QSAR. Genetic programming has been used for combina-
torial design [Nicolotti et al., 2002], modelling drug bioavailabity [Langdon et al., 
2002; Langdon et al., 2003b; Langdon and Barrett, 2004], and GP ensembles of 
ANNs have been developed to predict p450 inhibition [Langdon et al., 2001; Lang-
don et al., 2003a]. 

GP in Bioinformatics. Hot topics include: sequence alignment (typically of either 
DNA or proteins) [Shyu et al., 2004]; protein localisation [Heddad et al., 2004; Lang-
don and Banzhaf, 2005]; using genetic algorithms etc. to infer phylogenetics trees 
[Congdon and Septor, 2003]; classification and prediction [Hong and Cho, 2004]; 
recognising parts of proteins (e.g. transmembrane regions [Koza and Andre, 1996]); 
or in the case of DNA, creating algorithms to find promoters [Howard and Benson, 
2003] and other gene regulatory sites. Infrared spectroscopy (wave number), DNA 
chip and Single Nucleotide Polymorphisms (SNPs) [Reif et al., 2004] datasets are 
noted for having huge numbers of input features. In these cases, while a predictive 
model might be of use, the immediate problem is to discover which of the thousands 
of data actually relate to the underlying biology. For example in [Johnson et al., 
2003], isolation of the relevant wave numbers using GP, revealed new insights into 
commercial crops. GP based prediction has also been used with DNA chip data in a 
mode in which, although it generates predictive models, the principle interest is to use 
GP to sift hundreds or thousands of inputs in order to discover which genes are impor-
tant to a metabolic process [Langdon and Buxton, 2004; Moore et al., 2002] or to re-
duce the number of inputs required so a diagnostic test is practicable [Deutsch, 2003]. 
While GAs can achieve high multi-class accuracy [Ooi and Tan, 2003] they are also 
commonly combined with other classifiers, e.g. linear [Smits et al., 2005] SVM [Li et 
al., 2005], naive Bayes [Ando and Iba, 2004] and k-nearest neighbour, where the bit 
string GA selects which genes can be used by the second classifier. It is no wonder 
that GP is increasingly being used in Bioinformatics data mining [Kell, 2002] and in-
creasingly this includes: modelling genetic interactions [Moore and Hahn, 2004] and 
organisms; inferring metabolic pathways [Koza et al., 2001; Tsai and Wang, 2005]; 
and gene regulatory networks 

GP in Clinical Diagnosis and Epidemiology Research. GP has to date made much 
less overall impact in clinical and epidemiologic areas, although [Biesheuvel, 
2005] has applied it in diagnosing patients suspected of pulmonary embolism. 



3.2 Particle Swarm Optimisation 

Particle Swarm Optimization (PSO) is a population based stochastic optimisation 
method  inspired by observation of swarms of insects, shoals of fish, etc [Eberhart and 
Kennedy, 1995].  For example, millions of insects can build complex cathedral ter-
mite mounds, apparently without central or hierarchical control.  Instead each indi-
vidual acts by themselves in response its environment. Chemical signals provide sim-
ple distributed communication between nearby (in space and time) agents. PSO 
simplifies still further swarms for use in computers for optimisation. The agents are 
abstracted to particles (like electrons, protons etc., from Physics).  These have posi-
tion and speed.  They interact with each other via spring like forces.  The particles fly 
over the problem space.  Each time step they sample where they are to determine how 
good it is.  If it is better than any place they have visited, an attractive force is set up 
which attracts them back to it. There is a similar social cognitive force which attracts 
the particle to the best place found by the particle's neighbours. A binary extension of 
PSO (BPSO) is made by replacing the continuous search space by a probability space, 
i.e.  0..1 in each dimension.  At each time step the particle’s location is probabilisti-
cally converted to a binary string.  E.g.  a particle at 0.94 along a particular dimension 
of the problem, has a 94% chance of sampling binary value 1 (true) and only a 6% 
chance of sampling false. 
 

Pros PSO and BPSO are capable of solving a wide range of very different applica-
tions without expensive human up front design. 

Cons Like every blind (i.e. problem independent) search technique, PSO do not 
have a guarantee of success.  Nevertheless, as we shall see, despite being originally 
designed for classic optimisation benchmarks, PSO have been successfully transfered 
to biological applications. 

3.2.1 Biological Applications of Particle Swarm Optimisation. Unlike genetic pro-
gramming, at present, the use of Particle Swarm Optimisation (PSO) in pharmaceuti-
cal research is relatively unexplored. However it is common to use PSO in conjunc-
tion with other approaches. This hybrid approach comes from the fact that PSOs 
naturally search extensively, making them suitable for finding good regions. Often, 
currently, a more exploitive local method is needed to refine the good starting points 
found by PSOs into excellent solutions.  However as PSOs and their features such as 
friction (constriction) and momentum become better understood, we anticipate PSOs 
will tend to be used in a more dominant role.  

PSO in Cheminformatics and QSAR. In QSAR a few teams have used a two stage 
approach. In the first stage a binary PSO is used to select a few (typically 3-7) fea-
tures as inputs to supervised learning method. In [Lu et al., 2004] the BPSO selects 7 
of 85 features. Then linear models of drug activity (IC50) with two enzymes, COX-1 
and COX-2, are constructed. (In [Lin et al., 2005] they use a PSO to divide low di-
mensional, e.g. 5 features, chemical spaces into pieces. A linear model is fitted to 
each sub-region.) Some existing drugs (e.g. Aspirin) bind to both COX enzymes, 
leading to potentially fatal side-effects. [Lu et al., 2004] produce models which can 
potentially differentiate between binding to the two enzymes by virtual chemicals, i.e. 



as an aid to in silico design of drugs before the decision is made to manufacture and 
test the physical chemicals. Both [Wang et al., 2004] and [Shen et al., 2004] use feed-
forward artificial neural networks to classify the Bio-activity of chemicals using a few 
(3-6) features selected by a BPSO. [Wang et al., 2004] investigates two ways of using 
PSO to train the ANN. Either the network is trained in a conventional way or by using 
another PSO. In [Shen et al., 2004] they also consider replacing the ANN by a k-
nearest neighbour classifier in combination with kernel regression. While they note 
some differences, many approaches turn out to have similar performance at predicting 
which chemicals will be carcinogenic. The datasets cover typically only cover a few 
(31-256) chemicals but a large (27-428) number of features are computed for each 
from the chemical's formula. One can reasonably argue that some form of "feature se-
lection", i.e. choosing which attributes can be used by the ANN, is essential. Even so, 
given the small number of chemicals involved, [Agrafiotis and Cedeno, 2002; Cedeno 
and Agrafiotis, 2003; Wang et al., 2004] are still careful to consider the possibility of 
over fitting, e.g. by the use of "leave-n-out" cross-validation. 

PSO in Bioinformatics. The problem of small but "wide" datasets becomes even more 
apparent when dealing with DNAchip datasets. [Xiao et al., 2003] suggests a novel 
combination of PSO and self organising maps (SOM). Instead of finding the few rele-
vant genes, they use SOM to pick clusters of similarly behaved genes from datasets 
with thousands of gene measurements. The PSO swarm is seeded with crude results 
produced by the SOM and then used to refine the clusters. 

PSO in Clinical Diagnosis and Epidemiology Research. We continue the theme of 
increasing data width. Two and three dimensional medical images, such as X-Rays 
and MRI, can contain millions of data per subject. Fortunately the data are regularly 
arrayed. [Wachowiak et al., 2004] propose a hybrid PSO to solve the computationally 
demanding task of matching images taken at different times and/or with different 
techniques (e.g. ultrasound, CT). Best results came by combining expert medical 
knowledge to give an initial alignment and local search within a particle swarm ap-
proach. [Eberhart and Hu, 1999] uses a PSO to train an ANN which, using wrist ac-
celerometer data, classifies essential tremor and Parkinson's disease sufferers from 
control subjects. 

4 Discussion 

Whilst the above survey clearly demonstrates a wide coverage of relevant problem ar-
eas, it remains unclear as to the underlying extent to which these reported machine 
learning approaches are actually deployed within pharma R&D, so their importance 
here is difficult to ascertain. Although becoming less sporadic, it seems that the use of 
machine learning is still largely driven by individuals either with their own expertise 
and/or external expert resources.  

Conventional statistical methods are currently better known and understood by sci-
entists. They benefit from their traditional supporting design of experiments, data cap-
ture and preparation making them difficult to displace on a wider scale. Statisticians 
continue to dominate pharmaceutical company quantitative analysis groups. However 



statistics is becoming increasingly computational and recognising alternative ap-
proaches [Hand, 1999; Breiman, 1996, 2001], as existing (usually hypothesis testing) 
methods are found lacking. This is generally due to the increasing need for data ex-
ploration and hypothesis generation in the face of growing data, problem complexi-
ties, and ad hoc experimental design inadequacies and from compromises due to cost 
and lack of prior knowledge. An important recent problem is the  integrated analysis 
of combined ‘omics-type data in surrogate biomarker and systems biology research. 
Here the numerical dominance of variables from genomics, currently swamps those 
from other types of data in existing methods where all variables (as opposed to the 
fundamentally different types of information) are treated equally. As individual meth-
ods and accompanying validation procedures may only partly cope with problems, 
multiple methods are often used for comparative analyses in the hope that inappropri-
ate model biases, costly false negatives or effort-producing false positives, are mini-
mised. 

SVMs have, however, proved their worth in many areas, and for this technology to 
make further applications advances there is a need for easier derivation of problem-
specific kernel representations, i.e. using structured (ontological) data, or kernel-based 
data-fusion [Lanckriet et al.,  2004]; adequate ways of handling missing data; more 
widespread generation of confidence measures of prediction and attention to statisti-
cal power of datasets in model selection, which itself continues to present problems , 
especially for SVR end-users. Similar kinds of difficulties hamper the uptake of evo-
lutionary methods by non-expert users, although model transparency (as well as per-
formance) here is a strongly recognized benefit and worthy commercially available 
tools are now appearing. 

Encouragingly, the machine learning research community keeps aware and re-
sponds to publicised needs. Deficiencies in individual methods are being countered by 
customizations, ensemble and hybrid approaches. For example, in QSAR, individual 
classifiers can be inadequate in the face of vast molecular spaces and multi-
mechanism problems. GP classifier fusion was developed to form good ensembles of 
"weak" or niche classifiers [Langdon and Buxton, 2001a,b,c] using Receiver Operat-
ing Characteristics (ROC) curve area as fitness. Whilst GAs are commonly used as 
feature selectors for SVM they are becoming integrated [Li, et al.,2005], and sophisti-
cated hybrids of complementary evolutionary and SVM technique are appearing for 
kernel development [Howley and Madden, 2005], parameter tuning [Friedrichs and 
Igel, 2004] , alternative QP solvers [Paquet and Englebrecht, 2003] and model selec-
tion [Runarsson and Sigurdsson, 2004; Igel, 2005]. [Huang et al., 2005] used SVM 
concepts in GA fitness. 

An ease of blending of these and other techniques incorporating multi-objective 
capabilities is awaited with anticipation for challenges in areas like gene regulatory  
mechanisms discovery [Burckin et al., 2005], selectively non-selective drug design 
[Roth et al., 2004],  clinical trials simulation and ‘personalised’ of medicines [Bracco, 
2002]. 
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