
The Evolution of Size in
Variable Length Representations

W. B. Langdon
School of Computer Science, The University of Birmingham, Birmingham B 15 2TT, UK

W.B.Langdon@cs.bham.ac.uk http://www.cs.bham.ac.ukFwbl

Abstract- In many cases programs length’s increase (known as
“bloat”, ‘‘fluff” and increasing “structural complexity”) during arti-
ficial evolution. We show bloat is not specific to genetic programming
and suggest it is inherent in search techniques with discrete variable
length representations using simple static evaluation functions. We in-
vestigate the bloating characteristics of three non-population and one
population based search techniques using a novel mutation operator.

An artificial ant following the Santa Fe trail problem is solved by
simulated annealing, hill climbing, strict hill climbing and population
based search using two variants of the the new subtree based mutation
operator. As predicted bloat is observed when using unbiased muta-
tion and is absent in simulated annealing and both hill climbers when
using the length neutral mutation however bloat occurs with both mu-
tations when using a population.

We conclude that there are two causes of bloat 1) search opera-
tors with no length bias tend to sample bigger trees and 2) competition
within populations favours longer programs as they can usually repro-
duce more accurately.

I. INTRODUCTION

In earlier work [9] we claimed the widely reported [3],
[7], [131, [161, [171 phenomenon of programs’ length in-
creasing as artificial populations are evolved is not specific
to genetic programming (GP). The increase in programs’
size from one generation to the next while the performance
of programs within the population is essentially the same
as in previous generations is known as bloat. In our earlier
work we argued in general bloat is inherent in any discrete
variable length representation using simple static evaluation
functions provided there is no length bias. We have demon-
strated [lo] that bloat is not specific to GP’s crossover op-
erator but can occur with other operators, such as random
subtree change.

In this paper we seek to furtherjustify our claim by inves-
tigating the bloating characteristics of three non-population
based search techniques using a novel mutation operator on
the same problem as [9] and [lo] (i.e. evolving an artificial
ant to follow the Santa Fe trail [6, pages 147-1551, cf. Ta-
ble II). We also demonstrate bloat using our new mutation
operator in a population.

We have solved the ant problem using 10 different tech-
niques (8 in this paper). In 6 cases bloat was observed (4 in
this paper, cf. bold font in Table I). In two of the four cases
where bloat was not found, strict hill climbing was used.
In these cases a change in length can only happen with an
increase in fitness and so fitness independent bloat is not

O-7803-4869-9/98 $10.0001998 IEEE 633

TABLE I
BLOATINANTPROBLEM,~SEARCHTECHNIQUES x ~OPERATORS

SUCCESSFULRUNS,MEP;NSCOREANDPROGRAMLENGTH

50%-150% Subtree-sized
Ok Score Size Ok Score Size

Means of 50 Runs after 25,000 trials
Simulated Annealing 4 62 95 2 55 1186

Hill Climbing 3 62 41 2 60 1074
Strict Hill Climbing 8 67 32 3 59 78
Population (best of) 12 70 40 6 69 127

Means of 50 runs after 100,000 trials
Simulated Annealing 11 71 86

Hill Climbing 18 74 53
Strict Hill Climbing 17 76 33 3 63 96
Population (best of) 19 76 68 6 72 329

Means of 20 runs after 1 ,OOO,OOO trials
Simulated Annealing 10 79 122

Hill Climbing 14 85 22
Strict Hill Climbing

8 77 287L Population (best of)

possible. In the remaining two cases (rows 14 and 15 in Ta-
ble I) the search strategy was designed to sample uniformly
the search space of nearby program sizes. I.e. it is biased
to concentrate upon the smaller trees. Also note that bloat
occurred when this search strategy was used in a population
based search (last row in Table I).

We conclude that there are two causes for bloat. Firstly
that due to the tendency of length bias free genetic opera-
tors to sample bigger trees and secondly competition within
populations favours those that can reproduce most accu-
rately which usually favours longer programs.

The two variants of our new mutation operator are de-
scribed in Section II while Section III contains the results
of the eight sets of experiments, these are discussed in Sec-
tion IV, while our conclusions are given in Section V.

II . NE W T R E E M U T A T I O N O P E R A T O R S

Our new mutation operators are motivated by the require-
ments that they operate on variable length tree structures.
Koza’s [6] subtree replacement mutation operator does this
but it has a length bias. I.e. it can, depending upon the size
and shape of the parent, produce children which are on av-

TABLE11
SANTA FE T RAIL A NT PROBLEM

Objective: Find an ant that scores 89
Terminal set: Left, Right, Move
Functions set: IfFoodAhead, Prog2, Prog3
Fitness cases: The Santa Fe trail
Fitness: Food eaten
Selection: Tournament group size of 7 in non-

elitist generational populations
Wrapper: Program repeatedly executed for 600

time steps.
Population: 1 or 500
Initial trial: Created using “ramped half and half”

with a maximum depth of 6
Parameters: Initial temp 10, final 0.1, 10V7 or

10-7g, exponential cooling; max in-
serted mutation subtree 30; mutation
points chosen uniformly; In popula-
tions 9% reproduction 9 1% mutation

Termination: Maximum number of trials 25,000,
100,000 or 1 ,OOO,OOO

j>

Santa Fe Trail, 450 mutations

6

L

5
I

I I
I
I
I Subtree Sized -II 50%-l 50% -----

reinitialisation 0
’ (max change 1 IO)

-20 -10 0 IO
Change in Program Length

20 30

Fig. 1. Change in size produced by mutating individuals created by
“ramped half-and-half”. 17 50%-l 50% mutations completely reini-
tialise very small trees.

erage either larger or smaller. Our mutation operator has no
such bias.

The new mutation operator generates random subtrees
with one of two different size distributions. The two dis-
tributions have quite different bloat characteristics, even
though they both produce on average no size change, cf.
Figure 1. (The algorithm used to create random trees uses
the bijective random tree creation algorithm described in [1,
Chapter 41, cf. [S] and [8, Appendix A]).

In the first method the size of the replacement subtree is
chosen uniformly in the range I F 1/2 (where I is the size
of the subtree selected to be deleted). We refer to this as
50%-150% mutation. Thus on average the new subtree is

the same size as the subtree it is to replace. Should it be
impossible to generate a tree of the chosen size or I + Z/2
exceeds 30 a new mutation point is selected and another
attempt to create a new random tree is made. Note this op-
erator samples programs near the current one uniformly ac-
cording to their length. Thus nearby programs that have the
same length as many other nearby programs are less likely
to be sampled than nearby programs where there are few
with the same length. There are many more long programs
than short ones so each long one is relatively less likely to
be sampled compared to a shorter one. That is the 50%-
150% size distribution has an implicit parsimony bias. (In
the ant problem there are about 5.5 times as many programs
of length n + 1 than there are of length n).

In the case of the ant problem trees of any size except two
nodes are possible. As this rules out some of the mutations
for subtrees of size three and four, special code deals with
these cases to avoid bias. Subtrees of size three are mutated
to other subtrees of size three, while those of size four can
be mutated to trees of containing three, four or five nodes.

In the second method the size of the replacement subtree
is the size of a second subtree chosen at random within the
same individual. Since this uses the same mechanism as
that used to select the subtree to replace, the new subtree is
on average the same size as the subtree it replaces. It should
always be possible to generate a tree of the chosen size,
however a limit of 30 was imposed to keep certain tables
within reasonable bounds. Should this be exceeded a new
mutation point is selected and another attempt to create a
new random tree is made.

In both types of mutation programs can degenerate to
very small trees from which mutation can never escape.
Mutation at the root node of such programs results in re-
placing the whole program by a new one created using the
same “ramped half and half” method as used to create the
initial population. This occurs with 50%-150% mutation
(in the ant problem) with programs of three nodes and with
subtree sized mutation when the program contains a single
node (shown with diamonds in Figure 1).

The second means of choosing the size of the inserted
subtree is in essence the same as that used in standard GP
crossover. The subtree size mutation operator is like per-
forming self GP crossover with one parent acting as both
(with random code inserted rather than pre-adapted code).

III. R E S U L T S

Initially we performed 50 runs on each of the four search
techniques using both variants of the mutation operator
(i.e. eight sets of 50 runs). The six non-population tech-
niques all started from the same 50 individuals while the
two population experiments both used the same 50 initial
populations.

All eight experiments where initially run with a limit of

634

Santa Fe Trail, Mean of 20/50 Runs
1 I I I

I

80

70

60

50

40

30

20

IO

Simulated Annealing, 50%-l 50% -
Hill climbing, 50%-150% ----

Strict Hill climbin , 50%-i 50% --- - -
Population (best , 50%-l 50% ----.-..- 7

Temperature -

0
I I I I I

200000 400000 600000 800000 1 e+06
Number of Programs Created

20000 40000 60000 80000 100000
Number of Programs Created

Fig. 2. Fitness of Programs, Means of 20/50 runs Fig. 4. Size of First Solutions and Mean Size, 50%-150%, 50 runs

Santa Fe Trail, Mean of 20/50 Runs
1200 1

Santa Fe Trail, Size of Solutions, Subtree sized

’ / I I I 1200 I
SA, subtree sized

I I I

HC, subtree sized
Simulated Annealing, 50%-l 50% -

Hill climbing, 50%-l 50% -----
1000 Strict Hill climbin , 50%-l 50% ---- -’

Population (best , 50%-l 50% ----------’ 7

Pop, subtree sized

1
0

II

200000 400000 600000 800000 1 e+06
Number of Programs Created

Fig. 3. Size of Programs, Means of 20/50 runs Fig. 5. Size of First Solutions and Mean Size, Subtree Sized, 50 runs

25,000 trials (results are summarised in Table I). Runs that
found solutions bloat much like those that get stuck at sub-
optimal solutions. In two experiments bloat was obvious,
the remaining six where extended to 100,000. Finally three
experiments where little bloat had been observed were ex-
tended to l,OOO,OOO trials. Due to run time considerations
only the first 20 runs in each category were run to 1 ,OOO,OOO.
In simulated annealing runs the final temperature was re-
duced in the longer runs so as to smoothly extend the origi-
nal exponential cooling schedule.

paratively poor performance, since bloat rapidly moves the
search away from short trees where it appears to be easier
to find initial solutions (cf. [111).

B. Evolution of Program Sizes

B. 1 Simulated Annealing and Hill Climbing

Figures 2 and 3 plot the evolution of the fitness and length
of programs in each experiment. In the two population
based runs the “best” of the population is plotted.

Initially program length seems to be adequately de-
scribed as a bounded random walk, however as Figure 6
shows the fluctuations become much smaller. Close inves-
tigation of the first simulated annealing run shows after it
finds a program with a score of 67 and length 8 1 no further
improvement in fitness is made and only very small changes
in length occur. Looking in detail at one of these long static
periods we see for 5783 trials 50%-150% mutation is un-
able to change the structure of the program at all and then
it finds a minor change which produces a functionally iden-
tical program that is one node longer. (This and other runs
are discussed more fully in [S]). Without a population 50%-
150% mutation is likely to become trapped by convoluted

A. Length of Solutions

Figures 4 and 5 show the size of the first solution in each
run. While there are four points above 100, 80% lie in the
range ll... 31. This suggests bloat encountered with the
subtree sized mutation operator is responsible for its com-

800
w
55

5 600

@
t!i

400

Santa Fe Trail, Size of Solutions, 50% - 150%
I I I I

Simulated Annealing o
Hill Climbing +

Strict Hill Climbing q

Population Based x
Simulated Annealing -

Hill Climbing -----
Strict Hill Climbing -----.
Population Based ---s------.

1000

800
:
i7j

Simulated Annealing 0
Hill Climbing +

Strict Hill Climbing q

Population Based x
Simulated Annealing -

Hill Climbing -----
Strict Hill Climbing -----.
Population Based .--.m-----’

~~......*-..--
eveo._.... -.----

..__... ----
. ---

.._ . .._..... -.*--

-___________________---------------------

I I

0 20000 40000 60000 80000
Number of Programs Created

100000

635

Santa Fe Trail, Second Run, Population 500. 50%150%Santa Fe Trail, 1st Run, Simulated Annealing, 50%-150%
I I I I I I

Fitness -----
Size -

Temperature -

I ,_--__~--~_-~-~~~--~~---~~----~------------.__------- 1

I I I I

0 20000 40000 60000 80000 100000
Number of Programs Created

Fig. 6. Random walk in program size followed by trapping, First Simu-
lated Annealing run with 50%-150%.

programs that contain small amounts of useless code, espe-
cially when it is broken into separate subtrees with only 1
or 3 nodes.

B.2 Trapping in Populations

Given the trapping behaviour of 50%-150% mutation in
simulated annealing we might expect similar behaviour to
occur in populations. Such trapping is observed, however
eventually populations are able to escape from small pro-
grams and bloat occurs. This section describes the trap-
ping phenomenon in populations and explains how non-
executable code allows populations to escape small pro-
gram traps.

Between generations 30 and 40, the size of the “best”
individual did not change in 22 of the 50 population runs
using 50%-150% mutation. In the remaining 28 runs the
change was small and only in 3 did it exceed six. I.e. trap-
ping does occur, however populations are able to escape be-
ing trapped by small programs (bloat occurred before gen-
eration 600 in all 20 runs). In the remainder of this section
we consider a typical population run using 50%-150% mu-
tation. We build a simple numeric model of how introns or
junk code cause longer programs to be able to produce more
fitter children. Simple selection within the population ex-
ploits this correlation between length and fitness to produce
bloat. This is a numerical model of the conventional argu-
ment that introns cause bloat by protecting against crossover
in GP [131 applied to our mutation operator.

The second run finds a solution of length 14 in genera-
tion 38 (19,000 trials) and the population remains stuck near
it for many generations (cf. Figure 7). However a series of
small changes increase the length of programs in the popu-
lation so by generation 166 the “best” individual has grown
to 33 nodes after which program size increase rapidly.

Table III gives the number of times programs scoring 89
where mutated before trial 160,000 by size up to size 33.

: II!i
10 i i

+ Largest 0
Smal les t + 1

0

+ Mean -----
Length of Parents with Worse Offspring _-_

1Time Averaged Covarianc_$l O,.;_-----._. _-- Y
20000 40000 60000 80000 100000 120000 140000 160000

Number of Programs Created

Fig. 7. Evolution of Second Population run with 50%~150%. Covariance
of normalised fitness and length averaged over ten generations. First
solutions of selected lengths shown with arrows.

The third column shows how often the child also scored 89
and the next column gives it as a percentage. It is clear that
as the size of the programs increase, 50%-150% mutation
produces a higher proportion of equally fit children. Almost
all children that also score 89 are the same size as their par-
ent. Together this gives longer programs that score 89 a
competitive advantage in the population over shorter ones
with the same score.

Columns 5-8 of Table III investigate the children with
the same fitness as their parent. We can model those that
are identical by considering the probability of 50%-150%
mutation generating a random tree that is identical to the
one it replaces. (Measurement and prediction, i.e. columns
5 and 6, are in reasonable agreement). The predicted pro-
portion of clones remains fairly constant at 20%.

The bulk of the change in column 4 is due to the increas-
ing chance of creating a child of the same fitness that is not
identical to its parent. By investigating in detail a number of
programs and determining which nodes cannot be executed
we can model the production of high fitness non-clone mu-
tations. The last column contains the predicted number of
non-identical children which score 89, for a number of pro-
gram sizes. In most cases there is reasonable agreement
between columns 7 and 8.

The predicted proportion of mutations which yield differ-
ent programs with the same score rises with program size
from zero to 38% for the program of length 33. This ac-
counts for the variation with length seen in column 4 and so
in turn for the increase in programs’ length’s in the popula-
tion. I.e. introns cause bloat in fitness selected populations
even when using a length neutral operator.

IV. D I S C U S S I O N

In Table IV we summarise Table I and Figure 3 to yield
the bloating characteristics of our two mutation operators

636

TABLE V
SANTAFEPROBLEM:RATEOFINCREASE INMEANPROGRAMSIZE

SO%-150% Subtree sz SA Subtree sz
Gen Size Gen Size Trial Size

Start 39 35 3 73 2,000 308
End 1,999 284 199 324 25,000 1186

Per 0.13gen 1.28 19
GP[9, Figure 31 7.6
Mutation[10, Figure 1 l] 5.0

TABLE III
NON DISRUPTION OF SOLUTIONS BY SO%-150% MUTATION IN

SECOND POPULATION RUN (INITIAL POP TO 160,000 TRIALS)

Size Childs 89 % Same pred Diff pred
14 26370 5310 20 5308 5232 2 0
15 726 172 24 155 17
16 7843 1814 23 1456 1525 358 327
17 13 00 0 0
18 36189 11734 32 7090 7037 4644 4579
19 380 108 28 73 35
20 773 250 32 163 87
21 12819 4827 37 2561 2635 2266 1887
22 2172 915 4 2 467 448
23 2599 1041 40 549 525 492 427
24 1987 891 45 394 497
25 1466 671 46 275 309 396 428
2 6 809 395 49 161 234
2 7 1297 670 52 286 384
28 667 375 56 151 224
2 9 610 356 58 123 233
3 0 1316 810 62 308 502
31 494 285 58 85 200
3 2 720 487 68 159 328
33 814 554 68 183 181 371 307

TABLE IV
SANTA FE PROBLEM: BLOATING

I 1 50%-150% 11 Subtree s ized)
Simulated Annealing

Hill Climbing
Strict Hill Climbing

Population based

no
no
no
Yes

Big
Big

limited
Yes

and four search techniques. Table IV indicates the two mu-
tation operators have very different bloat characteristics de-
spite using the same mechanism to create new code and nei-
ther having an explicit length bias. The subtree sized mu-
tation operator bloats. This is entirely in keeping with our
earlier predictions [9] that bloat would occur if there is no
length bias. 50%-150% does not bloat except when used in
a population. (In all cases the mean change in length pro-
duced by all mutations is small and consistent with random
fluctuations [8, Appendix B]).

A. Strict Hill Climbing

As with both simulated annealing and hill climbing,
when using strict hill climbing programs in runs with the
subtree sized mutation grow in size. However in strict hill
climbing the current trial individual is only replaced by a
new one if the new individual is better than it. This binds
the search tightly to the current position and a change in
length is only possible with an increase in fitness. I.e. strict
hill climbing considerably restricts program growth.

B. Population Approach

Table V gives the rate of change in program size per gen-
eration. In 50%-150% populations mean size rises by 0.13
per generation, whereas in subtree sized runs it increased by
1.3. Both are less than in other population based solutions
to this problem, e.g. 7.6 in crossover runs and 5.0 in muta-
tion only runs. (The difference between subtree sized runs
and earlier mutation only runs may be due to the size limit
of 30 on each mutation).

Each individual in the population is created by random
change to an individual in the previous generation using
50%-150% mutation, i.e. its length is uniformly randomly
changed from that of its parent. So on average each individ-
ual has the same length as their parents in the previous gen-
eration and each program’s size should execute a random
walk. The mean of several independent unbiased random
walks is itself a random walk. Therefore if the population
approach was the same as running n searches in parallel we
would expect it to bloat or not in the same manner as the
simulated annealing and hill climbing approaches. To ex-
plain why it doesn’t, we have to consider the different way
they handle rejection of trial solutions.

With simulated annealing and hill climbing rejecting a
mutation implies retention of the current point, note there
is no change in length. In contrast in a population, rejec-
tion implies the death of that germ line and its replacement
by another more successful one. Therefore the length may
change. Bloat arises where there is a systematic variation
between the length of the dead individual and its replace-
ment. Such variation arises in the ant problem (and we sug-
gest this is generally true) because shorter programs in the
previous generation are more likely to produce children that
are worse (i.e. eat less food) than those of average or longer
lengths.

Thus when these low fitness programs are deleted, they
are, on average, replaced by longer ones. Figure 7 plots the
covariance of length with normalised fitness and shows it to
be on average positive. Thus, using Price’s Theorem, we ex-
pect this correlation between size and fitness to drive mean
size of programs in the population upwards. Figure 7 also
plots the mean size of the parents of offspring which have a
lower score than themselves. We see after 250 generations
(125,000 trials) they are shorter than the average and the av-
erage increases, i.e. the population bloats. So even though

637

offspring are on average the same size as those from which
they where produced, fitness based selection uses the vari-
ation in program size across the population to increase size
from one generation to the next. I.e. @ness causes bloat.

The evolution of evolvability view states that the popu-
lation evolves to be more evolvable, i.e. more able to pro-
duce offspring that are fitter than their parents [2]. However
in cases of bloat the population does not change over time
to increase its chances of finding improved solutions but
instead it changes over time to reduce the chance of find-
ing worse solutions. Bloated populations tend to have little
chance of improvement.

C. Introns

The principal explanation advanced for bloat has been the
growth of “introns” or “redundancy”, i.e. code which has
no effect on the operation of the program which contains it.
Such introns are said to protect the program containing them
from crossover [4], [12], [14], [15]. Whilst not disagreeing
with this explanation (indeed in Section III-B.2 we showed
bloat with our length neutral (i.e. implicit parsimony bias)
mutation operator can be explained by non-executable code,
i.e. by introns) we have sought a more general one in terms
of the general characteristics of search spaces. This predicts
in general bloat with any unbiased search operator. We have
shown this is true for a particular problem with five different
types of search.

V. CONCLUSIONS

In previous work [9] we advanced a general explanation
for bloat which should apply generally to any discrete vari-
able length representation and generally to any progressive
search technique. That is bloat is not specific to genetic
programming applied to trees and tree based crossover but
should also be found with other genetic operators and non-
population based stochastic search techniques such as simu-
lated annealing and stochastic iterated hill climbing. In [lo]
we demonstrated bloat can occur when crossover is replaced
by mutation and in this paper we have demonstrated it can
indeed occur with simulated annealing and hill climbing al-
though strict hill climbing stifles evolution after it reaches a
local optima and in the process cuts off further bloat. How-
ever the occurrence of low levels of bloat when using the
length neutral (i.e. with an implicit parsimony bias) version
of our new mutation operator leads us to suggest the conven-
tional intron explanation for bloat can be a second cause for
bloat which applies specifically to population search tech-
niques such as GP.

We have described two versions of a new mutation opera-
tor. Both on average produce children with the same length
as their parent but have different size distributions. This
leads to very different bloating characteristics, one form
produces no bloat, except in population based search, where

bloat is at a reduced rate.

ACKNOWLEDGEMENTS

This research was funded by the Defence Research
Agency in Malvern. I would like to thank Hitoshi Iba for
a CODV of ETL-9535.

REFERENCES

Ul

PI

PI

PI

I31

[61

VI

181

[91

WI

WI

WI

WI

WI

WI

WI

WI

Laurent Alonso and Rene Schott. Rundom Generation of Trees. Kul-
wer Academic Publishers, 1995.
Lee Altenberg. The evolution of evolvability in genetic program-
ming. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Pro-
gramming, chapter 3, pages 47-74. MIT Press, 1994.
Peter John Angeline. Genetic programming and emergent intelli-
gence. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Pro-
gramming, chapter 4, pages 75-98. MIT Press, 1994.
Tobias Blickle and Lothar Thiele. Genetic programming and redun-
dancy. In J. Hopf, editor, Genetic Algorithms within the Frumework
of Evolutionary Computation (Workshop at KI-94, Saarbriicken),
pages 33-38, Im Stadtwald, Building 44, D-66123 Saarbrticken, Ger-
many, 1994. Max-Planck-Institut fur Informatik (MPI-I-94-241).
Hitoshi Iba. Random tree generation for genetic programming. Tech-
nical Report ETL-TR-95-35, ElectroTechnical Laboratory (ETL), l-
l-4 Umezono, Tsukuba-city, Ibaraki, 305, Japan, 14 November 1995.
John R. Koza. Genetic Programming: On the Programming of Com-
puters by Natural Selection. MIT Press, 1992.
W. B. Langdon. Evolving data structures using genetic programming.
In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth
International Conference (ICGA9.5), pages 295-302, Pittsburgh, PA,
USA, 15-19 July 1995. Morgan Kaufmann.
W. B. Langdon. Fitness causes bloat: Simulated annealing, hill
climbing and populations. Technical Report CSRP-97-22, University
of Birmingham, School of Computer Science, 2 September 1997.
W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry,
R. Roy, and R. K. Pan, editors, Second On-line World Confer-
ence on Soft Computing in Engineering Design und Manufacturing.
Springer-Verlag London, 23-27 June 1997.
W. B. Langdon and R. Poli. Fitness causes bloat: Mutation. In John
Koza, editor, Late Breaking Papers at the GP-97 Conference, pages
132-140, Stanford, CA, USA, 13-16 July 1997. Stanford Bookstore.
W. B. Langdon and R. Poli. Why ants are hard. Technical Report
CSRP-98-4, University of Birmingham, School of Computer Sci-
ence, January 1998.
Nicholas Freitag McPhee and Justin Darwin Miller. Accurate
replication in genetic programming. In L. Eshelman, editor, Ge-
netic Algorithms: Proceedings of the Sixth International Conference
(ZCGA95), pages 303-309, 15-19 July 1995. Morgan Kaufmann.
Peter Nordin and Wolfgang Banzhaf. Complexity compression and
evolution. In L. Eshelman, editor, Genetic Algorithms: Proceedings
of the Sixth International Conference (ICGA9.Q pages 3 1 O-3 17, 15-
19 July 1995. Morgan Kaufmann.
Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly
defined introns and destructive crossover in genetic programming. In
Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 6, pages 111-134. MIT Press, 1996.
Justinian P. Rosca. Analysis of complexity drift in genetic program-
ming. In John R. Koza et al., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 286-294, 13-
16 July 1997. Morgan Kaufmann.
Terence Soule, James A. Foster, and John Dickinson. Code growth
in genetic programming. In John R. Koza et al. editors, Genetic
Programming 1996: Proceedings of the First Annual Conference,
pages 215-223, 28-3 1 July 1996. MIT Press.
Walter Alden Tackett. Genetic programming for feature discovery
and image discrimination. In Stephanie Forrest, editor, Proceedings
of the 5th Internutionul Conference on Genetic Algorithms, ICGA-
93, pages 303-309, 17-21 July 1993. Morgan Kaufmann.

638

