
Genetic Programming Bloat 
with Dynamic Fitness 

W. B. Langdon and R. Poli 

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK 
{W.B.Langdon,R.Poli}~cs.bham.ac.uk http://www.cs.bham.ac.ukFwbl , -rmp 

Tel: +44 (0) 121 414 4791, Fax: +44 (0) 121 414 4281 

Abst rac t .  In artificial evolution individuals which perform as their par- 
ents are usually rewarded identically to their parents. We note that Na- 
ture is more dynamic and there may be a penalty to pay for doing the 
same thing as your parents. We report two sets of experiments where 
static fitness functions are firstly augmented by a penalty for unchanged 
offspring and secondly the static fitness case is replaced by randomly 
generated dynamic test cases. We conclude genetic programming, when 
evolving artificial ant control programs, is surprisingly little effected by 
large penalties and program growth is observed in all our experiments. 

1 Introduct ion 

The tendency for programs in genetic programming (GP) populations to grow 
in length has been widely reported [Tac93; Tac94; Ang94; Tac95; Lan95; NB95; 
SFD96]. In our previous work on this phenomenon (referred to as "bloat") [LP97; 
Lan97; Lan98b; LP98a] we have investigated the effect of commonly used fit- 
ness functions with a variety of genetic algorithm, population based and non- 
population based search techniques. These experiments have shown that  bloat 
is not a unique phenomenon to genetic programming and we argue that  it is 
inherent in discrete variable length representations using a simple scalar static 
fitness function. [NB95; Lan98b] suggest that  non-performance effecting code 
(sometimes referred to as "introns") can contribute to bloat in population based 
search techniques, such as GP. Our explanations stress the role of simple static 
scalar fitness functions in selecting children which behave in the same way as 
their parents. In this paper we broaden our investigation to consider fitness func- 
tions which avoid selecting such children and dynamic fitness functions (where 
the test case changes every generation). 

We continue to use the well known genetic programming bench mark problem 
of evolving control programs to guide an artificial ant along an intermittent trail 
of food pellets. The first experiments use the well known Santa Fe trail [Koz92], 
while this is replaced in the second set of experiments by randomly generated 
trails which are changed each generation (i.e. the population "sees" each trail 
only once). In these experiments the effects of changing the fitness function are 
studied. 

In Sect. 2 we briefly describe the artificial ant problem and the genetic pro- 
gramming system used to solve it. In Sect. 3 we describe the fitness functions 
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used in the two sets of experiments and introduce the penalty for copying the 
behaviour of ancestors. Our results are given in Sects. 4 and 5, which are followed 
by our conclusions in Sect. 6. 

2 T h e  A r t i f i c i a l  A n t  P r o b l e m  

The artificial ant problem is described in [Koz92, pages 147-155]. It  is a well 
studied problem and was chosen as it has a simple fitness function. [LP98b] 
shows it is a difficult problem for GP, simulated annealing and hill climbing but  
has many of the properties often ascribed to real world problems. Briefly the 
problem is to devise a program which can successfully navigate an artificial ant 
along a twisting trail on a square 32 x 32 toroidal grid. The program can use 
three operations, Move, Right and Left, to move the ant forward one square, turn 
to the right or turn  to the left. Each of these operations takes one t ime unit. 
The sensing function IfFoodAhead looks into the square the ant is currently 
facing and then executes one of its two arguments depending upon whether tha t  
square contains food or is empty. Two other functions, Prog2 and Prog3, are 
provided. These take two and three arguments respectively which are executed 
in sequence. 

The evolutionary system we use is identical to [LP97] except the limit on the 
size of programs has been effectively removed by setting it to a very large value. 
The  details are given in Table 1, parameters  not shown are as [Koz94, page 655]. 
Note in these experiments we allow the evolved programs to be far bigger than  
required to solve the problem. (The smallest solutions comprise only 11 nodes 
[LP98b]). 

Table  1. Ant Problem 

Objective: Find an ant that follows food trails 
Terminal set: Left, Right, Move 
Functions set: IfFoodAhead, Prog2, Prog3 
Fitness cases: The Santa Fe trail or randomly generated trails 
Fitness: Food eaten less "plagiarism" penalty 
Selection: Tournament group size of 7, non-elitist, generational 
iWrapper: Program repeatedly executed for 600 time steps. 
Population Size: 500 
Max program size: no effective limit 
Initial population: Created using "ramped half-and-half" with a max depth of 6 
Parameters: 90% crossover, 10% reproduction, no mutation 
Termination: Maximum number of generations G ---- 50 
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3 F i t n e s s  F u n c t i o n s  

3.1 Santa Fe Trail 

The artificial ant must follow the "Santa Fe trail", which consists of 144 squares 
with 21 turns. There are 89 food units distributed non-uniformly along it. Each 
time the ant enters a square containing food the ant eats it. The amount of food 
eaten within 600 time units is the score of the control program. 

3.2 R a n d o m  Tra i l s  

In the second set of experiments the fixed Santa Fe trail is replaced by 50 ran- 
domly generated trails each containing 80 food items. Each generation is tested 
on a different trail, however the order of the trails is the same in each run. (The 
test case is available via anonymous ftp node f t p .  cs .bham. a c . u k  directory 
pub /au tho r s /W.B.  Langdon/gp-code in file d y n a m i c . t r l  revision 1.11). Each 
trail is created by appending (in randomly chosen orientations) 20 randomly 
chosen trail fragments each containing 4 food pellets. We use the 17 fragments 
shown in Fig. 1. 

A uniform choice from these 17 fragments appeared to produce trails which 
were too difficult. Therefore, like the Santa Fe trail, the randomly produced 
trails were made easier at the start. This was implemented by increasing the 
chance of selecting the lower numbered fragments (as they have smaller gaps in 
the trail). In detail: 1) start at the origin facing along the x-axis with n -- 0; 
2) select a trail fragment uniformly from fragments numbered 1 . . .  n/2 + 1 when 
n is less than 9 and uniformly from the whole set when it is bigger; 3) the 
chosen fragment is then rotated and/or  reflected into a random orientation from 
those available (see Fig. 1). Make sure the transformation is compatible with 
the current direction; 4) the fragment is then appended to the trail, possibly 
changing the current direction and n is incremented; 5) unless there are already 
20 fragments in the trail, go back to (2) and select another fragment. Once the 
trail is complete, it is checked to see it does not cross the start  position and 
does not fold back over itself (i.e. food pellets are not closer than 2 grid squares, 
unless they are on the same part  of the trail). If either check fails, the trail is 
discarded and a new one is created. 

In practice it is difficult to create a contiguous winding trail of 80 food pellets 
in a 32 • 32 grid without it overlapping itself. Therefore a toroidal grid of 300 • 300 
was used. The time available to the ant to transverse each trail is calculated as 
it is created. The time allowed is five plus the sum of the time allocated to 
each of the fragments it contains (see Fig. 1) plus a further five, to allow the 
ant to do some additional local searching, for each occasion when fragments at 
different orientations are used (i.e. where a new bend is introduced). In practice 
this makes the problem very difficult. In several runs the best programs evolved 
showed true trail following abilities but  were marginally too inefficient to follow 
all the trails completely within the time limit. 
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3 . 3  P l a g i a r i s m  P e n a l t y  

In b o t h  sets  of expe r imen t s  (i.e. on the  San ta  Fe and  on the  r a n d o m  tra i ls)  
runs  were conduc ted  wi th  a range  of  f i tness p lag ia r i sm penal t ies .  T h e  p lag ia r i sm 
p e n a l t y  is app l ied  to  p rog rams  which, when run  on the  same tes t  as the i r  first 
pa ren t ,  have the  same  score as t h a t  parent .  (The first  pa ren t  is defined to be 
the  one from which t hey  inher i t  the i r  roo t  node) .  E.g. when using the  S a n t a  Fe 
t ra i l ,  fitness is r educed  if a p r o g r a m  causes the  ant  to  ea t  the  s ame  number  of 
food pel le ts  as the  p r o g r a m ' s  first p a r e n t  did. In the  case of the  d y n a m i c  tes t  
case, the  p r o g r a m  mus t  be run bo th  on its own tes t  and  the tes t  for the  previous  
genera t ion ,  i.e. the  t es t  i ts  pa ren t s  where  run on. 

The  smal les t  p e n a l t y  (referred to  as -0.5) causes the  fi tness to  be reduced  
by half  a food pellet .  The  o ther  pena l t i es  reduce a p r o g r a m ' s  f i tness by  a fixed 
f rac t ion .  The  highest  pena l t y  (100%) sets the  fi tness to zero. As t o u r n a m e n t  
select ion is used,  the  effect the  p e n a l t y  has  on the  number  of chi ldren given to 
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each program is complicated, however when the penalty is large compared to the 
spread of scores within the population, even the best program has little chance 
of producing children for the next generation. 

In many of the results given in the following sections the data  falls into a low 
penalty group (20% or less) and a high penalty group (50% or more). For example 
in Fig. 3 the average sizes of programs in the population with penalties of 0%, 
-.5 and 20% lie close to each other, as do 50%, 80%, 95% and 100%, and the 
two groups are clearly separated. We can estimate the mean plagiarism penalty 
(when applied) as its size times the mean score in the population. The separation 
between runs where the penalty is effective and the others corresponds to when 
this estimate is bigger than the variation in program score across the population 
(as measured by its standard deviation). That  is the plagiarism penalty seems 
to have little effect if it smaller than the existing variation in programs' scores 
before it is applied. 

4 S a n t a  F e  T r a i l  R e s u l t s  

The results on the Santa Fe Trail are based on ten independent runs with each 
plagiarism penalty setting. The same ten initial populations are used with each 
plagiarism value. 

From Fig. 2 we can see even the highest plagiarism penalty has only a little 
depressing effect on the maximum score in the population. Surprisingly the effect 
on the average program score is more obvious. Suppressing programs which copy 
their parents appears to considerably reduce the proportion of the best program 
to the rest of the population, thereby increasing the gap between the mean 
and maximum raw score. As expected, once the rate of finding higher scoring 
programs drops (about generation 20, 10,000 programs generated) the size of 
programs increases and the population bloats, cf. Fig. 3. The plagiarism penalty 
is unable to prevent this but  appears to slow growth, in that  when the penalty 
is 50% or more, by the end of the run programs are on average only half the size 
of those created in runs with lower penalties. 

As expected near the end of runs with low penalty the maximum score in the 
population remains fixed for many generations. In contrast at the ends of runs 
with high penalties it varies rapidly. (It changes, either increases or decreases, on 
average every 2.3 generations in the last ten generations with a penalty of 100% 
and only increases once in the same period in the ten runs with no penalty. This 
difference is not obvious in Fig. 2 as it plots data  averaged over all ten runs). 

With low penalties the population converges in the sense that  typically about 
90% of programs in the final population have the same score. They are descended, 
via their first parents, from the same individual. The founding individual has the 
same score as them, as do its descendants in the genetic lines connecting it to 
them. In contrast runs with penalties of 20% or more don' t  appear to converge 
like this and typically there are only 1 or 2 programs with the highest score in 
the population. 
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Fig .  3. Evolution of population mean program size on Santa Fe trail as plagiarism 
penalty is increased. Means of 10 runs. 

Further evidence for the lack of convergence is contained in Fig. 4 which 
indicates where the penalty is low the population evolves so that  it is quickly 
dominated by programs which have the same score as their first parent. While 
with a high penalty this fraction of the programs increases only slightly and 
remains near its value in the first few generations. Looking back to earlier gen- 
erations we see the same picture. With no penalty, typically about  90% of the 
population has the same score as its first grandparent (i.e. the one it inherited 
its root from). While with higher penalties it is in the region of 3%. Note this 
convergence is not the same as convergence in linear genetic algorithms, the 
population variety is high. Without a plagiarism penalty the fraction of different 
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programs in the population rises to lie near 99% by the end of the run. While 
with a plagiarism penalty of 50% or more it is still high and reaches about  95% 
by generation 50. (The slight difference between these figures may be simply due 
to the larger size of programs when the penalty is low, cf. Fig. 3). Studying the 
successful crossovers, i.e. those tha t  produced offspring which cause more food 
to be eaten than  their (first) parent,  shows runs without a penalty converge in 
tha t  crossover seldom makes improvement  after generation 10 (5,000 programs 
created) (in the ten run there were only 40 improvements after generation 25, 
compared to a total  of 3,451). Whereas with a 100% penalty the population 
remains "on the boil" with parents of lower score being selected and crossover 
continuing to make improvements on them until the end of the run. (E.g. In the 
first run with a 100% penalty there were 3,098 such crossovers, about  1,730 after 
generation 25). 

Another aspect of the convergence of runs with low penalties is individuals 
with the same score are selected to be parents. E.g. at the end of all but  one run 
with no penalty, all parents had identical scores. With high penalties there is 
more variation (on average 29.7 different scores acting as first parents to children 
in the final population of runs with a 100% penalty).  
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Fig. 4. Evolution of proportion of population with same score as first parent on 
Santa Fe trail as plagiarism penalty is increased. Means of 10 runs. 

4.1 C o r r e l a t i o n  o f  F i t n e s s  a n d  P r o g r a m  Size 

In GP program size is inherited and so we can apply Price's Covariance and 
Selection Theorem [Pri70; LP98a] to it. Provided our genetic operators  are un- 
biased with respect to length, the expected change in mean program length from 
one generation to the next is given by the covariance between program length 
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and normalised fitness in the previous generation. (Normal GP crossover is unbi- 
ased provided size or depth restrictions don't  effect the population. I.e. children 
produced by crossover axe on average the same size as their parents [LP97]). 
Figure 5 shows in the first few generations there is a strong covariance between 
length and fitness. We suggest this is because in the initial random populations 
long programs tend to do better  simply because they are more likely to contain 
useful primitives such as Move. In the next few generations strong selection acts 
to remove useless programs and consequently the covariance falls. The plagia- 
rism penalty appears to dilute this effect of selection so the covariance in high 
penalty runs takes more generations to fall. There is then a period of about eight 
generations during which crossover finds many improved solutions and covari- 
ance remains small after which the normal increase is seen in low penalty runs 
and the populations bloat. Figure 5 shows strong plagiarism penalties appear 
to prevent the covariance increasing towards the end of the runs so reducing 
the bloat seen with low penalties (cf. Fig. 3). However the covariance remains 
positive and some increase in programs size is seen even with the highest penalty. 
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Fig. 5. Evolution of covariance of program length and normalised rank based fitness 
on Santa Fe trail as plagiarism penalty is increased. Means of 10 runs. 

Figure 6 plots the correlation coefficient of program size and amount of food 
eaten. (Correlation coefficients are equal to the covariance after it has been 
normalised to lie in the range - 1 . . .  + 1. By considering food eaten we avoid the 
intermediate stage of converting program score to expected number of children 
required when applying Price's Theorem and exclude the plagiarism penalty). 
Figure 6 shows in all cases there is a positive correlation between program score 
(rather than fitness) and length of programs. This correlation does not vary 
strongly with the plagiarism penalty. 
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4.2 Fract ion of  B loa ted  Programs  Used  

Every program terminal  uses one t ime unit each time it is executed. This gives us 
a convenient, if crude, way to estimate the amount of code being used within each 
program. Figure 7 plots the average number  of terminals executed each time a 
program is run. Initially on average 6.8 terminals are used per program execution, 
this then rises rapidly to 19.1 before falling back to 9.3 (no penalty).  Runs with 
high penalties are similar except they rise to slightly higher peaks, 26.3, and 
take longer to fall back to similar values (10.7, 100% penalty).  The initial rise in 
the average may simply be due to selection acting to remove those with lower 
values, however it appears  crossover finds better  solutions which execute only a 
small fraction on their terminals each t ime the programs are run. 

Assume tha t  there are two frequently occurring cases, either the program 
starts  with the ant facing food or facing an empty  square. Using this we can 
est imate the number of terminals contained in the two par ts  of the program most 
often used as no more than twice the average number executed each t ime it is 
run. I.e. less than  20 by the end of the run. This is clearly a very small fraction of 
the whole (on average programs exceed 300 nodes, and so must contain at least 
150 terminals,  by the end of the run, cf. Fig. 3). It  appears  evolution promotes 
the creation of small islands of useful code in large programs since such programs 
are less liable to disruption by crossover. Figure 7 implies the essential nature 
of the evolved (partial) solutions is unchanged by the plagiarism penalty. Which 
suggests the penalty reduces the rate  at  which introns grow but they are still 
present, even with the highest penalties. This is surprising because the stability 
of such programs in the face of crossover means they will suffer the penalty which 
should prevent them creating children in the next generation. We now turn to 
the dynamic fitness function results, and will see in this respect GP evolves 
significantly differently. 
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5 R a n d o m  T r a i l s  

This section reports results from 50 independent runs with each plagiarism 
penalty setting. As in Sect. 4 the same initial populations are used with each pla- 
giarism value. Some of the differences between this section and Sect. 4 are due 
to the larger number or runs made, which reduces the influence of stochastic 
effects. 

To gain a measure of the ability of GP to generalise from the example trials, 
the populations were also tested on the complete set of 50 trails and statistics 
for the complete set were gathered. This information is used only for reporting 
purposes and only the current (and previous) trails influence the course of evo- 
lution. (As running all programs on all 50 trails is CPU expensive, this da ta  was 
only collected for the first ten of the 50 runs in each experiment).  

Figure 8 shows the evolution of scores using the new dynamic fitness function. 
Much of the variation between one generation and the next can be ascribed to the 
different difficulty of the trials. If  we consider Fig. 10 we see rather  more mono- 
tonic rises in program score. Referring to Fig. 8 again, with 50 program runs, we 
can see a clear separation into runs with low penalty performing approximately 
6-9 food pellets bet ter  than those with high penalties. This difference is ampli- 
fied if instead of looking at average performance, we look at the number of runs 
where at least one solution to the current trail was found, cf. Fig. 11. 

The random trails seem to be a harder problem than  the Santa Fe trail, only 
three runs evolved programs which could follow all 50 trails. Another aspect of 
this increased difficulty is the evolved solution given in [Koz92, page 154] to the 
Santa Fe trail scores less than half marks on the random trails. In contrast  each 
of the first programs found which could pass all 50 random trails can also follow 
the Santa Fe trail. 

There is some evidence that  the random trails are themselves enough to avoid 
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convergence of the GP population. Without a penalty there are typically only a 
handful of programs with the best score by the end of the run. This falls to one 
or two with large penalties. However lack of convergence would suggest that the 
fraction of children behaving as their parents would be small, whereas it behaves 
similarly to the Santa Fe runs and with low penalties (20% or less) the fraction 
rises to about 80% by the end of the run (cf. Fig. 12). With higher penalties the 
fraction also behaves like the Santa Fe runs and remains near its initial value 
until the end of the runs. Again variety is near unity and does not show this 
convergence at all. (With no penalty then variety reaches 97% on average at 
generation 50 and with a penalty it is about 95% on average again). 
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Like the  S a n t a  Fe t ra i l ,  runs  wi th  low penal t ies  show convergence in t h a t  
typ ica l ly  the  scores of the  pa ren t s  of the  vas t  m a j o r i t y  of the  children in t he  
las t  genera t ion  are  ident ica l  (or have one of  two values).  W i t h  runs  wi th  high 
p e n a l t y  the re  is more  var ia t ion  (with on average  29.1 different  scores ac t ing  as  
first pa ren t s  to  chi ldren in the  final popu la t i on ) .  

5.1 C o r r e l a t i o n  o f  F i t n e s s  a n d  P r o g r a m  S ize  

Comparing Fig. 13 with Fig. 5 we see there is no longer a clear separation be- 
tween runs based upon strength of plagiarism penalty. After generation 15 (7,500 
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programs created) low penalty runs tend to have smaller covariances than with 
the Santa Fe trail. This is reflected in the generally lower increase in program 
size. The lower covariance may be simply due to increased randomness in the 
fitness function. In contrast when we look at the correlation between score and 
size (i.e. excluding penalty, cf. Fig. 14) the high penalty runs have an obviously 
lower correlation. This shows that the penalty has changed the nature of the 
evolved programs. 
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Fig. 13. Evolution of covariance of program length and normalised rank based fitness 
on random trails as plagiarism penalty is increased. Means of 50 runs. 
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Fig. 14. Correlation of program length and food eaten on random trails as plagiarism 
penalty is increased. Means of 50 runs. 
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5.2 Fraction of  Bloated Programs Used 

Figure 15 confirms in the random trails high plagiarism penalties change the 
nature of the evolved programs. We see programs with very different behaviour 
evolve than is the case with the Santa  Fe trail or with low penalties. The large 
number of ant operations per program execution (cfi Fig. 15) might indicate that  
non-general, or trail specific, programs have been evolved. This is confirmed to 
some extent if we compare the best scores in the last generation on the last trail 
with that  on all 50 trails. We see performance on the training case (cf. Fig. 8) 
is proport ionately higher than on all 50 trails (cf. Fig. 10). Concentrat ing on 
100% penalty, the mean scores are 52 out of 80, i.e. 66% (averaged over 50 runs) 
compared to 1590 out of 4,000, i.e. 40% (averaged over 10 runs). T h a t  is pop- 
ulations evolved with high plagiarism penalties do considerably bet ter  on the 
immediate training case than they do on the more general one. The difference is 
not so marked in runs with low penalties. 

6 C o n c l u s i o n s  

In our earlier work on the evolution of representation size we stressed the impor- 
tance of individuals with the same fitness as their parents ' ,  showing increase in 
average size in the later stages of evolution could in many cases be ascribed to 
them dominating the population. In Sect. 4 we introduce a fitness based penalty 
on programs which don' t  innovate. Even very large penalties produce only slight 
reductions in the best of run performance and, in these experiments,  cut bloat 
by about  a half. 

In the experiments in Sect. 5 we have broaden research into bloat to consider 
non-static fitness functions. In these experiments a dynamic fitness function also 
cuts bloat by about  a half. We also report  combining our dynamic fitness function 
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Fig. 15. Time used per call of each program in population on random trails as plagia- 
rism penalty is increased. Mean of 50 runs. 

with the plagiarism penalty and note this can also produce a small reduction in 
the best of run performance but  can change the nature of the programs evolved 
and reduce their ability to generalise. 

It is clear that  suppressing the large numbers of programs produced in the 
later stages of conventional GP runs which all have the same performance by 
using a plagiarism penalty has not prevented bloat completely. In both sets of 
experiments there is bloating we suspect that  this is due to shorter programs 
in the population being more effected by crossover than longer ones, i.e. their 
children follow the trails less well. 

Our second set of experiments tend to confirm some of the benefits claimed for 
dynamic fitness measures. E.g. every dynamic fitness run (without a plagiarism 
penalty) produced programs which performed better on the 50 random trails 
than the example program evolved on just the Santa Fe trail. 

We have deliberately chosen to study ant problems since they are difficult for 
GP and have properties often ascribed to real world programs (such as rugged 
landscapes, multiple solutions, competing conventions, poor feedback from par- 
tial solutions). Nevertheless it would be interesting to analyse bloat in other GP 
domains. Further work is needed to understand how GP populations are able 
to maintain their peak performance even when the selection function appears to 
prevent direct copying from the best of one generation to the next. This would 
appear to require constant innovation on the part of the population. Current 
GP can "run out of steam" so that GP populations stop producing improved 
solutions [Lan98a, pages 206]. Therefore techniques which encourage constant 
innovation are potentially very interesting. 
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