
Genetic Programming Bloat
with Dynamic Fitness

W. B. Langdon and R. Poli

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
{W.B.Langdon,R.Poli}~cs.bham.ac.uk http://www.cs.bham.ac.ukFwbl , -rmp

Tel: +44 (0) 121 414 4791, Fax: +44 (0) 121 414 4281

Abst rac t . In artificial evolution individuals which perform as their par-
ents are usually rewarded identically to their parents. We note that Na-
ture is more dynamic and there may be a penalty to pay for doing the
same thing as your parents. We report two sets of experiments where
static fitness functions are firstly augmented by a penalty for unchanged
offspring and secondly the static fitness case is replaced by randomly
generated dynamic test cases. We conclude genetic programming, when
evolving artificial ant control programs, is surprisingly little effected by
large penalties and program growth is observed in all our experiments.

1 Introduct ion

The tendency for programs in genetic programming (GP) populations to grow
in length has been widely reported [Tac93; Tac94; Ang94; Tac95; Lan95; NB95;
SFD96]. In our previous work on this phenomenon (referred to as "bloat") [LP97;
Lan97; Lan98b; LP98a] we have investigated the effect of commonly used fit-
ness functions with a variety of genetic algorithm, population based and non-
population based search techniques. These experiments have shown that bloat
is not a unique phenomenon to genetic programming and we argue that it is
inherent in discrete variable length representations using a simple scalar static
fitness function. [NB95; Lan98b] suggest that non-performance effecting code
(sometimes referred to as "introns") can contribute to bloat in population based
search techniques, such as GP. Our explanations stress the role of simple static
scalar fitness functions in selecting children which behave in the same way as
their parents. In this paper we broaden our investigation to consider fitness func-
tions which avoid selecting such children and dynamic fitness functions (where
the test case changes every generation).

We continue to use the well known genetic programming bench mark problem
of evolving control programs to guide an artificial ant along an intermittent trail
of food pellets. The first experiments use the well known Santa Fe trail [Koz92],
while this is replaced in the second set of experiments by randomly generated
trails which are changed each generation (i.e. the population "sees" each trail
only once). In these experiments the effects of changing the fitness function are
studied.

In Sect. 2 we briefly describe the artificial ant problem and the genetic pro-
gramming system used to solve it. In Sect. 3 we describe the fitness functions

98

used in the two sets of experiments and introduce the penalty for copying the
behaviour of ancestors. Our results are given in Sects. 4 and 5, which are followed
by our conclusions in Sect. 6.

2 T h e A r t i f i c i a l A n t P r o b l e m

The artificial ant problem is described in [Koz92, pages 147-155]. It is a well
studied problem and was chosen as it has a simple fitness function. [LP98b]
shows it is a difficult problem for GP, simulated annealing and hill climbing but
has many of the properties often ascribed to real world problems. Briefly the
problem is to devise a program which can successfully navigate an artificial ant
along a twisting trail on a square 32 x 32 toroidal grid. The program can use
three operations, Move, Right and Left, to move the ant forward one square, turn
to the right or turn to the left. Each of these operations takes one t ime unit.
The sensing function IfFoodAhead looks into the square the ant is currently
facing and then executes one of its two arguments depending upon whether tha t
square contains food or is empty. Two other functions, Prog2 and Prog3, are
provided. These take two and three arguments respectively which are executed
in sequence.

The evolutionary system we use is identical to [LP97] except the limit on the
size of programs has been effectively removed by setting it to a very large value.
The details are given in Table 1, parameters not shown are as [Koz94, page 655].
Note in these experiments we allow the evolved programs to be far bigger than
required to solve the problem. (The smallest solutions comprise only 11 nodes
[LP98b]).

Table 1. Ant Problem

Objective: Find an ant that follows food trails
Terminal set: Left, Right, Move
Functions set: IfFoodAhead, Prog2, Prog3
Fitness cases: The Santa Fe trail or randomly generated trails
Fitness: Food eaten less "plagiarism" penalty
Selection: Tournament group size of 7, non-elitist, generational
iWrapper: Program repeatedly executed for 600 time steps.
Population Size: 500
Max program size: no effective limit
Initial population: Created using "ramped half-and-half" with a max depth of 6
Parameters: 90% crossover, 10% reproduction, no mutation
Termination: Maximum number of generations G ---- 50

99

3 F i t n e s s F u n c t i o n s

3.1 Santa Fe Trail

The artificial ant must follow the "Santa Fe trail", which consists of 144 squares
with 21 turns. There are 89 food units distributed non-uniformly along it. Each
time the ant enters a square containing food the ant eats it. The amount of food
eaten within 600 time units is the score of the control program.

3.2 R a n d o m Tra i l s

In the second set of experiments the fixed Santa Fe trail is replaced by 50 ran-
domly generated trails each containing 80 food items. Each generation is tested
on a different trail, however the order of the trails is the same in each run. (The
test case is available via anonymous ftp node f t p . cs .bham. a c . u k directory
pub /au tho r s /W.B. Langdon/gp-code in file d y n a m i c . t r l revision 1.11). Each
trail is created by appending (in randomly chosen orientations) 20 randomly
chosen trail fragments each containing 4 food pellets. We use the 17 fragments
shown in Fig. 1.

A uniform choice from these 17 fragments appeared to produce trails which
were too difficult. Therefore, like the Santa Fe trail, the randomly produced
trails were made easier at the start. This was implemented by increasing the
chance of selecting the lower numbered fragments (as they have smaller gaps in
the trail). In detail: 1) start at the origin facing along the x-axis with n -- 0;
2) select a trail fragment uniformly from fragments numbered 1 . . . n/2 + 1 when
n is less than 9 and uniformly from the whole set when it is bigger; 3) the
chosen fragment is then rotated and/or reflected into a random orientation from
those available (see Fig. 1). Make sure the transformation is compatible with
the current direction; 4) the fragment is then appended to the trail, possibly
changing the current direction and n is incremented; 5) unless there are already
20 fragments in the trail, go back to (2) and select another fragment. Once the
trail is complete, it is checked to see it does not cross the start position and
does not fold back over itself (i.e. food pellets are not closer than 2 grid squares,
unless they are on the same part of the trail). If either check fails, the trail is
discarded and a new one is created.

In practice it is difficult to create a contiguous winding trail of 80 food pellets
in a 32 • 32 grid without it overlapping itself. Therefore a toroidal grid of 300 • 300
was used. The time available to the ant to transverse each trail is calculated as
it is created. The time allowed is five plus the sum of the time allocated to
each of the fragments it contains (see Fig. 1) plus a further five, to allow the
ant to do some additional local searching, for each occasion when fragments at
different orientations are used (i.e. where a new bend is introduced). In practice
this makes the problem very difficult. In several runs the best programs evolved
showed true trail following abilities but were marginally too inefficient to follow
all the trails completely within the time limit.

I00

�9 �9

1 Time 4, any, L 2 Time 9, any, X 3 Time 9, any, L 4 Time 14, any, 5 Time 9, any, X
L3 L L3 X1 X3 L3 L L3

�9 �9 �9
�9 �9 �9

6 Time 14, any, 7 Time 19, any, 8 Time 9, any, L 9 Time 14, any, 10 Time 9, any,
X X L3 L L 3 X L L 3 X 1 X 3

�9 m: �9
�9 m �9
�9 �9 �9

11 Time 14, any, 12 Time 19, any, 13 Time 9, 14 Time 14, 15 Time 9, for-
X L L3 X1 X3 X L L3 X1 X3 forward forward ward, X

forward -- in same orientation as
trail

[] o,i~j, any----at 0 ~ 90 ~ or 270 ~ to
�9 ~ ~i~, trail
�9 ~.eo,,o x - - c a n be reflected about �9 Gap in trail

horizontal axis
L -- can be rotated 90 ~

L3 ---- can be rota ted 270 ~
X1- - r e f l ec t ion and rotation

by 90 ~
X3 -- reflection and rotated

by 270 ~

F ig . 1. Fragments of Santa Fe trail used to form random trails.

�9 �9
�9 �9
�9 �9
�9 �9

16 Time 14, for- 17 Time 19, for-
ward, X ward, X

3 . 3 P l a g i a r i s m P e n a l t y

In b o t h sets of expe r imen t s (i.e. on the San ta Fe and on the r a n d o m tra i ls)
runs were conduc ted wi th a range of f i tness p lag ia r i sm penal t ies . T h e p lag ia r i sm
p e n a l t y is app l ied to p rog rams which, when run on the same tes t as the i r first
pa ren t , have the same score as t h a t parent . (The first pa ren t is defined to be
the one from which t hey inher i t the i r roo t node) . E.g. when using the S a n t a Fe
t ra i l , fitness is r educed if a p r o g r a m causes the ant to ea t the s ame number of
food pel le ts as the p r o g r a m ' s first p a r e n t did. In the case of the d y n a m i c tes t
case, the p r o g r a m mus t be run bo th on its own tes t and the tes t for the previous
genera t ion , i.e. the t es t i ts pa ren t s where run on.

The smal les t p e n a l t y (referred to as -0.5) causes the fi tness to be reduced
by half a food pellet . The o ther pena l t i es reduce a p r o g r a m ' s f i tness by a fixed
f rac t ion . The highest pena l t y (100%) sets the fi tness to zero. As t o u r n a m e n t
select ion is used, the effect the p e n a l t y has on the number of chi ldren given to

101

each program is complicated, however when the penalty is large compared to the
spread of scores within the population, even the best program has little chance
of producing children for the next generation.

In many of the results given in the following sections the data falls into a low
penalty group (20% or less) and a high penalty group (50% or more). For example
in Fig. 3 the average sizes of programs in the population with penalties of 0%,
-.5 and 20% lie close to each other, as do 50%, 80%, 95% and 100%, and the
two groups are clearly separated. We can estimate the mean plagiarism penalty
(when applied) as its size times the mean score in the population. The separation
between runs where the penalty is effective and the others corresponds to when
this estimate is bigger than the variation in program score across the population
(as measured by its standard deviation). That is the plagiarism penalty seems
to have little effect if it smaller than the existing variation in programs' scores
before it is applied.

4 S a n t a F e T r a i l R e s u l t s

The results on the Santa Fe Trail are based on ten independent runs with each
plagiarism penalty setting. The same ten initial populations are used with each
plagiarism value.

From Fig. 2 we can see even the highest plagiarism penalty has only a little
depressing effect on the maximum score in the population. Surprisingly the effect
on the average program score is more obvious. Suppressing programs which copy
their parents appears to considerably reduce the proportion of the best program
to the rest of the population, thereby increasing the gap between the mean
and maximum raw score. As expected, once the rate of finding higher scoring
programs drops (about generation 20, 10,000 programs generated) the size of
programs increases and the population bloats, cf. Fig. 3. The plagiarism penalty
is unable to prevent this but appears to slow growth, in that when the penalty
is 50% or more, by the end of the run programs are on average only half the size
of those created in runs with lower penalties.

As expected near the end of runs with low penalty the maximum score in the
population remains fixed for many generations. In contrast at the ends of runs
with high penalties it varies rapidly. (It changes, either increases or decreases, on
average every 2.3 generations in the last ten generations with a penalty of 100%
and only increases once in the same period in the ten runs with no penalty. This
difference is not obvious in Fig. 2 as it plots data averaged over all ten runs).

With low penalties the population converges in the sense that typically about
90% of programs in the final population have the same score. They are descended,
via their first parents, from the same individual. The founding individual has the
same score as them, as do its descendants in the genetic lines connecting it to
them. In contrast runs with penalties of 20% or more don' t appear to converge
like this and typically there are only 1 or 2 programs with the highest score in
the population.

102

80

70

60

20

10

100% ~

Ax t~. ~ otlooOtloooooOoo
+ ~ $ ~ + + + oe o

r ~l~ii ~t~liiii}ttttt.*. �9 .'tl ,'!'. : i t | i ! ! ! I l'iL*', l i ~ i i t t i

i i i i
5000 10000 15000 20000 25000

Number of Programs C r e a t e d

Fig . 2. Evolution of maximum, population mean and standard deviation of food eaten
on Santa Fe trail as plagiarism penalty is increased. Means of 10 runs.

I
r

I

700

600

500

400

300

200

100

0

0% �9 o
-0,5 +

20% o ~ +
50% x e + -
80% A
95% m ~ + :

100% ~ - - <~ o e

< o + r e o

o* +~176 +o ***$+++o
~+

.+ o o~

o

i i i i
5000 10000 15000 20000 25000

Number of programs C r e a t e d

Fig . 3. Evolution of population mean program size on Santa Fe trail as plagiarism
penalty is increased. Means of 10 runs.

Further evidence for the lack of convergence is contained in Fig. 4 which
indicates where the penalty is low the population evolves so that it is quickly
dominated by programs which have the same score as their first parent. While
with a high penalty this fraction of the programs increases only slightly and
remains near its value in the first few generations. Looking back to earlier gen-
erations we see the same picture. With no penalty, typically about 90% of the
population has the same score as its first grandparent (i.e. the one it inherited
its root from). While with higher penalties it is in the region of 3%. Note this
convergence is not the same as convergence in linear genetic algorithms, the
population variety is high. Without a plagiarism penalty the fraction of different

103

programs in the population rises to lie near 99% by the end of the run. While
with a plagiarism penalty of 50% or more it is still high and reaches about 95%
by generation 50. (The slight difference between these figures may be simply due
to the larger size of programs when the penalty is low, cf. Fig. 3). Studying the
successful crossovers, i.e. those tha t produced offspring which cause more food
to be eaten than their (first) parent, shows runs without a penalty converge in
tha t crossover seldom makes improvement after generation 10 (5,000 programs
created) (in the ten run there were only 40 improvements after generation 25,
compared to a total of 3,451). Whereas with a 100% penalty the population
remains "on the boil" with parents of lower score being selected and crossover
continuing to make improvements on them until the end of the run. (E.g. In the
first run with a 100% penalty there were 3,098 such crossovers, about 1,730 after
generation 25).

Another aspect of the convergence of runs with low penalties is individuals
with the same score are selected to be parents. E.g. at the end of all but one run
with no penalty, all parents had identical scores. With high penalties there is
more variation (on average 29.7 different scores acting as first parents to children
in the final population of runs with a 100% penalty).

0 8

O6

,~ 0 4

02

0% �9
-05 +

20% o

- 95% ~ o v $ � 9 - ee �9 + ODQu
lOOO/. -m-- o � 9 DDQ o o

~ o o

. �9 ~
�9 ~ + o

~
~+ oo

oo

~: oo ++ o
+ ~o x

0 i i 0 0 0 i r I
5 10000 15000 20000 25000

Number of Programs Created

Fig. 4. Evolution of proportion of population with same score as first parent on
Santa Fe trail as plagiarism penalty is increased. Means of 10 runs.

4.1 C o r r e l a t i o n o f F i t n e s s a n d P r o g r a m Size

In GP program size is inherited and so we can apply Price's Covariance and
Selection Theorem [Pri70; LP98a] to it. Provided our genetic operators are un-
biased with respect to length, the expected change in mean program length from
one generation to the next is given by the covariance between program length

104

and normalised fitness in the previous generation. (Normal GP crossover is unbi-
ased provided size or depth restrictions don't effect the population. I.e. children
produced by crossover axe on average the same size as their parents [LP97]).
Figure 5 shows in the first few generations there is a strong covariance between
length and fitness. We suggest this is because in the initial random populations
long programs tend to do better simply because they are more likely to contain
useful primitives such as Move. In the next few generations strong selection acts
to remove useless programs and consequently the covariance falls. The plagia-
rism penalty appears to dilute this effect of selection so the covariance in high
penalty runs takes more generations to fall. There is then a period of about eight
generations during which crossover finds many improved solutions and covari-
ance remains small after which the normal increase is seen in low penalty runs
and the populations bloat. Figure 5 shows strong plagiarism penalties appear
to prevent the covariance increasing towards the end of the runs so reducing
the bloat seen with low penalties (cf. Fig. 3). However the covariance remains
positive and some increase in programs size is seen even with the highest penalty.

30

25

20

15

10

5

0

-5

-10

-15
0

0%
-0 5 --~--

20% -a - -
50%
80%
95%

100% ~ - ,~

/]

I

i i i i
5ooo 1oooo 15000 20ooo

Number of Programs Created

Fig. 5. Evolution of covariance of program length and normalised rank based fitness
on Santa Fe trail as plagiarism penalty is increased. Means of 10 runs.

Figure 6 plots the correlation coefficient of program size and amount of food
eaten. (Correlation coefficients are equal to the covariance after it has been
normalised to lie in the range - 1 . . . + 1. By considering food eaten we avoid the
intermediate stage of converting program score to expected number of children
required when applying Price's Theorem and exclude the plagiarism penalty).
Figure 6 shows in all cases there is a positive correlation between program score
(rather than fitness) and length of programs. This correlation does not vary
strongly with the plagiarism penalty.

105

0 4 , , , i

O 3 5

0 3

0 2s

-~ o2

~ 0 1 5

~ 0 O5
r

~ 0 ...

e~
0 -0 05 -0 5 - ~ -

20%
50% --w---

-0.1 80%
95% " r

-0 15 100% - ~ -

-0.2 i I I I
0 5000 10000 15000 20000 25000

Number o! Programs Created

Fig. 6. Correlation of program length and food eaten on Santa Fe trail as plagiarism
penalty is increased. Means of 10 runs.

4.2 Fract ion of B loa ted Programs Used

Every program terminal uses one t ime unit each time it is executed. This gives us
a convenient, if crude, way to estimate the amount of code being used within each
program. Figure 7 plots the average number of terminals executed each time a
program is run. Initially on average 6.8 terminals are used per program execution,
this then rises rapidly to 19.1 before falling back to 9.3 (no penalty). Runs with
high penalties are similar except they rise to slightly higher peaks, 26.3, and
take longer to fall back to similar values (10.7, 100% penalty). The initial rise in
the average may simply be due to selection acting to remove those with lower
values, however it appears crossover finds better solutions which execute only a
small fraction on their terminals each t ime the programs are run.

Assume tha t there are two frequently occurring cases, either the program
starts with the ant facing food or facing an empty square. Using this we can
est imate the number of terminals contained in the two par ts of the program most
often used as no more than twice the average number executed each t ime it is
run. I.e. less than 20 by the end of the run. This is clearly a very small fraction of
the whole (on average programs exceed 300 nodes, and so must contain at least
150 terminals, by the end of the run, cf. Fig. 3). It appears evolution promotes
the creation of small islands of useful code in large programs since such programs
are less liable to disruption by crossover. Figure 7 implies the essential nature
of the evolved (partial) solutions is unchanged by the plagiarism penalty. Which
suggests the penalty reduces the rate at which introns grow but they are still
present, even with the highest penalties. This is surprising because the stability
of such programs in the face of crossover means they will suffer the penalty which
should prevent them creating children in the next generation. We now turn to
the dynamic fitness function results, and will see in this respect GP evolves
significantly differently.

106

55

0 % o
5 0 - 0 5 §

20% U
50% x

45 80%
95% ==

100% ~ -
40

m ~ 3s

20 $ 0 x ~,

5

0
0 5000 10000 15000 20000 25000

Number of Programs Created

Fig. 7. Time used per call of each program in population on Santa Fe trail as plagiarism
penalty is increased. Mean of 10 runs.

5 R a n d o m T r a i l s

This section reports results from 50 independent runs with each plagiarism
penalty setting. As in Sect. 4 the same initial populations are used with each pla-
giarism value. Some of the differences between this section and Sect. 4 are due
to the larger number or runs made, which reduces the influence of stochastic
effects.

To gain a measure of the ability of GP to generalise from the example trials,
the populations were also tested on the complete set of 50 trails and statistics
for the complete set were gathered. This information is used only for reporting
purposes and only the current (and previous) trails influence the course of evo-
lution. (As running all programs on all 50 trails is CPU expensive, this da ta was
only collected for the first ten of the 50 runs in each experiment).

Figure 8 shows the evolution of scores using the new dynamic fitness function.
Much of the variation between one generation and the next can be ascribed to the
different difficulty of the trials. If we consider Fig. 10 we see rather more mono-
tonic rises in program score. Referring to Fig. 8 again, with 50 program runs, we
can see a clear separation into runs with low penalty performing approximately
6-9 food pellets bet ter than those with high penalties. This difference is ampli-
fied if instead of looking at average performance, we look at the number of runs
where at least one solution to the current trail was found, cf. Fig. 11.

The random trails seem to be a harder problem than the Santa Fe trail, only
three runs evolved programs which could follow all 50 trails. Another aspect of
this increased difficulty is the evolved solution given in [Koz92, page 154] to the
Santa Fe trail scores less than half marks on the random trails. In contrast each
of the first programs found which could pass all 50 random trails can also follow
the Santa Fe trail.

There is some evidence that the random trails are themselves enough to avoid

107

8O
0 % - e - -
-0.5

20% -e--
70 50% -K---

80% -6--

00

511

4o

3o

0 i i i
0 5000 l(X)OO 15000

Number o~ Plogran~ Crea ted

i

20o0o

Fig. 8. Evolution of maximum and population mean of food eaten on random trails as
plagiarism penalty is increased. Means of 50 runs.

700

-0.5 *
20%

600 50% x
80% �9
96% I

100% .~!--

500

400

~ t

p i lo l te t t~ i l ~ lii
i i i I

5(XX) 10000 150G~ ~ 25Q0~
Number of Progretns Crea ted

Fig. 9. Evolution of population mean program size on random trails as plagiarism
penalty is increased. Means of 50 runs.

convergence of the GP population. Without a penalty there are typically only a
handful of programs with the best score by the end of the run. This falls to one
or two with large penalties. However lack of convergence would suggest that the
fraction of children behaving as their parents would be small, whereas it behaves
similarly to the Santa Fe runs and with low penalties (20% or less) the fraction
rises to about 80% by the end of the run (cf. Fig. 12). With higher penalties the
fraction also behaves like the Santa Fe runs and remains near its initial value
until the end of the runs. Again variety is near unity and does not show this
convergence at all. (With no penalty then variety reaches 97% on average at
generation 50 and with a penalty it is about 95% on average again).

108

0% -e--
-0.5

3500 20% -~--
50% --~--
80% -a.--
96% -m--

100% ~ ' - -
3000 Santa Fe soknlon

2500 ++

!

1000 , j ~ ~ ~ a 4 b ~ l . i ~ - 41.14111pl-i" I14

soo . l ~] i ~ j , -

i I
0 i i i i

5000 10(xx) 15000 21~0o 25(x)0
Number of Programs Created

Fig . 10. Evolution of maximum and population mean of food eaten on all 50 trails as
plagiarism penalty is increased. Means of 10 runs.

3 5

0 % - * - -
-0.5 -4--

20% -o-.
30 50% -~--

.... I

Q

~ lO
"6 ~ * i :',, t .

o - - - ~ ' - -'-~"
0 50r 10000 15000 20000 2,5~X~

Numbor of p ro~"c t~ C ~ t e d

Fig . 11. Number of populations containing a solution to current trail on random trails
as plagiarism penalty is increased. 50 runs.

Like the S a n t a Fe t ra i l , runs wi th low penal t ies show convergence in t h a t
typ ica l ly the scores of the pa ren t s of the vas t m a j o r i t y of the children in t he
las t genera t ion are ident ica l (or have one of two values). W i t h runs wi th high
p e n a l t y the re is more var ia t ion (with on average 29.1 different scores ac t ing as
first pa ren t s to chi ldren in the final popu la t i on) .

5.1 C o r r e l a t i o n o f F i t n e s s a n d P r o g r a m S ize

Comparing Fig. 13 with Fig. 5 we see there is no longer a clear separation be-
tween runs based upon strength of plagiarism penalty. After generation 15 (7,500

1 0 9

0.8

0+6

0.4

0 2

o
-0.5 +
20% o
50% x
80+/. A

<>oo + + ~ o
a o o o + + * o ~ o o O o o

+o + ~ o o o O O o o
. o <, o e<> ~ 1 7 6 1 7 6

+ + + + �9

+ + + . + § 2 4 7 +

�9 i++::~176176 ~176176 x x x * * * * x * * x -x * * * * * *

+ + x r ~ : . * * * * X x * * * * t +
K ,x �9 �9 ,m +L I l t �9 �9

o s i i i
5000 10000 15000 20~00 25000

Number of Progran~ Crea ted

Fig. 12. Evolution of proportion of population with same score as first parent on
random trails as plagiarism penalty is increased. Means of 50 runs.

programs created) low penalty runs tend to have smaller covariances than with
the Santa Fe trail. This is reflected in the generally lower increase in program
size. The lower covariance may be simply due to increased randomness in the
fitness function. In contrast when we look at the correlation between score and
size (i.e. excluding penalty, cf. Fig. 14) the high penalty runs have an obviously
lower correlation. This shows that the penalty has changed the nature of the
evolved programs.

35

25

20

15

.i m 1 0

8
5

0

-S

-10

o15

0% ~
-O+5 ~ - . I

20% -e- -
50% -t,+-- :~
80%
+5++ -, ,- i! t

10o% -m-+ , ~ :~, t,

i i i i
5000 10000 15000 20<300 25000

Number of P tog tan~ Croa tod

Fig. 13. Evolution of covariance of program length and normalised rank based fitness
on random trails as plagiarism penalty is increased. Means of 50 runs.

110

,'i 100% "~,'- -

I I I I
5000 100~0 15000 20000 5000

N u m b e r of P r o o n m ~ Created

Fig. 14. Correlation of program length and food eaten on random trails as plagiarism
penalty is increased. Means of 50 runs.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

-.0.1

-0.15

-0.2

5.2 Fraction of Bloated Programs Used

Figure 15 confirms in the random trails high plagiarism penalties change the
nature of the evolved programs. We see programs with very different behaviour
evolve than is the case with the Santa Fe trail or with low penalties. The large
number of ant operations per program execution (cfi Fig. 15) might indicate that
non-general, or trail specific, programs have been evolved. This is confirmed to
some extent if we compare the best scores in the last generation on the last trail
with that on all 50 trails. We see performance on the training case (cf. Fig. 8)
is proport ionately higher than on all 50 trails (cf. Fig. 10). Concentrat ing on
100% penalty, the mean scores are 52 out of 80, i.e. 66% (averaged over 50 runs)
compared to 1590 out of 4,000, i.e. 40% (averaged over 10 runs). T h a t is pop-
ulations evolved with high plagiarism penalties do considerably bet ter on the
immediate training case than they do on the more general one. The difference is
not so marked in runs with low penalties.

6 C o n c l u s i o n s

In our earlier work on the evolution of representation size we stressed the impor-
tance of individuals with the same fitness as their parents ' , showing increase in
average size in the later stages of evolution could in many cases be ascribed to
them dominating the population. In Sect. 4 we introduce a fitness based penalty
on programs which don' t innovate. Even very large penalties produce only slight
reductions in the best of run performance and, in these experiments, cut bloat
by about a half.

In the experiments in Sect. 5 we have broaden research into bloat to consider
non-static fitness functions. In these experiments a dynamic fitness function also
cuts bloat by about a half. We also report combining our dynamic fitness function

111

uJ

I

,0

J
15

55

0 % o

45 eO% �9 II
9 5 % �9 M I I

. . ,2.. .v.

i t : .
x • X x X >

�9 x x x X X x
20 X X x x x x x X

�9 & x X X X

! 1

--v:=~;::;.~]
0 i i i 1 /

5000 I (~ 0 15000 20000 25000
Number of Programs Created

Fig. 15. Time used per call of each program in population on random trails as plagia-
rism penalty is increased. Mean of 50 runs.

with the plagiarism penalty and note this can also produce a small reduction in
the best of run performance but can change the nature of the programs evolved
and reduce their ability to generalise.

It is clear that suppressing the large numbers of programs produced in the
later stages of conventional GP runs which all have the same performance by
using a plagiarism penalty has not prevented bloat completely. In both sets of
experiments there is bloating we suspect that this is due to shorter programs
in the population being more effected by crossover than longer ones, i.e. their
children follow the trails less well.

Our second set of experiments tend to confirm some of the benefits claimed for
dynamic fitness measures. E.g. every dynamic fitness run (without a plagiarism
penalty) produced programs which performed better on the 50 random trails
than the example program evolved on just the Santa Fe trail.

We have deliberately chosen to study ant problems since they are difficult for
GP and have properties often ascribed to real world programs (such as rugged
landscapes, multiple solutions, competing conventions, poor feedback from par-
tial solutions). Nevertheless it would be interesting to analyse bloat in other GP
domains. Further work is needed to understand how GP populations are able
to maintain their peak performance even when the selection function appears to
prevent direct copying from the best of one generation to the next. This would
appear to require constant innovation on the part of the population. Current
GP can "run out of steam" so that GP populations stop producing improved
solutions [Lan98a, pages 206]. Therefore techniques which encourage constant
innovation are potentially very interesting.

112

Acknowledgements

This research was funded by the Defence Research Agency in Malvern. We would
like to thank the anonymous referees for their helpful comments.

References

[Ang94]

[Koz92]

[Koz94]

[Lan95]

[Lan97]

[Lan98a]
[Lan98b]

[LP97]

[LP98a]
[LP98b]

[NB951

[Pri70]

[SFD96]

[Tac93]

[Tac94]

[Tac95]

Peter John Angeline. Genetic programming and emergent intelligence. In
Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chap-
ter 4, pages 75-98. MIT Press, 1994.
John R. Koza. Genetic Programming: On the Programming of Computers by
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
John R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts, May 1994.
W. B. Langdon. Evolving data structures using genetic programming. In
L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth Interna-
tional Conference (ICGA95), pages 295-302, 1995. Morgan Kaufmann.
W. B. Langdon. Fitness causes bloat in variable size representations. Tech-
nical Report CSRP-97-14, University of Birmingham, School of Computer
Science, 14 May 1997. Position paper at the Workshop on Evolutionary Com-
putation with Variable Size Representation at ICGA-97.
W. B. Langdon. Data Structures and Genetic Programming. Kulwer, 1998.
W. B. Langdon. The evolution of size in variable length representations. In
1998 IEEE International Conference on Evolutionary Computation, Anchor-
age, Alaska, USA, 5-9 May 1998. Forthcomming.
W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry et al,
editors, Second On-line World Conference on Soft Computing in Engineering
Design and Manufacturing. Springer-Verlag London, 23-27 June 1997.
W. B. Langdon and R. Poll. Fitness causes bloat: Mutation. This volume.
W. B. Langdon and R. Poli. Why ants are hard. Technical Report CSRP-
98-4, University of Birmingham, School of Computer Science, January 1998.
Peter Nordin and Wolfgang Banzhaf. Complexity compression and evolution.
In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth Interna-
tional Conference (ICGA95), pages 310-317, 1995. Morgan Kaufmann.
George R. Price. Selection and covariance. Nature, 227, August 1:520-521,
1970.
Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic
programming. In John R. Koza, et al, editors, Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 215-223, 1996. MIT Press.
Walter Alden Tackett. Genetic programming for feature discovery and image
discrimination. In Stephanie Forrest, editor, Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, ICGA-93, pages 303-309, Univer-
sity of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kanfmann.
Walter Alden Tackett. Recombination, Selection, and the Genetic Construc-
tion of Computer Programs. PhD thesis, University of Southern California,
Department of Electrical Engineering Systems, 1994.
Walter Alden Tackett. Greedy recombination and genetic search on the space
of computer programs. In L. D. Whitley and M. D. Vose, editors, Founda-
tions of Genetic Algorithms 3, pages 271-297, 1995. Morgan Kaufmann.

