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Abstract. We briefly describe our first genetic programming technique
used to automatically evolve profiles of potential insurance customers
the task is part of the Benelearn 99 competition. The information about
customers consists of 86 variables and includes product usage data and
socio-demographic data derived from zip codes. The data was supplied
by the Dutch data mining company Sentient Machine Research, and
is based on real world business data. Profiles which correctly identified
more than 50% of customers were automatically evolved using genetic
programming.

Models are completely automatically generated by GP 1) starting from
random and 2) starting from C4.5 and improving on it. The models
evolved are similiar in performance in the two cases.

1 Genetic Programming and Pareto Multi-Objective
Optimisation

We assume familiarity with genetic programming (GP) [Koz92BNKF98|[Lan98b].
In this work the GP uses Pareto tournament selection [Lan98b] with two objec-
tives: maximize fitness and minimise size. We define program size as the number
of functions and terminals it is made from. This has the advantage of simplic-
ity and very compact solutions are evolved. However it does appear to squeeze
out expressions involving constants. This may be disadvantageous, particularly
where required a constant value is not included in the terminal set. Without
fitness sharing the GP population tends to cluster around certain points on the
Pareto front. In our experiments, without sharing, large fractions of the popula-
tion converged to trees of one, two or three nodes. Fitness sharing is implemented
by adding a second stage to tournaments which contain both larger higher fit-
ness and shorter lower fitness individuals. Pareto comparison alone cannot chose
between these. Instead such ties are resolved by comparing against the (a sample
of) the rest of the population and preferring individuals from sparsely populated
parts of the multi-objective (fitness-size) space. (Details in [Lan98b]). If a mini-
mum solution size can be estimated, it might be worth including a size threshold,
whereby tiny programs below the threshold are not preferred to bigger programs
(but still below the threshold) of the same performance.
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2 Insurance Customer Profiling

The task is given 85 attributes relating to a customer, such as age, number of
children, number of cars, income, other insurance policies they hold, predict if
they want caravan insurance. 5922 records (of which 343 are positive and the
rest negative) are available as training data from http://www.swi.psy.uva.nl/
benelearn99/comppage.html| as part of the Benelearn’99 workshop. The task
is to find 800 records of a further 4000 records which contain as many positive
examples as possible.

We conducted two experiments. One with GP starting from a random pop-
ulation and the other where every member of the initial population was a copy
of a seed individual created by C4.5 release 8 [Qui93|. (The unpruned C4.5 trees
produced using default parameter settings were used).

The 5922 records were randomly split in half. One half (with 179 positive ex-
amples) was used as the training set and the other half was used as a verification
set. Performance on it was reported by the GP but it was not used for selection
during evolution. The details are given in Table [1} parameters not shown are as
[Koz94, page 655].

Table 1. Insurance Customer Profiling

Find a program that predicts the most likely 1/ 5 of people to become
caravan insurance customers.

One terminal per data attribute, 0..41 and 110 different random num-
bers uniformly selected from 0..10 (total 255 primitives)

IF IFLTE MUL ADD DIV SUB AND OR NAND NOR XOR EQ
APPROX GTEQ LTEQ GT LT NOT

Objective:

Terminal set:

Function set:

Fitness cases:

2911 (179 positive)

Hits: number of positive cases predicted

Fitness: At end of each generation each positive fitness case given a weight
equal to the reciprocal of the number of individuals which correctly
predicted it. Fitness given by sum of weights of positive cases pre-
dicted.

Selection: Pareto tournament group size of 7 (fitness and size), non-elitist, gen-
erational. Fitness sharing (comparison set 81) [Lan98b].

Wrapper: 2911 values sorted, top 1/5 (583) treated as positive predicted

Pop Size: 100, 1000, 5000, 20000

Max prog. size:

no limit

Initial pop:

Created using “ramped half-and-half” with a minimum depth of 5 and
a maximum depth of 9.

Parameters:  |90% one child crossover, 5% point mutation (rate 10/1024), 5% size
fair mutation (max subtree size 30) [Lan98a] 90% of crossover points
selected at functions, remaining 10% selected uniformly between all
nodes.

Termination: |Maximum number of generations G = 100
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Fig.1. Distribution of training (+) and verification (x) performance in the
final generation of a non-seeded run of the customer profiling problem. Solid
lines indicate individuals on the Pareto (training, size) front, while dotted lines
indicate the best 1% of the population on the verification set. Note log scale.

Figure [2] shows the distribution of performance on both the training and
verification sets in the final population. We see how the population has changed
dramatically from the initial seed. As expect the initial seed performs reasonably
well on the training set (from which was created) but only slightly better than
random guessing on the verification set. By the end of the run the population is
widely spread. Looking at performance on the training set, most of the popula-
tion lies close to the Pareto front (solid line) (but some are markedly worse than
it). Since GP has discovered programs that are shorter and/or fitter than the
seed, the front is well to the left of it. After 100 generations the population has
bloated as is indicated by the cluster of points at the top left. These programs are
long and have high training scores but while longer they do not score markedly
more than shorter programs in earlier generations. In fact while almost all long
programs (e.g. longer than the seed 681) score better than it on the training
case, they are worse than it on the verification set. Scarcely better than random
guessing would achieve. That is, as might be expected, the population contains
long programs which are heavily over trained.

The performance on the verification set of the best members on the training
set is also plotted (lower solid line). Above size &~ 200 many programs perform
above the line on the verification set. I.e. many programs do better on the veri-
fication set than the best (on the training set) programs.

The lower dotted line shows the best 1% of the population on the verification
set. This line is almost flat, Showing that bigger programs give little if any
real performance advantage. Indeed in this population programs as short as five



appear to be the best. The upper dotted line shows the performance on the
training set of the same 50 programs. Not surprisingly it is more erratic than
the lower curve and climbs with programs size, again indicating over training.

It is clear that GP has been able to generalise the initial seed program and
thereby considerably improve its performance. However there is also clear signs
of over training and this increases with size of programs in the population.

The unseeded GP does not start from an over trained population. After a
period of evolution the population shows only a little sign of over training. The
generalisation performance appears approximately the same in the two cases.
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Fig. 2. Distribution of training (+) and verification (x) performance in the
final generation of the first seeded run of the customer profiling problem. Solid
lines indicate individuals on the Pareto (training, size) front, while dotted lines
indicate the best 1% of the population on the verification set. Note log scale.

Both GP approaches suffered over fitting, that is, performance estimated
from the verification set was not reached on the unseen data. Again high lighting
the verification problem.
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