
Doctoral Thesis Research Proposal

Genetic Programming

with

Semantic Equivalence Classes

PhD Program in Computer Science: XXIX cycle

Author:

Stefano Ruberto

stefano.ruberto@gssi.infn.it

Supervisor:

Prof. Leonardo Vanneschi

lvanneschi@isegi.unl.pt

Internal advisor:

Dr. Ivano Malavolta

ivano.malavolta@gssi.infn.it

June 8, 2017

mailto:stefano.ruberto@gssi.infn.it
mailto:lvanneschi@isegi.unl.pt
mailto:ivano.malavolta@gssi.infn.it

ii

GSSI Gran Sasso Science Institute

Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

http://www.gssi.infn.it
https://goo.gl/maps/9Cj77

Abstract

This dissertation has been carried out in the context of Evolutionary Algorithms and

specifically in the application of Genetic Programming (GP) techniques to symbolic

regression problems. In this class of problems, given an input vector of independent

numerical variables, algorithms are able to find models that approximate a desired scalar

output. Among the machine learning techniques, GP has the important advantage of

synthesizing as output a full intelligible model. Recently, interesting new approaches

measure the computational behaviour of such models, their semantics, considering the

output vector on all the test cases in the training set. By characterizing the behaviour

of the model at hand, it is possible to improve the efficiency during exploration of the

solution space, while avoiding duplicate behaviours and directing the evolution towards

the desired directions. In this context, geometric approaches play a very important role,

mainly due to their performance in terms of models accuracy and ability to generalize.

However, they also suffer from a number of drawbacks, i.e., the exponential growth of

the model’s structure (bloat) and a slow convergence rate.

In this dissertation we propose a radically different approach, which is based on a new

semantic framework that performs effectively against bloat, thus preserving models clar-

ity, and reaching comparable accuracy and generalization performances starting from a

common background. More specifically, we introduce the concept of semantics-based

equivalence classes. The approach is implemented by means of two different novel ge-

netic programming systems, in which two different definitions of equivalence are used.

In both these systems, whenever a solution in an equivalence class is found, it is possible

to analytically generate any other solution in that equivalence class. As such, these

two systems allow us to shift the objective of genetic programming: instead of finding

a globally optimal solution, the objective is to find any solution that belongs to the

same equivalence class as a global optimum. Equivalence classes generalize the use of

peseudo-distances, as opposed to the traditional use of proper metrics in semantic anal-

ysis. Furthermore, we propose improvements to these genetic programming systems in

which, once a solution belonging to a particular equivalence class is generated, no other

solutions in that class are accepted anymore in the population during the evolution. We

call filtered systems these improved versions with respect to efficiency and speed in the

solution space exploration phase.

We validated the proposed approach via a experimental results obtained on seven com-

plex real-life test problems. Experimental results show that using equivalence classes is

a promising direction and that filters are generally helpful to improve the performance

ii

of the systems. Experimental results also show that filters are useful to improve the per-

formance of a state-of-the-art GP method. Indeed, we did an extensive experimentation

on the well-known linear scaling technique; this contribution is rather general and can

work in synergy with the aforementioned semantic/geometric techniques and with other

machine learning frameworks.

Contents iii

Declaration.

This thesis has been composed by myself and the presented work is my own under the

guidance of my supervisors Leonardo Vanneschi, Mauro Castelli, Ivano Malavolta.

Moreover, Chapter 1 contains text that is a re-elaboration from my paper [1] co-authored

with Leonardo Vanneschi and Mauro Castelli. Chapter 2 is essentially a internal GSSI

report I presented on my 2nd year admission in PhD program. Part of Chapter 3 is a re-

elaboration of [1] co-authored with Leonardo Vanneschi and Mauro Castelli. Chapters

4 and 5 are essentially sections of[1] co-authored with Leonardo Vanneschi and Mauro

Castelli. Appendix A is extracted from [2] co-authored with Leonardo Vanneschi , Mauro

Castelli, and Sara Silva.

Contents

List of Figures vi

1 Introduction 1

1.1 Semantic genetic programming and open problems 1

1.2 Equivalence Classes in Genetic Programming 4

1.3 Contributions overview . 5

1.4 Structure of this dissertation . 6

2 Introduction to genetic programming 7

2.1 Genetic Programming . 7

2.1.1 Introduction to Genetic Programming 8

2.1.2 Main features . 9

2.1.3 GP solutions structures : the trees 11

2.1.3.1 Functional symbols . 11

2.1.3.2 Terminal symbols . 11

2.1.3.3 Tree structures . 12

2.1.4 The fitness function. 13

2.1.4.1 Fitness function example in regression 13

2.1.5 Initialization . 14

2.1.5.1 Initialization methods: grow and full 15

2.1.5.2 Ramped Half-and-Half Method 15

2.1.6 Selection . 15

2.1.6.1 Tournament selection . 16

2.1.7 Genetic operators . 16

2.1.7.1 Crossover . 16

2.1.7.2 Mutation . 17

2.2 Introducing Genetic Programming Open Problems 18

2.2.1 Bloat . 18

2.2.2 Overfitting . 20

2.2.3 Diversity . 21

2.2.3.1 Genotype Diversity . 22

2.2.3.2 Phenotype diversity: investigating semantic. 22

2.2.4 Semantic in Genetic Programming 23

2.2.4.1 Semantic analysis during initialization 25

2.2.4.2 Semantic in selection . 26

2.2.4.3 Semantic genetic operators. 26

iv

Contents v

3 Research Contribution 27

3.1 More on open problems and semantic Genetic Programming 27

3.1.1 Geometric Semantic Genetic Programming 28

3.1.2 ESAGP . 31

3.2 Proposal . 36

4 Semantic Equivalence Classes Genetic Programming 42

4.1 Methodology . 42

4.1.1 GPPLUS: GP by Translation . 45

4.1.2 GPMUL: GP by proportions . 46

5 Experimental study 50

5.0.1 Systems and test problems . 50

5.0.2 Experimental Results . 52

6 Conclusions and Future Work 80

A ESAGP 83

A.1 Alignment in the Error Space . 83

A.2 One Step Error Space Alignment GP: ESAGP-1 85

A.3 Two Steps Error Space Alignment GP: ESAGP-2 87

Generalizing to µ dimensions. 89

List of Figures

2.1 Genetic Programming general cycle schema. The big arrows indicate
transitions to the next phase of the cycle starting at the top of the figure. 9

2.2 Expression 2.3 represented through two different parse trees. 12

2.3 The crossover genetic operator exchange sub-trees between the parents at
the crossover points. 17

5.1 Dataset airfoil (training). Results are relative to: GPPLUS technique
(5.1a), GPMUL (5.1b), LS (5.1c). Figures (5.1a), (5.1b), (5.1c), have
median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.1d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 54

5.2 Dataset airfoil (test). Results are relative to: GPPLUS technique (5.2a),
GPMUL (5.2b), LS (5.2c). Figures (5.2a), (5.2b), (5.2c), have median fit-
ness (RMSE) on the vertical axes and computational effort on horizontal
axes (calculated as the number of nodes evaluated during training). Fig-
ure (5.2d) reports the performance of GSGP as well as the ones achieved
by the 3 best variants (i.e., with or without filters) of the proposed system
based on equivalence classes. 55

5.3 Dataset concrete (training). Results are relative to: GPPLUS technique
(5.3a), GPMUL (5.3b), LS (5.3c). Figures (5.3a), (5.3b), (5.3c), have
median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.3d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 56

5.4 Dataset concrete (test). Results are relative to: GPPLUS technique
(5.4a), GPMUL (5.4b), LS (5.4c). Figures (5.4a), (5.4b), (5.4c), have
median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.4d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 57

vi

List of Figures vii

5.5 Dataset motor (training). Results are relative to: GPPLUS technique
(5.5a), GPMUL (5.5b), LS (5.5c). Figures (5.5a), (5.5b), (5.5c), have
median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.5d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 58

5.6 Dataset motor (test). Results are relative to: GPPLUS technique (5.6a),
GPMUL (5.6b), LS (5.6c). Figures (5.6a), (5.6b), (5.6c), have median fit-
ness (RMSE) on the vertical axes and computational effort on horizontal
axes (calculated as the number of nodes evaluated during training). Fig-
ure (5.6d) reports the performance of GSGP as well as the ones achieved
by the 3 best variants (i.e., with or without filters) of the proposed system
based on equivalence classes. 59

5.7 Dataset total (training). Results are relative to: GPPLUS technique
(5.7a), GPMUL (5.7b), LS (5.7c). Figures (5.7a), (5.7b), (5.7c), have
median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.7d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 60

5.8 Dataset total (test). Results are relative to: GPPLUS technique (5.8a),
GPMUL (5.8b), LS (5.8c). Figures (5.8a), (5.8b), (5.8c), have median fit-
ness (RMSE) on the vertical axes and computational effort on horizontal
axes (calculated as the number of nodes evaluated during training). Fig-
ure (5.8d) reports the performance of GSGP as well as the ones achieved
by the 3 best variants (i.e., with or without filters) of the proposed system
based on equivalence classes. 61

5.9 Dataset protein (training). Results are relative to: GPPLUS technique
(5.9a), GPMUL (5.9b), LS (5.9c). Figures (5.9a), (5.9b), (5.9c), have
median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.9d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 62

5.10 Dataset protein (test). Results are relative to: GPPLUS technique (5.10a),
GPMUL (5.10b), LS (5.10c). Figures (5.10a), (5.10b), (5.10c), have me-
dian fitness (RMSE) on the vertical axes and computational effort on
horizontal axes (calculated as the number of nodes evaluated during train-
ing). Figure (5.10d) reports the performance of GSGP as well as the ones
achieved by the 3 best variants (i.e., with or without filters) of the pro-
posed system based on equivalence classes. 63

5.11 Dataset slump (training). Results are relative to: GPPLUS technique
(5.11a), GPMUL (5.11b), LS (5.11c). Figures (5.11a), (5.11b), (5.11c),
have median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.11d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 64

List of Figures viii

5.12 Dataset slump (test). Results are relative to: GPPLUS technique (5.12a),
GPMUL (5.12b), LS (5.12c). Figures (5.12a), (5.12b), (5.12c), have me-
dian fitness (RMSE) on the vertical axes and computational effort on
horizontal axes (calculated as the number of nodes evaluated during train-
ing). Figure (5.12d) reports the performance of GSGP as well as the ones
achieved by the 3 best variants (i.e., with or without filters) of the pro-
posed system based on equivalence classes. 65

5.13 Dataset yacht (training). Results are relative to: GPPLUS technique
(5.13a), GPMUL (5.13b), LS (5.13c). Figures (5.13a), (5.13b), (5.13c),
have median fitness (RMSE) on the vertical axes and computational effort
on horizontal axes (calculated as the number of nodes evaluated during
training). Figure (5.13d) reports the performance of GSGP as well as the
ones achieved by the 3 best variants (i.e., with or without filters) of the
proposed system based on equivalence classes. 66

5.14 Dataset yacht (test). Results are relative to: GPPLUS technique (5.14a),
GPMUL (5.14b), LS (5.14c). Figures (5.14a), (5.14b), (5.14c), have me-
dian fitness (RMSE) on the vertical axes and computational effort on
horizontal axes (calculated as the number of nodes evaluated during train-
ing). Figure (5.14d) reports the performance of GSGP as well as the ones
achieved by the 3 best variants (i.e., with or without filters) of the pro-
posed system based on equivalence classes. 67

5.15 Dataset airfoil . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 71

5.16 Dataset concrete. Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 72

5.17 Dataset motor . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 73

5.18 Dataset total . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 74

List of Figures ix

5.19 Dataset protein. Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 75

5.20 Dataset slump. Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 76

5.21 Dataset yacht . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series
shows the results without filtering: GPPLUS on figure (a), GPMUL on
(c) and LS on (e). Figures (b), (d) and (f) show the average number of
nodes in the population for the corresponding filter settings. Also in this
case, the first boxplot of each series shows the results without filtering:
GPPLUS on figure (b), GPMUL on (d) and LS on (f). 77

A.1 Part (a): Representation of a simple bi-dimensional error space. Individ-
uals A and B are optimally aligned, i.e. their respective error vectors are
directly proportional. The angle between the error vector of A (as well as
B) and the one of C is θ. Part (b): A simple tri-dimensional error space.
We point out that it is possible to find a point m that is aligned with the
error vectors of any pair of individuals A and B and optimally aligned
with a third individual C. 84

Chapter 1

Introduction

In this thesis we propose a novel framework with the intent of improve capability of

Genetic Programming (GP) to solve complex real life problem. GP is framed within

the broader family of evolutionary algorithms (EAs) [3]. EAs are inspired by Darwin’s

theory of evolution in its various aspects and, specifically for GP, on the iterative pro-

cess based on reproduction, mutation, competition and selection. Out of the natural

evolution metaphor real GP systems implements the cycle in figure 2.1. To complete

the various phases described there many specific algorithm exist. These algorithms ma-

nipulate structures representing a population of solutions. Contrary to other machine

learning techniques GP is able to produce as output model or algorithm that are fully

understandable by humans and are not a mere black box tool with obvious advantages

in term of knowledge. The work introduced here develops techniques that are applied

to the symbolic regression domain, but their generality, and the possibility of broader

application, will be clear to the reader, and potentially not limited to the EAs machine

learning field.

1.1 Semantic genetic programming and open problems

This thesis is focused on a promising trend recently established in Genetic Programming

(GP), the Semantic GP. In this framework the individuals forming the population un-

dergoing selection-evolution cycles are analysed from a point of view centred on their

behaviour more than on the solutions’ structure itself. Indeed we are interested in an

algorithm or model solving our problems, and obviously many formulation of the same

solution are possible, and in practice this redundancy is a real issue [4]. If we are con-

cerned in enhancing the efficiency of the exploration of the solution space we are not

1

List of Figures 2

interested in duplicates behaviours or, in other words we are not interested in algorithms

that are computing the same solutions or that have the same semantic.

Many criterion have been adopted to measure diversity and usually evolutionary systems

that preserve this population’s characteristic show increments in their performances, see

for examples [5],[6] and [7].

The new semantic perspective have introduced new metrics aiming at measuring di-

versity. The semantic itself is defined as in [8] and [9] where it is the vector whose

elements are obtained evaluating every fitness case in the training set. If we call such

set X = {−→x1,−→x2, ...,−→xn}, in a symbolic regression problem, an GP individual is a func-

tion or program P that, for each vector −→xi in X returns the scalar value P (−→xi). We

define semantics of P the vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can be rep-

resented as a point in an n-dimensional metric space, that is generally called semantic

space where the well known properties characterizing a metric space hold thus having

defined a distance d with the usual properties:

d(sPi , sPj) ≥ 0

d(sPi , sPj) = 0⇔ sPi = sPj

d(sPi , sPj) = d(sPj , sPi)

d(sPi , sPj) + d(sPj , sPk
) ≥ d(sPi , sPk

)

(1.1)

Differently from the syntactic or genotypic space, where individuals are represented by

programs syntax, the semantic space give a numerical representation that is strictly

related to the program behaviours during the test. In this scenario the syntax of the

selected representations doesn’t matter any more and the genetic operators designed in

this space are almost independent from such phenotipic details. New similarity mea-

sure have been defined based on the metrics imposed on the semantic vector space, see

equations 1.1. Semantics methods have been used in three different phases of the evolu-

tionary process trying to improve diversity and therefore exploration and performances.

Many approaches try to perform a semantic analysis during initialization phase like

for example [10] and [11] here the attempt is to have an high variety of phenotypes-

genotypes already at the beginning of the evolutionary process. Other approaches also

work during the selection phase discarding too similar semantics, see [12] and [13], or

trying to match individuals with different semantics [14] always with the aim of obtain-

ing more diversity in the population. Another group of approaches tries to introduce

semantic in the genetic operators. These techniques establish the semantic properties

of the sub-trees from two individuals trying to figure out which is the best location to

List of Figures 3

perform crossover. Many proposal have been formulated targeting similar semantics to

promote gradual changes, e.g. in [9], or at the opposite targeting different semantics to

obtain more diversity,e.g. in [15] or also intermediate approaches like in [16].

In this thesis we are interested in some of the major issues still open in GP, indeed we

believe that our proposal is positively affecting bloat and generalization problems. We

observe bloat when the growth of the solution complexity is non-functional to perfor-

mance improvement [17]. This may arise from many causes and we present the most

relevant theories in section 2.2 but then we focus on the idea that neutral mutations

have a main role both in the code growth and the generalization issue. We believe that

also this last problem is related to the size of the solutions and their complexity: it is

possible that the program incorporates data from the training set rather than learning

a theory of general validity. In accordance with the principle of minimum length of the

assumptions, see eg [18] , there is general consensus that the assumptions that require

less information to be encoded are also the best ones. It is believed that the simplest

solutions are able to generalize better and resist more effectively to noise.

We highlight important relationships among bloat and overfitting problems and two GP

frameworks that inspired us and are the foundations of what we introduce here. In the

fields of semantic GP there is a Geometric framework, a GP branch called Geometric Se-

mantic Genetic Programming (GSGP) that has really interesting properties [19]. Using

the same kind of semantic space and metrics we have seen above (see equations 1.1) geo-

metric techniques introduce genetic operators that, by construction, induce a unimodal

fitness landscape, in other words there is a perfect correspondence between fitness and

distance from the target because new individual can be constructed deterministically to

stay in a known position of the semantic space. GSGP techniques have a good gener-

alization properties even if, in the canonical form described in [19], they are subjected

to an exponential growth of the complexity of the solutions. We discuss how geometric

properties are preserving generalization despite the complexity of the solutions. From

the GSGP framework we take the ability of build solutions in a deterministic way but,

contrary to GSGP, we are not combining solutions with geometric operators and we do

not rely on geometric properties to guarantee optimal generalization against overfitting.

There is another framework from our previous work that has an important role in the

present thesis and is based on the alignment of individuals in the populations and

the target in the semantic space: the Error Space Alignments Genetic Programming

(ESAGP) [2]. The reader can find a complete description of this approach in appendix A.

One of the interesting point of ESAGP is that maintain semantic diversity at the pop-

ulation level, no duplicate is admitted, even considering the past population. A key

feature of ESAGP is that to discriminate among semantics it is not using a usual metric

List of Figures 4

to compute a distance but rather shows the utility of using a pseudo-distance approach

in particular ESAGP relay on Semantic Angles. In this thesis we are building on the

following characteristics of ESAGP: (i)it uses geometrical properties to reconstruct the

target(ii) it shows a good generalization ability thanks to its property of filtering out

duplicate semantics and thus keeping solution complexity low (Occam razor principle

strongly enforced) (iii) it uses pseudo-distance to compare semantics thus enabling an

equivalence class approach: all the semantic vectors aligned in the error space are equiv-

alent from the point of view of target approximation with a geometric approach because

they al stay in te same vector subspace. We want to generalize ESAGP’s properties

(i,ii,iii) keeping in consideration the geometric semantic approach of GSGP and thus we

propose a novel flexible framework based on Equivalence Classes.

1.2 Equivalence Classes in Genetic Programming

The work presented here is strongly related to contributions discussed in the previous

sections and it directly incorporates semantic awareness in GP. Nevertheless, it does so

from a different perspective. In this thesis, we propose a novel idea to exploit semantic

awareness in GP: semantic based equivalence classes (SECGP). The context of SECGP

is still the semantic genetic programming and the semantic vector space that we are

using is the same one introduced in the previous section. Our concept of equivalence

class is such that, once an individual in a class is found, it must be possible, and easy, to

generate all the other individuals in that class. In this way, finding one solution in the

same equivalence class as a globally optimal solution allows us to solve the problem by

reconstructing the global optimum analytically. Using direct semantic manipulations,

similarly to GSGP, we compare entire classes of individuals. Instead of the operators

proposed in [20], we use traditional genetic operators to build new solutions. SECGP

come naturally equipped with the ability of discriminating class of semantics and this

further enhance the type of redundancy that can be avoided, not just a single point in

the semantic space but rather entire classes. Any single individual is representative of a

class and using the equivalence relationship it’s easy to compute any other individual in

the same class, this imply that we have a new pseudometric that has the same advantages

discussed for ESAGP semantic angles, but is also a generalization of that concept, indeed

semantic angles are a particular implementation of an SECGP system. Thanks to its

enhanced capacity of discrimination among semantics we expect that a SECGP systems

have the ability to maintain an higher level of diversity in the population thus exploring

more effectively the solution space and at a faster rate than GSGP.

List of Figures 5

To enhance genralization ability and reduce overfitting SECGP adopt the strategy of

reducing as much as possible the code growth that it’s not related to any real change

in fitness. Neutral changes in the solution’s structures are completely forbidden and, in

the proposed Filtered version F-SECGP, any duplicate or similar semantic is discarded

on evaluation. This behaviour strongly enforce the Occam Razor Principle, any changes

in the semantic can be immediately evaluated and complexity it is introduced gradually,

positively affecting also the overfitting problem.

1.3 Contributions overview

The approach presented in this thesis proposes these original contributions from the

theoretical point of view. (i) We show how to generalize the use of pseudo-distance and

its usefulness for the comparison of semantic vectors. This added flexibility allows also

to craft or learn useful equivalence relationships. (ii) We define a new formal concept of

duplicate semantics based on equivalence classes.(iii) We shows a new effective method

of filtering duplicate semantics (iv) thus permitting only a very controlled growth of

the solution’s structural complexity and a consequent good generalization ability. (v)

We simplify the geometric approach in the context of equivalence classes, losing the

guaranteed geometric properties (unimodal fitness landscape and good generalization

ability) but getting a potentially compact and equally general and accurate solutions.

From a more practical perspective we define four simple and completely new techniques:

two new SECGP, called GPPLUS and GPMUL and tow F-SECGP called FGPPLUS

and FGPMUL. Moreover we reformulate the well known linear scaling technique in the

new perspective of SECGP framework.

Experiments to test the performance of the systems proposed have been conducted on

seven complex real-life applications. The results obtained can be summarized as follows:

when considering the results on unseen test data, on five out of the seven studied test

problems, the systems proposed are better than (or comparable to) the state-of-the-

art of GP for symbolic regression (i.e. geometric semantic GP). Also, on all the test

problems taken into account, filters are beneficial for improving the performance of the

systems and show the capability to evolve models with a good generalization ability.

Last but not least, the use of filters allows the studied systems to generate individuals

that are significantly smaller, compared to their unfiltered counterparts.

List of Figures 6

1.4 Structure of this dissertation

We begin, in chapter 2, introducing Genetic Programming and the general connected

background including the theoretical basis necessary to understand the problems that

we are tackling in this thesis. This chapter also explains the principles of semantic ge-

netic programming.

In chapter 3 we explore the recent literature that inspired our work highlighting the

relationship of each described technique with both open problems and our proposal. We

discuss also new interesting perspective on our past work.

Chapter 4 more formally introduces equivalence classes in the context of GP and explic-

itly formulate simple example systems developing the simple necessary mathematical

tools.

Four of this new systems, a revisited Linear Scaling technique along with unchanged

linear scaling and GSGP systems are the basis for the large experimental phase explained

in chapter 5 on seven complex real-life applications. In the same chapter the readers

find also the commented results.

In chapter 6 we briefly present our conclusions and some consideration on further re-

search directions.

In appendix A the reader has a useful recall the core concepts of the ESAGP tech-

niques that can be considered, as extensively explained in chapter 3 an ancestor of the

equivalence classes in semantic GP. This appendix it’s an aid for the comprehension of

chapter 3.

Chapter 2

Introduction to genetic

programming

2.1 Genetic Programming

. l’header qui dice “list of figures” E’ un bug noto di questo templaet della tesi .. dopo

chiedo a Korenzo come lo ha risolto ...

In this section the Genetic Programming (GP) [21] techniques are introduced and their

main flavours and character presented.

The ideas at the heart of GP have been clearly connected to “machine intelligence” very

early by one the father of Artificial Intelligence (AI). Alan Turing was first mentioning

the possibility of using the concept of natural selection and evolution to build some

sort of intelligence in his seminal work titled “Computing machinery and intelligence”

already in 1950 [22]. This first formulation discusse the main steps, inspired from Charles

Darwin theory of evolution, that are common to all evolutionary algorithms EA not

excluding GP. Modern EA have been progressed until the point that we find documented

in literature numerous successful applications to real world problems. Many of these

have been defined by the scientific community “human competitive” [23], meaning that

the quality and originality of solutions synthesized by this class of algorithms are very

high and comparable to solutions proposed by humans. We easily find numerous lists

of practical applications embracing a wide variety of fields 1 where EAs have obtained

1e.g. citation from [23]: “quantum computing circuits, analog electrical circuits, antennas, mechanical
systems, controllers, game playing, finite algebras, photonic systems, image recognition, optical lens
systems, mathematical algorithms, cellular automata rules, bioinformatics, sorting networks, robotics,
assembly code generation, software repair, scheduling, communication protocols, symbolic regression,
reverse engineering, and empirical model discovery”

7

List of Figures 8

important results, this indicate that EAs methods are really general and thus can be

classified as full flagged AI methods.

2.1.1 Introduction to Genetic Programming

The Genetic Programming is framed within the broader family of evolutionary algo-

rithms (EAs) [3]. EAs are inspired by Darwin’s theory of evolution in its various as-

pects and, specifically for GP, on the iterative process based on reproduction, mutation,

competition and selection. In general, the EAs are methods of stochastic optimization

that aim to provide an approximation of the optimal solution where analytical methods

and deterministic algorithms are not applicable due to the complexity of the problem.

The process is iterated, starting from a population of candidate solutions, generated

by a random process, until an optimal solution is found or an alternative termination

condition, provided by the user, is reached. The initial population of solutions is evolved

by means of operators that give rise to subsequent generations of possible solutions, the

best individuals or the luckiest survive and produce offspring. Older individuals are

replaced by new ones in whole or in part.

Various EAs differ in the used operators and algorithms: in this work we present the

results and methods related to GP. It will be clear reading that, despite this first attempt,

the proposals may have wider application to the whole EAs family. One of the main

features of the GP is to output, as a result of the evolution, a real algorithm. From

sets of symbols specified, GP produces software that is also meaningful for humans.

Compared with other methods there is the advantage of having solutions that can be

fully understood and not simply used as a black-box: this also allows to use these models

as input in further optimization processes also directly by humans. Indeed in a black-box

approach, like for example the Artificial Neural Networks, even if we can use the model

to predict results the structure of the model itself it’s not understandable by humans,

and the real meaning of the model is lost.

As for the other AE is not necessary to provide a trace of the solution of the problem

a priori, indeed GP is a able to evolve programs improving results from generation to

generation without requiring any prior knowledge on the system that is under optimiza-

tion. [24]

List of Figures 9

Program

Population

Program Test

Fitness calculation

and survival phase

+

X X

*X

-

X X

+ X

Using genetic operator

to produce offspring

+

X

*X

X X

+

Parents Selection

based on fitness

t

Random

Initialization

Figure 2.1: Genetic Programming general cycle schema. The big arrows indicate
transitions to the next phase of the cycle starting at the top of the figure.

2.1.2 Main features

GP was designed to overcome some limitations of the Genetic Algorithms (for the GA,

see [25]). In particular, where the GA provide a structure of the solution of prede-

termined length, the GP exceeds this limit proposing structures of variable length and

shape and increasing the complexity of the solutions which are subjected to the process

of adaptation [24]: shape and structure are thus emerging characteristics of the iter-

ative process of optimization. In this way, GP explore promising individuals without

excluding a priori any possibility as is the case for GA [4] that uses solutions with fixed

length and structures. The structure types most commonly used in GP are trees, linear

chromosome and graph [4], this work consider tree structures, the most popular and

most studied, but many of the concepts are easily transferable to the other cases. The

tree structures are briefly described in section 2.1.3.

Figure 2.1 shows the generic GP cycle that iteratively produces refined solutions. At

the beginning of the trial there is an initialization phase that generates a new popula-

tion of candidate solutions: there are several possible strategies in this phase, the most

List of Figures 10

common are illustrated in section 2.1.5. In the next step parents of the next generation

are selected, those who have a better fitness are more likely to be chosen: the selection

process is stochastic and any individual in the population has the opportunity to partic-

ipate in the subsequent process of reproduction. The fitness of an individual represents

its degree of adaptation to the environment, indeed we can say that the most suitable

will be selected with a greater frequency than the others.

Once the parents have been selected, the offspring is produced and a new generation is

born. For this purpose genetic operators are used. These are algorithms that, starting

from one or more parents, give life to different individuals. Among the most used oper-

ators generally we find mutation, which from a single individual gives rise to a different

version of the same and the crossover, which from different individuals, produce children,

incorporating, by inheritance, genetic material from all parents. Not all individuals are

subjected to these processes, the best one may be allowed to pass without modification

to subsequent generations, and in this case the process it is named reproduction, when

this privilege is granted systematically to the best individuals it is named elitism. Some

details on the genetic operators is provided in section 2.1.7.

The last cycle’s step in figure 2.1 is the evaluation of the candidate that are the offspring

of the parents. As in other supervised learning techniques the solutions are evaluated

against the test cases and the error is measured with respect to the desired output.

A fitness function summarizes the behaviour of each individual on the test cases by

assigning them a real value that represents the degree of desirability or adaptation to

the environment. This function may possibly incorporate other metrics, such as the size

of the solution or other aspects of the user intends to submit to the optimization process.

The fitness function is described briefly in section 2.1.4.

After assessing the fitness, and before starting over the cycle, the population of newly

created individuals may be subjected to a survival test. At this stage it is possible that

some individuals are immediately discarded based on some criteria. These filters are

another type of selection that is not usually connected directly to the performance of

the individual under consideration but rather to other characteristics, often structural

or morphological. In this work the survival of the individual is linked to their semantics.

The number of individuals in the population is often set at the beginning of the exper-

iment and does not change during its development, if the surviving individuals are not

sufficient to arrive at such a number in place of the discarded offspring are used parents

or alternatively it is possible to proceed to create more individuals. At this point the

cycle of figure 2.1 start over beginning with the selection based on fitness. Every time

this cycle is iterated a new generation of candidate solutions is produced and is likely

they are better than the previous ones.

List of Figures 11

2.1.3 GP solutions structures : the trees

Among the structures of variable complexity and morphology that have been adopted

for the genetic programming there are the trees.

Trees are made up of basic components, nodes and leaf, chosen respectively among two

disjoint set of symbols functional and terminal. The sets of symbols chosen must have

sufficient expressive power to represent solutions to the problem and, at the same time,

should not be extended unnecessarily to avoid a huge search space.

2.1.3.1 Functional symbols

In particular, the functional symbols 2.1 represent the operations that can be performed

on the input. The input of a function can be a terminal symbol or the output from

another function. The arithmetic and logical operators are often part of this set but

also instructions (e.g., an IF..THEN..ELSE) may be included in F .

F = {f1, f2, ..., fn} (2.1)

The number of arguments of the functions represented by the symbols in F (arity) is

determined at the beginning and can be chosen from a minimum of one up to a maximum

which usually does not exceed the dimensionality of the input of test cases in the dataset

[4]. An important feature of the functions included in F is to be able to manage in a

consistent manner any of the possible inputs. The GP, as we have seen, constructs

candidate solutions through a stochastic process that has the potential to generate any

type of input for each of the functions in use. A significant example is that concerning

the arithmetic division: it is important to take care of division by zero. If we don’t desire

to stop the evaluation of such an individual we can establish a conventional output, for

example zero or a very large value. The choice of how to protect the operators, adopting

a modified version, it is left to the user, these choices are part of the system design :

this property is named closure of operators.

2.1.3.2 Terminal symbols

The terminal symbols 2.2 represent the input, the constants supplied to the system and

the functions of arity zero used for their side effects. Having always a null arity these

types of symbols are necessarily used as leaves of the tree representation.

List of Figures 12

Figure 2.2: Expression 2.3 represented through two different parse trees.

T = {t1, t2, ..., tn} (2.2)

2.1.3.3 Tree structures

The trees are the syntactic structure that represents the genome of each individual.

Internal nodes are all from the functional symbols set while the leaves are all taken from

the terminal symbols.

The parse tree that results is easy to understand and is flexible enough to solve regression

problems such as those addressed in this work, however it is not a turing-complete

approach, indeed it is not possible to have loops and recursions or explicitly address

memory areas, see [26] .

To tackle this problem have been produced a number of languages that, considering ap-

propriate functions and structures other than trees, are able to evolve complete programs

with Turing-complete expressive power, such as the Push language and its evolutions

[27]. Although in this thesis only the parse trees have been considered they are suitable

for regression problems that are the centre of this work.

y = 2 ∗ x2 + x (2.3)

In Figure2.2 the expression 2.3 is represented by two possible parse trees. The genetic

operators are able to operate on the structure of the trees to produce new specimens

from one or more parents. The choice of a particular type of structure also determines

the possibility of reaching different “near” structures configurations. Structures and

genetic operators determine the possible future evolutions but, due to their expressive

power, structures are not unambiguously related to semantic, indeed two syntactically

different individuals may have the same semantic. In other words, the phenotype can be

expressed through different genotypes . The selection mechanisms described previously

act taking into consideration the degree of adaptation of an individual, and therefore

its phenotype, while the genetic operators operate to ’blind’ on the structure of the

List of Figures 13

genome reproducing the same dualism that is observed in nature: this difference is often

overlooked and is the origin of semantic techniques described in this work.

2.1.4 The fitness function.

The selection of individuals is made on the basis of their level of adaptation to the

environment and this is the fundamental concept on which a GP system is built. The

level of adaptation is evaluated by means of a fitness function. The fitness function is

not necessarily related to the specific problem that we are trying to solve and in any

case is the metric by which we measure the goodness of candidate solutions [28] . The

fitness function should reflect proportionally the magnitude of the improvement that has

taken place between an individual and the other in such a way that small improvements

correspond to small changes in fitness and that great improvements correspond to large

variations, in this case the fitness function is continuous. The paradigm of GP says

that fittest individuals will be more likely to reproduce, for this reason having a fitness

function designed meticulously is very important. Depending on the goals in the fitness

function can also be incorporated assessments of the quality of the solution in a broader

sense. For example, you can reward the compact size of the solutions (parsimony pressure

) or reward the novelty of a solution compared to the rest of the population (fitness

sharing) etc.

2.1.4.1 Fitness function example in regression

This work deals mainly with regression problems, thus we show an example of fitness

function suitable for this purpose.

In the supervised learning framework there are a number of example form which the

system is learning, also called fitness cases. Writing this examples in the form of ma-

trix 2.4 we have a generic line of inputs xm1, xm2, · · · , xmn that produce as output the

value ym


x11 x12 · · · x1n y1

x21 x22 · · · x2n y2
...

...
. . .

...
...

xm1 xm2 · · · xmn ym

 (2.4)

In a regression task the problem is to find the function g such that ∀i = 1, 2, · · · ,m we

have that g(xi1, xi2, · · · , xin) = yi

List of Figures 14

Each program in the population is therefore a function g giving as input the line X and

comparing the output result with the corresponding y.

In this case, a fitness function, f , may be the standard deviation in the equation 2.5.

f =

√√√√ m∑
i=1

(y(xi1, xi2, .., xin,)− yi)2 (2.5)

There is not a unique way to properly define a fitness function so for example, also the

equation 2.6 is suitable.

f =
m∑
i=1

|(y(xi1, xi2, .., xin,)− yi)2| (2.6)

Both functions are continue in the sense described above and represent the quality of

the solution found in a coherent manner.

2.1.5 Initialization

As can be seen from Figure 2.1 the first step in a GP system is to initialize the population.

There are various techniques normally used for this purpose but almost all are based on

the creation of random individuals.

The construction of the trees is done by randomly pulling sets F and T (equations 2.1 and

2.2), the extracted functional and terminals symbols are then used to build new trees.

Before proceeding we define two parameters that are widely used to characterize the

shape of the trees. We define as depth or level of a node the number of nodes that must

be crossed to reach him from the root of the tree. One of the most important parameters

is precisely the maximum allowable depth in the tree. Another simple parameter is the

maximum number of nodes that can be added to the tree. By modulating these variables

it is possible to determine the shape of trees that are created, with forms ranging from

the bush to the more elongated and threadlike.

If we consider individuals in the population as representing points in the solution space

the hope is that different shapes and size of the trees are able to sample large areas, or

at least heterogeneous areas, of this space to enhance te probability of achieving a good

solution. It is assumed, therefore, that a greater variety of the genome is a desirable

feature of the general population and even more for the initial population.

List of Figures 15

For this reason, when the population is initialized, individuals who are syntactically

identical are generally removed to leave room for different genetic material [29] : in fact,

with small trees or a limited number of symbols, the probability that two random trees

are in fact the same is not remote.

2.1.5.1 Initialization methods: grow and full

The initialization technique called grow starts assigning a functional symbol extracted

at random to the root of the tree and proceeds, extracting indifferently terminal symbols

and functional ones, until the predetermined maximum depth is reached.

When is extracted a terminal symbol the growth of the branch stops and the process

continue with another branch until exhaustion. Once the maximum depth is reached a

terminal symbol is extracted in order to be sure to not cross that limit. The shape of

these trees is irregular indeed the branches often have very different depth. The method

full uses only functional symbols until the maximum level is reached and then terminate

the branch with a terminal symbol. The trees constructed in this way have all branches

of the same depth and are therefore more regular and with greater number of nodes.

2.1.5.2 Ramped Half-and-Half Method

Among the various methods of initialization one of the most used is Ramped Half-and-

Half. Once the maximum depth has been established, the population is divided equally

among the lengths between 1 and MAXD2.

2.1.6 Selection

After passing the evaluation through fitness function each program has its own assess-

ment. It is in the selection process that the most deserving individuals are more likely

to reproduce.

For this reason there are several algorithms that assign to every individual of the pop-

ulation the likelihood of becoming a parent and thus have the ability to transmit their

genes to the next generation.

The used selection technique is important because it determines the speed with which

the population converges towards a solution. If the selection pressure is too high you

may experience the phenomenon of premature convergence. Excessive pressure makes

2MAXD is only a conventional name used in this work not a universal denomination.

List of Figures 16

only the genome relatively more suitable to have the chance to reproduce, in a few

generations the other genomes are lost with the result that the opportunity to improve

performance through a sexual reproduction are very scarce and the progress of opti-

mization is stopped prematurely. On the other hand a selection pressure too bland does

not allow the stabilization of the best solutions and the evolution proceeds too slowly

or stops altogether [28]. Among the main selection algorithms are Fitness Proportional

Selection, Ranking Selection, Tournament Selection. Tournament Selection is described

in some detail in the next section because served as the standard starting point for the

experiments presented in this work.

2.1.6.1 Tournament selection

In tournament selection competition for reproduction is not extended to the entire pop-

ulation, but is contained within a subset. Among the participants in the tournament

the winners are those with the best fitness. These individuals are allowed to reproduce

by replacing the losers. The number of individuals participating in each tournament

is called size and the tournaments are repeated with participants drawn at random

from the population 3 until a sufficient number of parents to generate the programmed

progeny is reached. The minimum size of the tournament is obviously two adjusting this

parameter it is possible to increase or decrease the selection pressure: indeed the larger

the size the less is the probability that scarce individuals can become parents.

2.1.7 Genetic operators

By means of genetic operators individuals in the population are transformed into others

thus exploring the solution space. There are many genetic operators variants but they

can be roughly classified into three main families: reproduction, crossover, mutation.

The reproduction is the trivial case in which the individuals selected are copied without

changes in the next generation. The other two types are described in the following

sections.

2.1.7.1 Crossover

The crossover genetic operators type construct a new individual by exchanging genetic

material of the parents. Generally, two sub-trees are chosen, one for each parent, and

then they are exchanged, see figure 2.3. The choice of the exchanged sub-trees is a

peculiar characteristic of each different crossover algorithm. In the more traditional

3The individuals from the population are then placed back with each new draw.

List of Figures 17

+

X

+X

X X

*

+

+X

X X

-

X X

*

+

X

+X

X X

*

+

+X

X

X

-

X X

*

Crossover Points

parent (1) parent (2)

offspring (1) offspring (2)

Figure 2.3: The crossover genetic operator exchange sub-trees between the parents
at the crossover points.

procedure sub-trees are simply chosen at random. In this last case, since the number of

leaves is larger than the number of internal nodes of the tree, you may choose to alter

the random process in order to facilitate the extraction of an internal nodes thus having

more chance of radical changes in the trees structures.

2.1.7.2 Mutation

The mutation operator introduces completely new genetic material into the population,

this material is not coming from other individuals. Even in this case there are several

algorithms like for example sub-tree mutation. This operator will replace a node of the

tree chosen at random with a sub-tree generated using one of the methods discussed in

the section 2.1.5 about initialization. Usually the maximum length of the new sub-tree

is supplied as a parameter. Other mutation operators examples are swap mutation that

swaps two randomly chosen sub-trees and point mutation that replaces a single node of

the tree with a symbol of the same arity.

List of Figures 18

2.2 Introducing Genetic Programming Open Problems

In this section we give an overview of the issues that arise in genetic programming

still representing a challenge both from a theoretical and practical point if view. The

phenomenons illustrated here are typical of GP, e.g. the bloat issue, but also more

general, like the diversity problem affecting all the Evolutionary Algorithms, or the

overfitting, this last one being a problem common to machine learning techniques in

general.

The themes introduced in this section are strictly related to the experiments’ results

presented in this work indeed we are tackling also these important issues. Starting from

a theoretical framework we arrive, as expected, to results that influence positively both

bloat and overfitting problems giving some hints on the importance of diversity in GP

populations. In this section we just introduce definitions within a general overview while

we deepen the analysis of our contribution in chapter 3.

2.2.1 Bloat

The bloat phenomenon is challenging and also far from a complete comprehension: it

is still an open problem. We introduce this issue with specific reference to the trees

solutions’ structure introduced in section 2.1.3 but the reader should consider that bloat

happens also with other structures. At some point in the evolution of the GP system the

number of nodes of the trees may begin to grow in a manner no more proportional to the

improvement of fitness: it is at this stage that bloat appears. The trees normally start

from a size determined a priori by the user which may be too small to give a satisfactory

solution, so some growth of the trees is natural and desirable, as we pointed out in

section 2.1.1, indeed it is just to allow the growth of the complexity of the solutions that

GP paradigm has been developed.

Excessive growth of the trees, however, poses several problems. From a computational

point of view the task quickly becomes intractable, in fact the amount of computing

resources consumed for the evaluation of each individual is likely to become excessive.

But there is also another problem, the intelligibility of the solutions by a human user:

indeed one of the advantages of GP over other machine learning techniques 4 is to

provide solutions that are not black boxes but fully analysable models where relationships

between the variables are explained clearly by evolved algorithms or equations.

By increasing the size of the program, however, the solutions’ semantics becomes pro-

portionally more difficult to understand until it is lost completely for the human user

4See, for example, the models provided by the neural networks that are difficult to interpret.

List of Figures 19

when it gets too large. In this manner one of the great advantages that the GP is able

to offer is lacking.

Although there are several methods to reduce or simplify the dimension of the solutions,

especially for logic or symbolic regression domains, this approach is not always effective

or it is not possible at all in other domains. We observe bloat when the growth of the

solution complexity is non-functional to performance improvement [17] .

We now briefly review some of the theories found in literature addressing this problem

introducing the key concepts.

In a first hypothesis the bloat can be attributed to the emergence and proliferation of

code in the trees that remains neutral, i.e. it does not contribute in any way to determine

the fitness. Knots or whole branches that, if removed from the tree, lead to no change

in the performance of the algorithm. Such code segments in the tree are referred to

as introns by analogy with the biological system based on DNA where the non-coding

sequences of nucleic acids are denominated precisely introns. These sequences may be

inactive on test cases that are being used but may become active on different inputs

resulting in the degradation of the performance of generalization of the model found.[30]

.

In [31] we find a schematic characterization of the Code of introns divided into categories

that are more or less neutral in their behaviour with respect to the input or the crossover

operator (as defined in section 2.1.7):

• Segments of code where the intervention of the crossover does not change the

program behaviour for any input belonging to the problem domain

• Segments of code where the intervention of the crossover does not change the

program behaviour for any of the fitness cases in use.

• segments of code that can not contribute to fitness, and where each of the nodes

can be replaced with a NOP 5 without affecting the output given an input in the

problem domain .

• code segments that do not contribute to the fitness and where each of the nodes

can be replaced with a NOP without affecting the output given as the input the

actual fitness cases.

Among the first explanations attempt there is the theory of protection against destructive

crossover [32]. Since the genetic operators act blindly with respect to the fitness there

5No-Operation

List of Figures 20

is an high probability that a block of working code is destroyed after a crossover affected

that block.[31] Introns would thus be an emerging phenomenon to protect code fragments

of high value from destruction. If a crossover takes place in one of the code fragments

belonging to an intron semantics of the surviving structures is preserved without damage.

In this sense, the introns increases the probability that the crossover is able to capture

sub-expressions without damaging the useful parts.

The removal bias theory [33] observe that the inactive code is mainly located close to

the leaves of the tree. In this way if a crossover occurs in that area the average length

of code segments removed will be lower than the replacements generating longer trees

. Moreover, given that the crossover occurred in an area of inactive code is more likely

that the fitness of the parent is transmitted to the offspring. These facts therefore benefit

the trees longer that have been created in this way, indeed those who have suffered a

crossover in the areas closest to the root have generally suffered greater damage and

although they are on average shorter will also have a worse fitness. This ultimately

would explain the constant proliferation of trees increasingly longer.

Another theory of interest is the one that ascribe to the nature of the solutions search

space the bloat [34]. It starts from the prediction that above a certain individuals size

fitness distribution does not correlate any more with dimensions. This means that there

are many more versions of ’long’ programs that have a certain fitness, and therefore the

probability of sampling a long program is higher than sampling a shorter one. Given this

premise, with time, the length of the programs sampled progressively increases simply

because they are more numerous.

The latest theory we consider here is the crossover bias theory [35]. It is shown in [36]

that the limit distribution of the lengths of the programs affected only by crossover 6

approaches that of Lagrange distribution of the second order. In this distribution, the

small programs are much more frequent than large ones. If we apply the selection based

on fitness at this point the small programs will be systematically discarded because

too small trees have a reduced fitness, and larger trees will be systematically favoured.

Iterating this process the average size of the selected programs increases generating the

phenomenon of bloat.

2.2.2 Overfitting

A general definition of overfitting valid for the machine learning techniques in general is

the following, from [37]:

6standard sub-tree crossover with uniform selection of the points of application

List of Figures 21

“Given a space of hypotheses H a hypothesis h inH is overfitting to trainign data if

there is any other alternative hypothesis h′ inH, such that h has an error smaller than

h′ on test cases but that h′ has in turn an error smaller than h on the whole distribution

of cases” [37].

The overfitting phenomenon has often been associated with the bloat explained in section

2.2.1. The size of the solutions grows and their complexity increases: in this way it is

possible that the program incorporates data from the training set rather than learning

a theory of general validity. In accordance with the principle of minimum length of the

assumptions, see e.g. [18] , there is general consensus that the assumptions that require

less information to be encoded are also the best ones. It is believed that the simplest

solutions are able to generalize better and resist more effectively to noise. However,

recently it has been shown that the overfitting phenomenon can occur independently

from the bloat. With the new technique of operator equalization and its variants in [38]

is shown that, although the bloat is effectively controlled in the proposed experiments,

overfitting still occurs.

2.2.3 Diversity

Diversity of genotype and phenotype is a key concept of evolutionary algorithms and

the GP is not an exception. The evolutionary process is often characterized by a loss of

diversity with the progress of generations. It happens often that the solution is the result

of the mixing of the genes of an elite, even very restricted, coming from progenitors at

the generation zero [39].

This genetic poverty may prevent the finding of solutions really different from the few

already present in the population, and thus to escape from a fitness landscape local

optimum. The loss of genetic diversity in a population trapped in a local optimum is

called the premature convergence. The phenomenon of premature convergence charac-

terizes also other evolutionary algorithms, but it was thought that the variable-length

structure of the GP solutions was sufficient to ensure adequate variability: the prob-

lem still persists. The variable-length structure, like that of a tree, also introduces an

additional level of complexity that resides in the broken relationship between syntax

and semantics. In fact, the link between syntactic diversity and semantic differences in

GP is typically more complex and can be summed up in the fact that structures also

significantly different in reality may have the same semantics [11] .

Two different approaches have been developed to tackle the diversity problem: the first

is the older one and look for syntactic diversity neglecting the semantic of the programs

List of Figures 22

itself that, instead, is the core of the second approach. In [40] a review of the most used

methods is found.

Recently, moving forward from the literature presented here an entire new class of se-

mantic approaches have been developed, these works are strictly related to this thesis

and will be presented in chapter 3.

2.2.3.1 Genotype Diversity

Realizing the importance that the diversity of the population could play in the evolu-

tionary process Koza ([29]) himself defined the concept of variety as the percentage of

individuals who do not have an exact duplicate somewhere else in the population. To

measure structural similarity have been developed alternative strategies.

Many types of edit-distance have been defined: the use of this type of distance is inherited

from GA where a typical example of this measure is the Hamming distance. In GP

other types of distances have been established, measuring how many primitives needed

for transforming a tree to another. Given a table with the cost of the primitive the

procedure continues by calculating the cost of this transformation, and then the relative

distance between two trees. These measures are necessarily more complex than those

used on fixed length GA linear structures.

Among the various definitions there is the Levenshtein distance, and others that were

defined by aligning the common parts of trees and by scoring the differences: in all cases

a similarity value is computed on the basis of the differences between individual nodes

[41] [42],[43].

There are also measures based on sub-trees, subtree-distance, where the difference be-

tween two individuals is given by the number of common sub-trees among them [44].

Finally in the aforementioned [39] the genome that is actively contributing to the pop-

ulation is tracked down to the original individuals allowing the calculation of the pop-

ulation diversity. The more individuals contributed to that genome the more diversity

score increases.

2.2.3.2 Phenotype diversity: investigating semantic.

More recently new approaches in literature give more importance to the difference in

the behaviour of candidate solutions rather than mere structural one. As has been

mentioned before in section 2.1.3, the introduction of variable-length structures, such as

List of Figures 23

trees, has led to the possibility that structurally different individuals actually represent

the same behaviour, see for a simple example Figure 2.2.

A new perspective on diversity is therefore to measure the differences in the programs

behaviour to maximize the number of strategies that the GP is browsing before converg-

ing towards the optimal one. Having in the population, for the longest period possible,

a large number of different strategies obviously maximizes the probability to explore the

best strategy and not get stuck in a local maximum. Applying this practice means to

characterize and compare the phenotypes present in the population through the investi-

gation and representation of semantics of programs represented by trees.

In [11], is shown that a population structurally different, which does not admit duplicates

from the structural point of view, in reality does not guarantee the variety of observable

behaviours and strategies. Special techniques have been developed specifically to address

this problem. The work presented in this thesis starts from this need.

2.2.4 Semantic in Genetic Programming

A recent trend in GP is to characterize individuals not only using the structure of the

tree that encodes them, but also looking at shown behaviour. What is desirable, in the

end, is the variety of exhibited behaviours . As we saw in section 2.2.3, ensuring the

structural diversity does not ensure differences in behaviour. Various structures may in

fact encode for the same behaviour, this is a rather common eventuality [4].

We may notice also that attempts to expand the range of behaviours by increasing the

trees size turns out to be very inefficient, see [45], this once again confirms the need for

specific strategies that don’t relay on genotype evaluation.

Although the GP allows multiple mappings between genotype and phenotype, the selec-

tion, normally operated in the GP, will reward a specific pair phenotype-genotype sig-

nificantly depleting the available genetic potential. A single genotype-phenotype couple

will eventually prevail over all others in a way too fast, see also [39]. Usually perfor-

mance with better fitness are associated to experiments preserving a high diversity in

phenotypes and fitness entropy (see equation 2.7)[5].

The evaluation of the phenotype must necessarily be based on the functionality of the

individuals rather than on their structure, a static evaluation it’s not enough to capture

the behaviours. For this reason fitness homogeneity is used to determine phenotype

variability the in the population. A more uniform distribution of the fitness in a certain

range would also indicate a uniform distribution of phenotypes. [6]

List of Figures 24

Considering this principle the population diversity is also measured by calculating the

fitness entropy. In the context of GP this entropy represents the degree of disorder of

the population and has been defined in [7] as:

E(P) = −
∑
k

pk ∗ log pk (2.7)

In this case the whole population has been divided among k classes based on fitness

value and pk is the proportion of individuals belonging to class k .

Such measures, however, is not particularly precise because individuals with similar

fitness can actually reach that same result by adopting different strategies, and on the

contrary, have two fitness rather distant even if their strategy is quite similar: for this

reason using directly the fitness to measure the distance between two individuals is not

very accurate.

More recent attempts try to obtain a more precise semantic measure. Trying to establish

the semantics of an individual without access to its fitness function, there was a return to

a type of structural analysis: an attempt was made to find a normal form the irreducible

structure of individuals so that the genotype could be linked with his phenotype without

ambiguities. Finding the normal forms for programs strictly depends on the considered

application domain, thus at a certain extent, universal validity of this method it is

compromised. Attempts of this kind are for example those in [13],[10]. In this case,

the domain of Boolean functions is considered and the canonical representation used

is called ROBDD (reduced ordered binary decision diagram). Once an individual has

been reduced to its equivalent diagram is easy to check if there is a correspondence

to other individuals in the population and so dealing with two syntactically different

representation of the same semantics. Again the aim is to preserve the diversity within

the population during the evolution and in this case it is used a modified version of

crossover (SDC) that discard the generated offspring if it is semantically equivalent to

the parents. This approach prevents returning to explore already sampled areas of the

solutions space , or more precisely prevents to propose a solution already exploited.

Another study in the boolean domain exploits the semantics to investigate the nature

of the sub-trees in the population [8]. Even in this case fitness is not accessed to deter-

mine the semantics but rather the procedure builds the truth table corresponding to the

Boolean function in the sub-tree. This study determined the existence of a large pro-

portion of fixed sub-trees that, if addressed in the crossover, can not generate the target

function because their output is completely or in part independent of the input. This

lead to conclude that a large proportion of the crossover is unproductive from the point

List of Figures 25

of view of semantic solution space exploration , in agreement with the results already

shown in [13].

An interesting development in the measurement of semantics is among the most recent,

see eg [9], and associate the semantics of the individuals with the resulting vector from

the evaluations of the fitness cases in the training set.

The study of semantics has been applied to various stages of GP aiming to promote

diversity in order to increase the probability of finding the optimal solution. Despite

the common purpose, the techniques used are very different from each other also in

relationship to the application domains.

Semantic analysis has been applied to different point of the evolutionary process, below

is given a brief review ordered by application phases: initialization, selection and during

genetic operators application. We illustrate the general research directions and some

detail that is significant to this thesis.

2.2.4.1 Semantic analysis during initialization

As already mentioned the purpose of semantics in the initialization is to provide a

starting population with the widest possible behaviour variability. For example in [10]

are considered the initializations in two domains, Boolean one and Artificial Ant. The

employed methods include the use of ROBDD for the Boolean domain, while for the

Artificial Ant was considered the moves sequence oriented on the grid as semantic indi-

cator. During initialization the new individuals are constructed using growth algorithm

starting from a nucleus trying to avoid behaviour already present in the population,

7: it is not allowed to add behaviour identical to the population. It has been shown

that the distribution of the programs in the search space has a noticeable impact on the

performance of the algorithm, although the influence is positive or negative depending

on the test problem considered. A similar attempt to improve algorithm performances

improving the initialization phase has been implemented in [11], in this case it was

considered the domain of regression as well as navigation (artificial ant and maze navi-

gation). The output of programs was used like semantic indicator, thus having a more

general approach than that used ROBDD. Also in this case the behaviour duplicates

were not allowed. The results are encouraging and show an increase in the fitness of the

evolutionary process for the initialized semantically populations.

7a variant in the same work uses instead the FULL method to generate the individuals of a certain
complexity

List of Figures 26

2.2.4.2 Semantic in selection

During the evolution phase, at selection time, a similar idea is to filter out or not admit

to the next stage breeding that show a similar semantics to individuals already present

in population, see for example [12] and [13] .

The idea of selecting individuals for mating relaying on semantics is less present in

the literature. One example is [14] that shows how to increase the genetic variability

by preventing the coupling of individuals with the same fitness, thus having beneficial

results, other example are more related to Geometric Semantic Genetic Programming

and are introduced in chapter 3, where we discuss methods that directly manipulate

semantics during crossover phases.

2.2.4.3 Semantic genetic operators.

Attempts to use semantic to improve the performance of the genetic operators are the

more numerous. Usually these methods establish the semantic properties of the sub-

trees from two individuals trying to figure out which is the best location to perform

crossover.

In particular,the semantic values of the sub-trees designated for crossover are calculated

using techniques similar to those described previously, based on these values the crossover

proceed or a new attempt is made.

Among the proposal the ones exchanging sub-trees with similar semantics to maintain a

certain operator locality having a more gradual dynamic evolution, see e.g. [9]. Opposite

to this there is the proposal to proceed only in case the sub-trees are semantically

different to promote a more extensive semantic search, the results of these opposite

tendencies are compared in [15]. There is also the intermediate proposal that selects sub-

trees semantically different but nonetheless within a certain threshold, which according

to the comparisons presented in [16], turns out to be the most promising.

There is also a semantic version of the mutation operator. Similar considerations that

hold for initialization about difficulty of creating a new behaviour are valid also in

mutation. In this case the semantics is used to ensure that the new mutation produce

changes in the program leading to a truly new behaviour in the population, in this

regard, see [46] .

Interesting genetic operators able to directly manipulate the semantic of the solutions

are the methods proposed by the Geometric Semantic Genetic Programming that we

feel are more connected to this thesis and are presented with some details in chapter 3.

Chapter 3

Research Contribution

3.1 More on open problems and semantic Genetic Pro-

gramming

In chapter 2.2 we introduced the reader to evolutionary techniques and specifically to

Genetic Programming (GP). We already explored open issues related to GP in section 2.2

and now we introduce literature that is more connected to our point of view, addressing

the themes that we are tackling within this thesis. Indeed, in this chapter, with the

help of related literature, we focus on specific themes clarifying the problems themselves

and then we further discuss similarities and differences among our proposals and the

literature.

In particular there is a category of methodologies that is able to directly manipulate the

semantic of a solution during sexual reproduction pushing towards the desired target.

These techniques use special versions of crossover that are able to determine an average

semantic between two others. In the next section, 3.1.1, we are going to explain how

this has been accomplished and why is connected to our contribution in this thesis.

Another important related works is our previous investigation on semantic techniques

(ESAGP algorithm) that introduces some of the concepts that we are going to generalize

and extensively explore here, see section 3.1.2.

Finally, in section 3.2, we introduce our proposal as a general framework discussing

the relationships with the literature. A more formal description of our proposal with

detailed algorithms is in chapter 4.

27

List of Figures 28

3.1.1 Geometric Semantic Genetic Programming

We consider the semantic space already introduced in [8] and [9] where the semantic of

a program is the vector whose elements are obtained evaluating every fitness case in the

training set. If we call such set X = {−→x1,−→x2, ...,−→xn}, in a symbolic regression context, a

GP individual is a function or program P that, for each vector −→xi in X returns the scalar

value P (−→xi). We define semantics of P the vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This

vector can be represented as a point in an n-dimensional metric space, that is generally

called semantic space where the well known properties characterizing a metric space

hold thus having defined a distance d with the usual properties:

d(sPi , sPj) ≥ 0

d(sPi , sPj) = 0⇔ sPi = sPj

d(sPi , sPj) = d(sPj , sPi)

d(sPi , sPj) + d(sPj , sPk
) ≥ d(sPi , sPk

)

(3.1)

Differently from the syntactic or genotypic space, where individuals are represented by

programs, the semantic space give a numerical representation that is strictly related

to the program behaviours during the test. In this scenario the syntax of the selected

representations doesn’t matter any more and the genetic operators designed in this space

are almost independent from such phenotipic details. The purest form of this operators

has been introduced by Moraglio et al. in [19] and named Geometric Semantic Genetic

Programming (GSGP).

While each program has only one semantics, as already discussed in section 2.2.3.2,the

mapping between the semantic space and the genotypic space is in general not a bijection,

because several programs can have the same semantics. The target vector
−→
t , defined

as
−→
t = [t1, t2, ..., tn] and containing the respective expected output, is a point in the

semantic space. In general, the objective of GP is to find at least one program in the

genotypic space that maps into
−→
t in the semantic space.

The really interesting point in GSGP methods is that the genetic operators are not

blindly directing evolution of the individuals as the traditional operators do, instead

they are reaching a known in advance point in the semantic space. Given the parents,

the crossover operator is targeting an individual that is on the segment between its

parents under the metric d while the mutation guarantee that its results stay in the ball

of radius r again considering the metric d.

Segments and balls in the semantic space S are defined like in the following points:

List of Figures 29

• the ball B centred in point x ∈ S is

B(x; r) = {y ∈ S|d(x, y) ≤ r}

• a point m on the segment between x, y ∈ S is

[x, y] = {m ∈ S|d(x,m) + d(m, y) = d(x, y)}

We repeat here the GSGP mutation and crossover operators definitions:

Definition 1 (Geometric Semantic Crossover). Considered two parents Programs P1, P2 :

Rn → R the resulting program is Px = (P1 · Pr) + ((1− Pr) · P2) where Pr : Rn → [0, 1]

is a random program.

Definition 2 (Geometric Semantic Mutation). Considered a single Program P : Rn → R
the mutation operator produce a new mutated Program Pm = P +ms · (Pr1−Pr2) where

Pr1, Pr2 : Rn → R are a random programs and ms ∈ R is a mutation step.

Being in GSGP the distance of a program P from the target
−→
t also its fitness we have a

perfect fitness distance correlation so inducing a unimodal fitness landscape very easy to

search or better to descend until the target. Moreover the offspring from the crossover is

constrained in a predefined space, the segments between the parents, so, from definition

1, it’s easy to argue that the offspring’s semantic is never worse then the worst of the

parents. Slightly different considerations holds for the mutation operator since in the

original version (Moraglio et al. [19]) showed in definition 2 the radius of the semantic

ball, where the mutation is free to arrive, it’s not constrained by a maximum range.

Vanneschi et al. in [47] and Gonçalves et al. in [48] stress the analysis on this point

arriving at the conclusions, supported by the experimental evidence, that limiting the

mutation to a maximum radius help generalization: indeed the geometrical properties

of the semantic operators holds independently of the semantic space, during training

or test session, so having a maximum worsening rate for the mutation and a guarantee

of not worsening for the crossover give to GSGP a good generalization property when

presenting to the model unseen test data. The good generalization ability of GSGP is

further analyzed in [48] and a part of this property is attributed to the character of GSGP

of reproducing to some extent the mechanism of ensemble learning. From definition 1 is

evident that GSGP crossover is a linear combination of models approximating the target

so having a common strategies with ensemble learning techniques. Ensemble learning

has the proved quality of a good generalization thus, probably, this characteristic also

contribute to the interesting performances of GSGP.

As one can easily observe form definitions 1 and 2 the offspring resulting from GSGP

genetic operators is always bigger than the parents and, in particular, we notice that

crossover output a program that incorporates the whole structure of both parents thus

List of Figures 30

resulting in an exponential growth of the program sizes during the evolution. To over-

come this problem a compressed representations of the trees has been developed. As an

example in [49], [50] and [51] we found efficient implementations of the GSGP operators

that permits the fast evolutions of a solution as well as the use of the final model to

calculate output of the model on previously unknown input, despite its structure has an

exponential size. Because of this GSGP still remain a sort of black box approach. To

get over this last problem numerous hybrid approaches have been developed that use

the GSGP approach but just to a limited portion of the program structures. In these

approaches the genetic operators substitutes sub-trees in the parents with others differ-

ent trees having the desired semantics determined as one intermediate between parents

sub-trees or as an optimal semantic with respect to the target, i.e. the sub-tree with the

semantic values that make the whole tree to compute the target in all the training cases.

Examples of literature that follows this research directions, introducing semantic-aware

search operators with geometry built-in, are[52], [53], [54], [55], [20] [56] where often

the optimal sub-tree semantics is calculated using a back-propagation algorithm.In the

GSGP methods described here or in the semantics methods we analyzed in section 2.2.4

we find issues related to the effectiveness at exploring new semantics and solutions. In

2.2.4 we already described methods that try to prevent offspring too semantically similar

to their parents and also in GSGP framework, in general, still persist this problem: the

neutrality of the offspring. In other words, also the innovative semantic methods pre-

sented here have a probability of producing new individuals with the same semantics of

the parents [57] and, while it is believed that a certain amount of neutral code, see sec-

tion 2.2.1, in GP is necessary to the evolution, see for example [58], the GSGP techniques

try to reach a good balance avoiding redundant solutions and maximizing exploration of

the solution space. A good example of how this problem has been tackled is [54] where

the geometric genetic operators are also “semantically-effective” meaning that there is

a guarantee that the offspring is different from both the parents. Preventing duplicate

semantics within parents and offspring looks in general beneficial from the point of view

of the performance in the final model usually resulting in model with reduced errors at

least in the training phase. Another important consideration, relevant to the geometric

approach, is that the initial semantic distributions of the populations are very important

because the geometric crossover produces offspring that is in the convex hull of the actual

population. With the generations the convex hull will collapse eventually to a point, but

if the target is not in the convex hull since the beginning the algorithm can not converge

to the target. The geometric mutation can move independently from the actual convex

hull mitigating this problem, but it is clear that many geometric implementation could

suffer form this problem and indeed Gonçalves et al. [48] have experimented, with good

results, GP algorithms where only the mutation is allowed and an Hill Climber with

bounded and unbounded mutation operators. Geometric approaches have the capacity

List of Figures 31

of exploiting effectively the semantics already discovered but they could suffer from the

pointy of view of exploration. Also our previous work [2] had one of the focus points on

the semantic diversity. It was introducing for the first time an interesting methods based

on semantic angles to measure diversity, this works is extensively discussed in section

3.1.2. The concept of semantic angle as diversity measure has been subsequently used in

[59] where we find a comparison with other techniques to preserve diversity. Angular di-

versity results to be always beneficial in conjunction with both traditional and geometric

genetic operators. The performance are always enhanced but the same results doesn’t

hold if the diversity is measured with a usual metrics respecting properties 3.1. Indeed

traditional metrics maintain diversity at the cost of reducing optimization in the final

stages of the evolution. Consider that while the GP cycle push the population towards

the targets, the distance among the solutions is reduced till the points that they are too

near each other, and many useful optimization are rejected. This situation is avoided

using angular diversity because even if the solution are very near each other from the

point of view, for example, of the euclidean distance the angle among solutions doesn’t

vary in the reference system centered on the target, like explained in [2] and after in

[59].

3.1.2 ESAGP

The idea of directly manipulating individuals to obtain a specific semantic result is also

present in our previous work [2], where two optimally aligned individuals in the error

space are combined into a new one that approximates the target, using a method called

Error Space Alignment Genetic Programming (ESAGP). We give the details to the

interested reader in appendix A that is a useful complements also for the comprehension

of this section.

ESAGP can be seen as one of the attempt to reduce the problem of the exponential bloat

that we observe using pure geometric operators. We already seen such attempts in the

previous section (3.1.1) indeed in [52], [53], [54], [55], and [56] we observe techniques that

use the geometry in such a way to avoid the bloat phenomenon limiting the application

of the crossover to subtrees or just approximate a geometric output.

ESAGP syetm it is built around the concept of error space, that can be seen as a

semantic space centered or translated in to the point representing the semantic of the

target, that, this way, become the center of this new reference system.The error vector of

a GP individual P is the vector −→eP = −→sP −
−→
t . But ESAGP it’s geometric in a different

way compared with GSGP like techniques, the geometrical step it’s applied only once at

the end of the evolutionary process to produce the target approximation while during

List of Figures 32

the evolution the system try to find individuals spanning a semantic subspace that

include the origin of the system (the target). The generalized version of ESAGP called

µ−ESAGP need µ + 1 semantics or individuals. The first µ should represent linearly

independent vectors while the last one is already in the sub-space spanned by the first

µ vectors.

To be clear µ-ESAGP try to linearly combine semantics of few individuals (one or two

in [2]) calculating intermediate points on the segments connecting these semantics such

that the last linear combination in this chain give as result the desired target. In the

simple case we consider, as an example, the semantic error space of just one dimension,

this means that we want to find two individuals in the population that have semantics

aligned with the target or , equivalently, two semantics such that their error vectors stay

in the same subspace. Thus ESAGP can be formulated as a liner algebra system that

shows the alignment conditions of the semantic vectors and theirs intermediate points,

see equation 3.2.

MA ×MX = MB (3.2)

The explicit matricial form of equation 3.2 is shown in 3.3 .



(1− k1) 0 0 · · · 0

−1 (1− k2) 0 · · · 0

0 −1 (1− k3) · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1 (1− kn)


·



−→
Ip1
−→
Ip2
−→
Ip3

...
−−−−→
Target


=



(~p1 − ~p2) ∗ k1

−~p3 ∗ k2

−~p4 ∗ k3
...

− ~Pc ∗ kn


(3.3)

In equation 3.3 the MX entries
−→
Ip1 · · ·

−−−→
Ipn−1 are the intermediate semantic points cal-

culated to have a good alignment while the last entry of MX is the target itself, the last

point obtained with the chain of linear combinations. The MB elements ~p1 · · · ~pn are the

semantic points representing individuals in the populations and the final entry, ~Pc, is

the one whose error ePc is linearly dependent upon the previous epi ones. Thanks to this

closing point (~Pc), using the alignment matrix MA, we can calculate the explicit formula

of the target and solve with respect to the ki unknown coefficients. Matrix MA represent

the proportion, with respect to the segment connecting semantic points, where the next

intermediate point is going to be placed, so it could be considered an alignment matrix.

For the details of how calculate the ki coefficient in the case of one or two dimension the

List of Figures 33

reader can consult Appendix A, but the principle used there of course remain valid for

the more general case shown here.

Using the formulation of equation 3.3 we can express, differently from [2], a generic

algorithm to solve the regression problem in the semantic space.

Algorithm 1 Naive subspace saturation algorithm.

sub space vector base = ∅
repeat
p := generate new individual()
if −→ep is a linear combination of error vectors −→epi ∈ sub space vector base then
MB = sub space vector base

⋃
p

use MA ×MX = MB to approximate the target
return

else
sub space vector base = sub space vector base

⋃
p

end if
until TRUE

In algorithm 1 new individuals are generated continuously with the aim of constructing

a vector base spanning a subspace, in the error space, if the new individual’s error ~ep

is linearly independent from the all the previous errors vectors then we can add it to

the base spanning the subspace, MB, otherwise we can directly use equation 3.3 to

approximate the target and the search process is concluded. From this point of view

algorithm 1 looks similar to a novelty search process [60] using angular distance as

novelty criterion.

Despite the number of independent possible vectors in the base is at most equal to the

number of dimension of the semantic space (usually a tractable number), this way of

proceeding is not feasible in practice without specific precautions. Practical issues in

using algorithm 1 are the computational complexity and the numerical stability of the

procedures. Indeed to find the actual values of the ki it is necessary to solve symbolically

the last entry of MX , the target, but this expression of course grows exponentially in

its complexity. We want to keep as low as possible the complexity of the final linear

combination: we reach this goal combining at most a dozens of individuals. At the same

time all the complexity is migrating in the calculation of the intermediate points in MX ,

where the size of the expressions is almost doubling every time we solve a successive

entry in the MX column, in a process resembling the geometric crossovers. Moreover

establishing the independence of a vector from a subspace can become not trivial if the

subspace counts thousands of vectors. These drawbacks have been tackled effectively in

[2] where, using the same theoretical framework, a different algorithm, exploiting GP,

has been shown to be effective in solving some real life problem.

List of Figures 34

Having highlighted the critical points in algorithm 1 we now show why this new per-

spective on ESAGP framework is interesting for this thesis. GP theoreticians and prac-

titioners have been always interested in the so called building blocks as a mechanism for

GP to reuse useful knowledge and gradually evolve toward a good solution. Different

definitions of building blocks, often based on syntactic properties of the solutions, have

been considered in the literature. At the same time, genetic operators with different level

of awareness regarding the existence of these useful blocks, have been implemented or

analyzed. Different crossover operators have been developed with the aim of preserving

useful blocks and, at the same time, developing the ability of combining them in new

solutions. Starting from the early attempts [61] passing through several investigations,

for example [62],[63],[64], [65], [66] ,[67],[68], we arrive at actualization of the building

blocks concept in the semantic GP framework for example in [8] where you can find

interesting references also to other papers on this subject. Building blocks have been

always conceived mainly as constituent of a single individual in the population. In this

classical view useful building blocks are incorporated in the individuals improving their

performances, the focus stays on the single solution even if the population has often been

seen as source of such blocks. An interesting example, developing the building block sce-

nario in the context of GSGP, is [53] where the crossover operator try to identify and

preserve the building blocks. Indeed in that work they identify homologous regions of

the parents using a structural analysis and use GSGP techniques so that the offspring

can substitutes that functional block with another one converging to a convenient se-

mantics, in other words they are identifying building blocks in the sub-trees structure

and manipulate them to converge to a desired result. From the formulation analyzed

above, equation 3.3 and algorithm 1, ESAGP can be considered a new building block

framework where the focus has been shifted from the performance of a single individual

to the ones of an entire population. In our view ESAGP vector bases in algorthm 1

are the semantic equivalent of building blocks. Every vector (individual) in that base is

useful as a whole and let us move in the error space until a complete base bring us near

the target. While in the usual view building blocks are combined by genetic operators

within a single individual in ESAGP multiple individuals are combined via geometric

crossovers like operators in a final solution. Note that differently from pure geometric

approach ESAGP focus on the minimalism of the representation that, moving from a

vector base, doesn’t contain redundancy at all. In this new perspective semantic building

blocks maps one to one with individuals and now the entire population can contribute

to the solution in a way that looks similar to an ensemble learning but with a real “ge-

ometrical specialization” of each individual participating in the final solution. Another

relevant aspect of ESAGP is that it introduces a new concept of similarity between two

individuals. In section 3.1.1 we have already analyzed as the angles between individuals

in the error space can be considered a good diversity measure. In [2] angles are used

List of Figures 35

to promote diversity during mate, indeed parents are selected in a way that maximize

their orthogonality in the error space so that the offspring more likely explore a new

semantic: this process has been named orthogonal selection. But the angular distance

has also been used to discard offspring’s individuals that are in the same subspace of

any other individual already generated. Indeed considering equation 3.3 and algorithm

1, it is useless to have semantics that are in the same subspace or, that is the same,

have angle of zero degree, because they are equivalent from this point of view, one or the

other of the vectors in the same subspace will work equally well in approximating the

target. ESAGP introduce the idea that, in a semantic and geometric framework, there

exist a useful way of declaring two individuals equivalent and this way is to abandon the

usual concept of distance characterized by properties 3.1 and adopt instead the concept

pseudo-distance where instead it is possible that sPi 6= sPj even if d(sPi , sPj) = 0. In

section 3.2 we propose a novel framework trying to generalize these concepts behind

the particular case of angles in the semantic. At last we observe that ESAGP, while is

actively preventing the solution growth, is also fighting against issues in generalization.

ESAGP, also in the [2] implementation does not admit offspring that are in the same

subspace of any other individual ever generated. Arriving to this extreme we admit

only individuals that are really different one from each other, denying completely the

possibility of having neutral code in the solution structure. It looks similar to a tabu

search algorithm working at this semantic, geometric level. One of the effects of the

neutral code’s absence is that the solution structural complexity can grow only if is

contributing in a visible, controllable, manner to the fitness. This contribution can be

positive or negative, worsening the performance of the individual or improving them. If

the diversity has negative effects then natural selection pressure will soon discard that

genotype while, on the contrary, if the effect is positive it will be preserved. In this last

case the new structure of the offspring is likely to be more complex than the ones of the

parents but this complexity is justified by a better performance. We are adding com-

plexity only if is really useful while more traditional GP approaches allow the growth

of neutral code at some degree. Another important point is that the complexity that

we add, is more controllable, meaning that we allow only changes whose effect on the

phenotype is immediately evident and measurable: this way we minimize the probability

that explosion of complexity can derive from bubbles of neutral code growing without

control, hidden. Such bubbles can, when rearranged by genetic operators, fit better the

data point in the training set, but if we didn’t improve first on simpler hypothesis then

we don’t respect the Occam’s razor principle and we are introducing unnecessary com-

plexity and going fast toward overfitting. Imposing an immediate evaluation of the new

structures we introduce complexity with much more granularity minimizing extempo-

rary jumps . Even when “competent” techniques have been developed in the geometric

framework we observe that the semantic similarity is compared using a usual metric thus

List of Figures 36

excluding only one single solution at a time while ESAGP, using angle in the error space,

can exclude entire classes of individuals already represented in the past population: in

other words we are exploring the solution space per classes rather than per individuals.

Geometric operators can achieve good generalization exploiting their geometrical prop-

erties, as explained in section 3.1.1, e.g. imposing that the offspring is no worse than

the worst of the parents, so always justifying the increase in complexity, even the expo-

nential growth. At the other extreme ESAGP allow an unconstrained geometric jump

toward the target but increase the complexity of the solutions at the minimum allowed

rate, controlling this other way the overfitting. Mixing the two approaches is possible

only having in mind these two different solution to the bloat and overfitting problem,

e.g. using a GSGP approach to align individuals in the same subspace, without taking

care of their complexity, and then using ESAGP to jump toward the target without

constraints shouldn’t work and would results in generalization issues, indeed it does as

shown in [69]. On the contrary use semantic angles to preserve diversity and GSGP to

have constrained moves toward the target should produce a useful synergy, indeed it

does as showed in [59].

3.2 Proposal

In this section we give a very high level overview of the framework we introduce along

with four concrete examples to help the comprehension. The same four example are

then formalized and experimented in the next chapters. After this brief introduction

we discuss what are the relationships with the literature presented in this same chapter,

explaining the motivations of our choices. Indeed the work presented here is strongly

related to contributions discussed in the previous sections and it directly incorporates

semantic awareness in GP. Nevertheless, it does so from a different perspective. In this

thesis, we propose a novel idea to exploit semantic awareness in GP: semantic based

equivalence classes (SECGP). We remain in the context of semantic techniques so we

define a semantic space similar to the ones already introduced in sections 3.1.1 and 3.1.2.

Let X = {−→x1,−→x2, ...,−→xn} be the set of input data, or fitness cases, of a symbolic regression

problem, and
−→
t = [t1, t2, ..., tn] the vector of the respective expected output or target

values (in other words, for each i = 1, 2, ..., n, ti is the expected output corresponding

to input −→xi). A GP individual (or program) P can be seen as a function that, for each

input vector −→xi returns the scalar value P (−→xi). Following [20], we call semantics of P

to the vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can be represented as a point

in an n-dimensional space, that we call semantic space, that can be counterpoised to

the syntactic or genotypic space, where individuals are represented by programs. While

each program has one and only one semantics, the mapping between the semantic space

List of Figures 37

and the genotypic space is in general not a bijection, because several programs can have

the same semantics. The target vector
−→
t itself is a point in the semantic space and, in

general, the objective of GP is to find at least one program in the genotypic space that

maps into
−→
t in the semantic space.

Our concept of equivalence class is such that, once an individual in a class is found, it

must be possible, and easy, to generate all the other individuals in that class. In this

way, finding one solution in the same equivalence class as a globally optimal solution

allows us to solve the problem by reconstructing the global optimum analytically.

Even though the concept of semantic based equivalence classes is general, and many

different implementations can be imagined, here we instantiate this idea by defining two

particular GP systems, corresponding to two particular definitions of equivalence.

In the first system, two individuals P1 and P2 are in the same equivalence class if the two

semantic vectors of these two individuals are directly proportional, i.e. −→sP1 = k · −−→sP2 .

In other words, there must exist a scalar constant k such that, for each fitness case, the

output of P1 is equal to k multiplied by the output of P2. In such a situation, we are

defining a projective space (i.e. the space of all the straight lines – or hyperplanes, if we

think in n dimensions – intersecting the origin) in the semantic space. The objective

of GP becomes to find any solution whose semantics is directly proportional to the

target
−→
t (i.e. that stands in the same straight line as the one intersecting the target

and the origin). As such, it makes sense to define a new fitness function, corresponding to

the variance, or any other measure of dispersion, of the ratios between the coordinates

of the semantics of an individual and
−→
t . When this variance is equal to zero, the

individual is in the same equivalence class as the target, and the search can terminate,

reconstructing analytically a globally optimal solution.

The second GP system that we propose is similar to the first one, but this time two

individuals P1 and P2 are considered in the same equivalence class if −→sP1 = k +−−→sP2 . This

time, we are identifying a collection of affine subspaces in the semantic space. In this

collection, each subspace is a straight line (or hyperplane, if we think in n dimensions)

and all the lines belonging to this collection are parallel between each other. In such a

system, it makes sense to use the variance, or any other measure of dispersion, of the

difference between the coordinates of the semantic vector and the target as fitness. Once

again, when this variance is equal to zero, the semantic vector of the individual is in

the same equivalence class as the target, and so it is possible to reconstruct the target

analytically.

List of Figures 38

The first one of these two systems is called GPMUL (given that multiplication is the

operator that allows us to reconstruct the target), while the second one is called GP-

PLUS (given that the target can be reconstructed using addition). Furthermore, we

introduce two new GP systems that are similar to GPMUL and GPPLUS, but a filter

that allows us to reject an individual is applied. Specifically, a newly generated indi-

vidual is rejected if another individual belonging to the same equivalence class already

exists in the population. These “filtered” versions are called FGPMUL and FGPPLUS

respectively. We refers generically to a SECGP system using filters with the name of

F-SECGP. The idea of SECGP is to explore the solution space by classes of solutions

rather then single individuals, this is an attempt to improve the efficiency of the search

process that, behind the potential obvious advantages, has many interesting implications

that we discuss in the following.

The concept that binds our work to GSGP is the idea of direct semantic manipulation.

We use this kind of manipulation to build and compare entire classes of individuals.

Instead of the operators proposed in [20], we use traditional genetic operators to build

new solutions. Doing so, we lose the interesting property of a unimodal fitness land-

scape induced by GSGP operators. Moreover when we transform any individual in to

another of the same class we are not establishing any bound on the distance of the new

semantic we are targeting and this, as discussed in section 3.1.2 is a potential treat to

the generalization ability of the algorithm. Also the ensemble like effect of GSGP and

ESAGP is lost because we are not combining, at this level, multiple individuals, we just

use a single semantic and we eventually manipulate that one just a single time in order

to approximate the target.

We lose these important properties in trade of the possibility of obtaining human read-

able solutions of compact size. Indeed, using a F-SECGP system, we extremely reduce

the possibility of introducing neutral code and this, as discussed in previous sections,

limits the useless growth of the individuals’ structures. As a matter of fact SECGP

come naturally equipped with the ability of discriminating class of semantics and this

further enhance the type of redundancy that can be avoided, not just a single point in

the semantic space but rather entire classes. Any single individual is representative of a

class and using the equivalence relationship it’s easy to compute any other individual in

the same class, this imply that we have a new pseudometric that has the same advan-

tages discussed for ESAGP semantic angles, but is also a generalization of that concept,

indeed semantic angles are a particular implementation of an SECGP system.

Thanks to its enhanced capacity of discrimination among semantics we expect that a

SECGP systems have the ability to maintain an higher level of diversity in the popu-

lation so exploring more effectively the solution space and at a faster rate than GSGP.

List of Figures 39

Furthermore GSGP has a good exploitation ability by construction but at the same time

we have seen that this represents a problem if the target it’s far from the convex hull of

the initial population, even using mutation, bounded or not, the exploration of the so-

lution space can results slow, thus we expect SECGP systems to perform competitively

on this point.

But how is an SECGP system compensating for the loss of properties that guarantee

a good generalization of GSGP? SECGP adopt the strategy of reducing as much as

possible the code growth that it’s not related to any real change in fitness. We already

discussed in section 3.1.2 the Occam razor principle applied to ESAGP. Here we are

pushing further this concept formulating a generalization, the equivalence classes, that

give more flexibility to the SECGP system designer. Another important point in favour

of generalization in SECGP is that equivalence classes are themselves a method of gen-

eralization although in a slightly different way. Indeed, if the equivalence relationship,

we use to construct classes, capture some useful properties of the application domain,

then a structurally simple individual in the population of solution is able to fit a great

number of cases in the training set. The same generic model fit different situations

or instantiations of that concept in the datasets, thanks to the equivalence relationship

that model become a sort of semantic building block. We think that the usefulness of the

equivalence classes it is independent of the application domain but, at the same time, it

is obvious that the knowledge related to a specific application can further enhance the

effectiveness of this approach, capturing symmetries, scales and other typical patterns.

If these patterns or domain properties are not known in advance then the SECGP system

designer has two options.

The first one has been adopted in this thesis: use simple generic equivalence concepts

that probably are valuable in many cases. Even if in this our work we use just one

equivalence at a time it is simple to implement a system that take in account more than

one equivalence relationship during the same evolutionary process. Indeed the main

computational cost is the calculation of the individual’s semantics while the verification

of equivalence relationships consist in fast vector computations easily parallelizable on

modern hardware.

The second option offered to the designer is to learn the equivalence relationship in a

specific domain. Depending on the domain this can require a specific labeled dataset

and probably it’s not a trivial task nevertheless an interesting perspective. We are not

investigating this possibility here.

SECGP is also solving some potential contradiction that ESAGP systems potentially

suffer, discussed below. In ESAGP, two aligned individuals are considered in the same

equivalence class. This concept is similar to what is introduced here, although the

List of Figures 40

framework in this thesis is more general and can incorporate ESAGP as a particular

instantiation. ESAGP, as the systems introduced here, does not have any guarantee of

inducing a unimodal fitness landscape, but also in this case the resulting solutions are

compact and readable. ESAGP has an option to filter the individuals that are consid-

ered redundant because of equivalence classes. This is an option exploited also in this

work, but some contradictions of ESAGP are resolved here. ESAGP was maximizing

semantic diversity and the exploration of solution space, rejecting redundant individuals.

However, at the same time, needing at least two aligned individuals, ESAGP was also

looking for a certain amount of similarity. The algorithm presented here does not suffer

from these contradictory objectives. The filtering proposed here has been parametrized

using a more understandable variable like the error’s variance. This could potentially

enable a deeper analysis of the filtering threshold to reach a dynamic self-tuning regula-

tion along the evolutionary process. A final difference consists in the use of a repository

of class representatives for ESAGP. In the work presented here, the use of a repository is

pointless because classes already explored have been evaluated as a whole: having new

classes better fitness, the evolutionary process never returns on the old ones. Another

important similarity with ESAGP is that evolution proceeds without considering the er-

ror compared to the target values, indeed taking into account a more indirect measure,

like the membership degree to a specific equivalence class.

Our work has also important relationships with the well-known Linear Scaling technique

(LS) introduced by Keijzer in [70]. If seen from our perspective in this work, LS can

be reinterpreted as a technique that is using equivalence classes to evolve solutions. In

the case of LS , in fact, two solutions gp1 and gp2 are equivalent if we can obtain gp1

from gp2, and vice versa through LS . The evolutionary process in LS is looking for an

individual that is equivalent to the target in a very similar way to what GPMUL and

GPPLUS do. Being the most simple possible equivalence relationship, GPPLUS and

GPMUL are also less powerful than LS . Indeed, LS incorporates both of them, being

able to recognize at once equivalences of both types. Nevertheless, this power comes

at the price of a more limited flexibility in use; in fact, LS optimizes the whole output

at once, while more simple classes like GPPLUS and GPMUL can easily classify part

of the input, recognizing what part of the problem is well explained by a proposed gpi

solution before optimizing the error. If we apply equivalence definitions reported in

Equation (4.4) and Equation (4.10) to the target, then we know in advance what part of

this target is explained, or equivalent to the proposed gpi, being ki values homogeneous

for these portions of the dataset. This kind of analysis is not possible with methods

using a complex equivalence definition that requires knowing in advance what the target

of the optimization is. Although not done here, it is easy to imagine an algorithm

List of Figures 41

having repositories of partial target equivalences, which combines them to have a high-

quality approximation. On the other hand, LS can benefit from this new point of view,

integrating the concept of exploring the solution space by equivalence classes rather than

one individual at a time. This fact inspired us the possibility of using filtering techniques

(as the ones explained above) to improve LS .

Chapter 4

Semantic Equivalence Classes

Genetic Programming

4.1 Methodology

Our objective is to use equivalence classes (EQCs) to create partitions of the solution

space. In this way, once we have an individual belonging to one EQC, we are able to

analytically construct any other individual in that class, including the one that is closer

to the target in the semantic space (i.e. the one that has the best fitness). So, basically,

all individuals in the population can be replaced by the best solution that belongs to

their own EQC. In this way, considering the fitness of an EQC as the fitness of the

best individual in that EQC, we can say that we explore the space of EQCs instead of

the space of the single solutions. Under this perspective, we can even force GP to not

create, or to reject, any individual belonging to an EQC that is already represented in

the population. In the continuation, we define equivalence relationships using criteria

based on semantics.

We introduce a relationship that we call equivalence function (EF). EF receives as

arguments two vectors in the semantic space, and return a vector of the same cardinality.

We say that two individuals are equivalent (i.e. they belong to the same EQC) if, for

every fitness case, EF calculated for the two individuals returns the same constant

value k. In particular, we have that an individual whose semantics is a vector that we

call −→gp is equivalent to the target
−→
t if, in Equation (4.1),

−→
k has all the components ki

identical to each other:

EF (
−→
t ,−→gp) =

−→
k (4.1)

42

List of Figures 43

Once we have a GP individual equivalent to
−→
t , we can reconstruct an individual whose

semantics is identical to
−→
t (i.e. a globally optimal solution) analytically. The operation

is trivial if the function EF is easy to invert (like for instance a linear function), like in

Equation (4.2):

−→
t = EF−1(

−→
k ,−→gp) (4.2)

From Equation (4.2), reconstructing an optimal genotype (like for instance a tree) is

straightforward. It is enough to compose the tree whose semantics is −→gp (i.e. the genotype

of the GP program) and constant k by means of operator EF−1, that represents the

root node of the optimal individual.

With this in mind, now the objective of GP can become the one of finding a solution

that belongs to the same EQC as the target. In order to obtain this, we need to define

a new fitness function, that can be able to quantify the distance between the EQC of an

individual and the EQC of the target. A simple possibility is, for instance, to measure

the dispersion of the ki values, i.e. the components of vector
−→
k in Equation (4.1). This

dispersion must be as low as possible, since we aim at obtaining a single constant value,

which represents a perfect equivalence. For this purpose, we can, for instance, use the

variance of the components of
−→
k , like in Equation (4.3).

Fitness = var(
−→
k) (4.3)

If we consider
−→
k as the error vector of a solution (i.e. the vectorial difference between

its semantics and the target), then the variance of
−→
k can be interpreted as a measure of

its “complexity”. Indeed, when the variance is equal to zero, the error is constant and

thus it is trivial to eliminate it, using Equation (4.2).

In the continuation of this paper, these general concepts will be instantiated by defining

two different concrete EF functions. Once we have done that, the method to reconstruct

the target, starting from an individual in the same EQC, will possibly appear clearer.

An important observation is that, given that we work with continuous values, it is un-

likely that two individuals will be exactly in the same EQC. For this reason, a threshold

is used to establish the EQCs. Interestingly, and contrarily to what happens in stan-

dard GP, in none of the above phases an error function measuring directly the distance

to the target in the semantic space, like for instance the root mean square error (RMSE),

is used to drive the evolutionary process. In other terms, the sought for individuals (the

List of Figures 44

ones that are in the same equivalence class as the target, or close) can even have a

very bad RMSE.

Once we find an individual that belongs to the same EQC as another individual that is

already in the population, it may be useful to reject it. In the end, if we consider our

system as exploring the space of EQCs (or, which is the same thing but seen from a

different viewpoint, if once we generate an individual, we are immediately able to obtain

analytically the best individual in terms of RMSE that belong to the same EQC as that

individual), then we do not need an EQC to be represented by more than one individual.

In this paper, we propose a filtering process to implement this rejection. More in partic-

ular, when a new individual is generated, it is checked against all other individuals in the

population and rejected if it belongs to an EQC that is already represented by at least

one other individual. A new individual is immediately generated in substitution and

checked again. Algorithm 2 contains the pseudo-code of the proposed method, where

points 2.2.4. and 2.2.5. implement the filter. A crucial part of Algorithm 2, i.e. how

to calculate fitness, is better specified in Algorithm 3. More specifically, Algorithm 3

contains an explanation of how fitness is calculated (point 2.2.4. of Algorithm 2) in the

general case. Concrete instantiations of this algorithm will be shown in Algorithm 4 and

Algorithm 5 (see the next section), reporting the process used to calculate fitness in the

concrete cases of GPPLUS and GPMUL, respectively (these two methods are presented

in detail in the next section).

Algorithm 2 Genetic programming algorithm showing filtering methods, in points
2.2.4. and 2.2.4.

1. Generate a random population P of N individuals

2. Repeat Until termination condition:

2.1. Create an empty population P′

2.2. Repeat until P′ contains N individuals:

2.2.1. Chose a genetic operator (crossover with probability pc, mutation with
probability pm)

2.2.2. Select one or two individuals depending on the choice in 2.2.1.

2.2.3. Apply the operator chosen in 2.2.1. to the individual(s) from step 2.2.2.

2.2.4. Evaluate offspring

2.2.5. If the new individuals’ semantics are in the same equivalence
class of others in P then they are discarded otherwise they are
inserted in P′

2.3. P = P′

3. Return best individual in P

List of Figures 45

Algorithm 3 Generic individual evaluation: fitness calculation in point 2.2.4. of Algo-
rithm 2

1. Take as input an individual

2. Evaluate the individual on any dataset instance

3. Use Equation (4.1) to calculate vector
−→
k (i.e.

−→
k = EF (

−→
t ,−→gp)

4. Use Equation (4.3) to calculate Fitness = var(
−→
k)

5. Return the Fitness

4.1.1 GPPLUS: GP by Translation

The framework presented so far is very general and can be instantiated in many different

ways, depending on how we express EQCs. Here, we propose a first case. The resulting

technique, that we call GPPLUS , is based on the concept of error vector. The error

vector is the vector of the differences between the semantics of an individual and the

target. Two solutions are considered in the same EQC if all the coordinates of the

corresponding error vectors are identical to each other. In other terms, two solutions

are in the same equivalence class if their semantics are equivalent by translation. We

define the equivalence function EF like in Equation (4.4).

EF =
−→
t −−→gp =

−→
k (4.4)

At this point, the fitness function is defined as the variance of
−→
k :

σ2 = MEAN [(ki −MEAN(
−→
k))2] (4.5)

If GP finds a solution in the same EQC as the target, to build a globally optimal solution,

we assume the scalar value of k to be equal to the mean of
−→
k :

k = MEAN(
−→
k) (4.6)

Then, a globally optimal solution (i.e. a solution whose semantics is identical to the

target) can be built using Equation (4.7), where GP is the notation used to identify the

program that has −→gp as semantics:

Tapx = GP + k (4.7)

List of Figures 46

Assuming that the final assessment of the quality of the solutions is done using the

RMSE, and being the function GP the target’s approximation, we optimize Equa-

tion (4.8) for every point in the dataset.

RMSE =

√∑n
i=1(ti − gpi − k)2

n
(4.8)

Assigning to the first derivative of Equation (4.8) the value of zero, ∂
∂kRMSE = 0 and

calculating k, we obtain Equation (4.6).

Algorithm 4 describes how fitness is calculated for GPPLUS. Algorithm 4 can be con-

sidered an instantiation of the general process reported in Algorithm 3, applied to the

concrete case of GPPLUS.

Algorithm 4 Fitness calculation in point 2.2.4. of Algorithm 2 in the specific case of
the GPPLUS technique.

1. Take as input an individual.

2. Evaluate this individual on any dataset instance.

3. Use Equation (4.4) to calculate
−→
k =

−→
t −−→gp

4. Use Equation (4.5) to calculate Fitness = MEAN [(ki −MEAN(
−→
k))2]

5. Return the Fitness

As previously explained, it can be useful to reject individuals that are in the same EQC

as another individual in the population. To check if two individuals, with respective se-

mantic vectors −→gp1 and −→gp2 are in the same EQC, we calculate EF like in Equation (4.9):

EF = −→gp1 −−→gp2 =
−→
k (4.9)

To have a measure of similarity between the two classes we calculate the variance of
−→
k , and we compare it to a prefixed threshold. Individuals below the threshold are

considered in the same EQC and rejected. A convenient threshold’s value has been

found experimentally, and the results of this experimental study are discussed later in

this paper. We call FGPPLUS this filtered version.

4.1.2 GPMUL: GP by proportions

In this section, we propose a second possible instantiation of the framework presented

so far. The resulting GP system, that we call GPMUL, is based on the ratio between

List of Figures 47

the semantics of the solutions and the target, calculated for every fitness case. Two

solutions are in the same EQC if the ratios of the coordinates of their semantic vectors

are identical to each other. In other words, if they are equivalent by scale. We define

the new EF error function like in Equation (4.10):

EF =
−→gp
−→
t

=
−→
k (4.10)

Analogously to GPPLUS , also for GPMUL fitness could be defined as the variance of

the components of
−→
k , as in Equation (4.5). A problem arises when GP tries to minimize

Equation (4.5) by increasing the absolute value of the numerator in Equation (4.10) and

by decreasing its denominator. To get a real progress during the evolution, we should

express the dispersion of
−→
k in a different way. For instance, it is possible to consider a

normalized version of
−→
k , as in Equation (4.11).

knormi =
ki

MEAN(
−→
k)

(4.11)

In GPMUL, we have artificially imposed very poor fitness values for all the programs for

which MEAN(
−→
k) is equal to zero, thus preventing the system from failures during the

evaluation of the individuals. It is important to remark that a globally optimal solution

(i.e. a solution for which the values of all the coordinates of
−→
k are equal to zero) is

not the only case in which MEAN(
−→
k) can be equal to zero. Thus, testing whether

MEAN(
−→
k) is different from zero (and eventually penalizing the solution with a poor

fitness value, in case the condition is not satisfied) is a crucial step to guarantee a correct

functioning of the system.

Given that we have:

MEAN

(
ki

MEAN(
−→
k)

)
= 1 (4.12)

then Equation (4.5) can be transformed into a new fitness function, as in Equation (4.13):

Fitness = MEAN

[(
ki

MEAN(
−→
k)
− 1

)2]
(4.13)

Algorithm 5 describes how fitness is calculated for GPMUL. Algorithm 5 can be con-

sidered an instantiation of the general process reported in Algorithm 3, applied to the

concrete case of GPMUL.

List of Figures 48

Algorithm 5 Fitness calculation in point 2.2.4. of Algorithm 2 in the specific case of
the GPMUL technique.

1. Take as input an individual.

2. Evaluate this individual on any dataset instance.

3. Use Equation (4.10) to calculate
−→
k =

−→gp
−→
t

4. Use Equation (4.13) to calculate Fitness = MEAN

[(
ki

MEAN(
−→
k)
− 1

)2]
5. Return the Fitness

Analogously (although not identically) to GPPLUS , once GP has found a solution in

the same EQC as the target, we use Equation (4.14) to build a globally optimal solution

Tapx (where GP represents a program whose semantic vector is −→gp):

Tapx =
GP

k
(4.14)

Assuming again the RMSE as the measure that has to be minimized, we should find the

scalar value k that optimizes Equation (4.15):

RMSE =

√∑n
i=1(ti −

gpi
k)2

n
(4.15)

Assigning the first derivative to zero, ∂
∂kRMSE = 0 , we obtain the optimal value of k

expressed by Equation (4.16):

k =

∑n
i=1(gpi)

2∑n
i=1(ti · gpi)

(4.16)

The filtering process is similar to the one introduced in Section 4.1.1, but with a difference

regarding the EF function. Specifically, we use Equation (4.10) applied to two semantic

vectors −→gp1 and −→gp2 like in Equation (4.17):

EF =
−→gp1
−→gp2

=
−→
k (4.17)

where fitness cases for which the denominator of the equation is equal to 0 are ignored.

Finally, we evaluate if the new individual has to be discarded by checking if the dispersion

of
−→
k is below a prefixed threshold. As previously mentioned, an appropriate threshold

List of Figures 49

value has been determined empirically, and the results of this experimental study are

reported and discussed later in this paper. We call this filtered version FGPMUL.

Chapter 5

Experimental study

This chapter describes the experimental phase. More specifically, Section 5.0.1 intro-

duces the objectives of the experimental study, describes the test problems taken into

account and the experimental settings while Section 5.0.2 discusses the obtained results.

5.0.1 Systems and test problems

The objective of the experimental study is to compare between each other the methods

GPPLUS , GPMUL, LS and their filtered variants, FGPPLUS , FGPMUL and FLS .

For getting a better understanding of the quality of the performance of these systems,

we also consider the performance obtained by geometric semantic genetic programming

(GSGP) [20]. We also decided to not report results achieved by standard GP in this

experimental study, because a preliminary study has indicated that standard GP was

consistently outperformed by all the presented methods on all the test problems.

The proposed GPPLUS , GPMUL and LS systems, as well as their filtered variants,

have been implemented on top of the ECJ framework, a well-known and freely available

GP system (https://cs.gmu.edu/∼eclab/projects/ecj/). To compare the performance of

these systems against the one of GSGP, we have considered seven different symbolic

regression test problems that have been already used in previous GP studies. Table 5.1

reports, for each dataset, the number of features and the number of instances. For a

complete description of these datasets, the reader is referred to the references reported

in the same table.

For all the test problems, 100 runs were performed with each technique. In each run, a

different partition between training and test data was considered, built as follows: 70%

of the instances, selected at random with uniform probability, were used for training the

model, while the remaining 30% have been used to test its performance on unseen data.

50

https://cs.gmu.edu/~eclab/projects/ecj/

List of Figures 51

Table 5.1: Description of the test problems. For each dataset, the number of features
(independent variables) and the number of instances have been reported.

Dataset # Features # Instances

Airfoil Self-Noise [71] 5 1502
Concrete Compressive Strength [72] 8 1029

Parkinson Voice Recording (MOTOR) [73] 19 5875
Parkinson Voice Recording (TOTAL) [73] 19 5875

Protein Folding [74] 9 45000
Concrete Slump Test [75] 9 102

Yacht Hydrodynamics [76] 6 307

All the techniques share exactly the same configuration, except for the value of the

filter threshold (in the various filtered versions). For this parameter, a preliminary

extensive study has been performed for determining the value that allows us to obtain

the best results. All the runs used populations of 200 individuals allowed to evolve

for 200 generations. Trees initialization was performed using the Ramped Half-and-

Half method [21], with a maximum initial depth equal to 6. During the evolution, no

maximum depth was imposed for the trees. The function set contained the four binary

arithmetic operators, including protected division as in [21]. The terminal set contained

a number of variables equal to the number of features in the dataset. Survival from one

generation to the other was always guaranteed to the best individual of the population

(elitism). Crossover and mutation probabilities are equal to 0.9 and 0.1 respectively.

Selection has been performed using a tournament of size 4. This configuration of the

parameters has been obtained after a preliminary tuning phase. The parameter values

used in the experimental phase are the ones that have allowed us to obtain the best

results among the other alternative configurations tested. The experimental study that

has allowed us to choose the best filter parameter for each studied technique is a part

of the results that will be presented in the next section. In particular, these results are

presented in Figures 5.15 -5.21.

For all the test problems, results are reported in terms of the root mean square er-

ror (RMSE) between target and predicted values. It is worth reaffirming that only GSGP,

among the compared techniques, uses the RMSE as fitness function during the evolu-

tionary process. In all the plots reported in the continuation of this section, medians of

the RMSE of the best individual in the population on the training set, over 100 indepen-

dent runs, have been reported. The median was preferred over the mean because of its

higher robustness to outliers. Median RMSE has been studied against the computational

effort instead of the number of generations, because generations do not have the same

computational complexity for all the studied methods. Following [?], as a measure of

the computational effort we have used the accumulated number of tree nodes evaluated

List of Figures 52

until the current instant. In other words, for each generation g, the computational effort

spent by a GP technique until generation g is:

CE(g) = NNg +NNg−1 + ...+NN1

where, for each generation h = g, g−1, ..., 1, NNh is the sum of the number of tree nodes

in all the individuals that have been evaluated at generation h. It is worth pointing out

that, while calculating CE(g), we do not take into account only the individuals that

take part in the evolution, but also the ones that, eventually, have been disregarded

by an algorithm. For instance, all the filtered variants of the systems proposed reject

several individuals during the evolution. Given that, to decide whether an individual is

rejected, an evaluation of the individual is needed, the nodes of the rejected individuals

are also considered in the calculation of CE(g). This allows us to make a fair comparison

between the versions with filters and the ones without filters.

5.0.2 Experimental Results

The discussion of the results starts by considering a comparison between the proposed

systems and GSGP. After this analysis, an evaluation of the beneficial effects of using

filters is reported. Then, the section is concluded with an analysis of the size of the

individuals in the population during the evolution of the different studied techniques.

For each technique considered, we report the median best RMSE against the computa-

tional effort. The median is calculated over 100 independent runs, where each run uses

a different training-test partition. Results on the test set are relative to the RMSE of

the best training individual, evaluated on the test set.

In a first phase, we compare GPPLUS , GPMUL and LS with their respective filtered

counterparts (i.e. FGPPLUS , FGPMUL and FLS , respectively). Then, only the meth-

ods with the best RMSE resulting from these experiments are compared with GSGP.

This allows us to report the comparison between the studied methods and GSGP in a

more readable way, since only four methods will be compared to each other, instead of

seven. These results are reported in Figures 5.1 to 5.14. In all these figures, plot (a) con-

tains a comparison between GPPLUS and FGPPLUS ; plot (b) contains a comparison

between GPMUL and FGPMUL; plot (c) contains a comparison between LS and FLS ;

and finally plot (d) contains a comparison between the methods that obtained the best

results in plots (a), (b) and (c) and GSGP. While plots (a), (b) and (c) report curves of

the evolution of the RMSE against the computational effort, plots (d) report the final

comparisons with GSGP in the form of boxplots. The motivation for this difference is

List of Figures 53

that, in this way, GSGP results can be taken directly from the literature (where they

are actually reported as boxplots).

Concerning the test problems, the results are organized as follows:

• Figure 5.1 and Figure 5.2 report the results for the airfoil self-noise problem (simply

airfoil from now on), respectively on the training and test set.

• Figure 5.3 and Figure 5.4 report the results for the concrete compressive strength

problem (concrete from now on) (Figure 5.3 on the training set and Figure 5.4 on

the test set).

• Figure 5.5 and Figure 5.6 report the results for the Parkinson’s voice recording

problem, using the MOTOR dataset (motor from now on) (Figure 5.5 on the

training set and Figure 5.6 on the test set).

• Figure 5.7 and Figure 5.8 report the results for the Parkinson’s voice recording

problem, using the TOTAL dataset (simply total from now on), respectively on

the training and test set.

• Figure 5.9 and Figure 5.10 report the results for the protein folding problem (simply

protein from now on) (Figure 5.9 on the training set and Figure 5.10 on the test

set).

• Figure 5.11 and Figure 5.12 report the results for the concrete slump test problem

(slump from now on), respectively on the training and test set.

• Figure 5.13 and Figure 5.14 report the results for the yacht hydrodynamics problem

(yacht from now on) (Figure 5.13 on the training set and Figure 5.14 on the test

set).

As we can see from these figures, GSGP is, in general, the method that returned the

best RMSE, except for the motor and protein problems (where the best values of RMSE

were found by FGPPLUS and FLS , both on the training and on the test set) and for the

yacht problem (where the best RMSE was found by FLS , both on the training and on

the test set). Moreover, GSGP was outperformed by FGPMUL, FGPPLUS and FLS on

the test set when the slump problem was considered. Furthermore, filtering appears to

be beneficial for GPMUL, GPPLUS and LS (a deeper analysis on the effect of filtering

is offered in the continuation). In fact, the filtered versions always outperformed the

non-filtered ones, both on the training and on the test set, except for the case of the

slump problem on the training set. An interesting (and desirable) property of GPMUL

and GPPLUS , as well as their filtered counterparts, is related to their behavior on the

List of Figures 54

0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07
4.

0
4.

5
5.

0
5.

5
6.

0
6.

5
7.

0
0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

B
es

t F
itn

es
s

(d)

Figure 5.1: Dataset airfoil (training). Results are relative to: GPPLUS technique
(5.1a), GPMUL (5.1b), LS (5.1c). Figures (5.1a), (5.1b), (5.1c), have median fitness
(RMSE) on the vertical axes and computational effort on horizontal axes (calculated as
the number of nodes evaluated during training). Figure (5.1d) reports the performance
of GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 55

0e+00 2e+07 4e+07

4.
5

5.
0

5.
5

6.
0

6.
5

0e+00 2e+07 4e+07

4.
5

5.
0

5.
5

6.
0

6.
5

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07
4.

0
4.

5
5.

0
5.

5
6.

0
6.

5
7.

0
0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

0e+00 2e+07 4e+07

4.
0

4.
5

5.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

B
es

t F
itn

es
s

(d)

Figure 5.2: Dataset airfoil (test). Results are relative to: GPPLUS technique (5.2a),
GPMUL (5.2b), LS (5.2c). Figures (5.2a), (5.2b), (5.2c), have median fitness (RMSE)
on the vertical axes and computational effort on horizontal axes (calculated as the
number of nodes evaluated during training). Figure (5.2d) reports the performance of
GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 56

0e+00 1e+07 2e+07 3e+07 4e+07

8
10

12
14

0e+00 1e+07 2e+07 3e+07 4e+07

8
10

12
14

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
8

10
12

14
0e+00 2e+07 4e+07 6e+07

8
10

12
14

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07 6e+07

7
8

9
10

11
12

13
14

0e+00 2e+07 4e+07 6e+07

7
8

9
10

11
12

13
14

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

5
6

7
8

9
10

11
12

B
es

t F
itn

es
s

(d)

Figure 5.3: Dataset concrete (training). Results are relative to: GPPLUS technique
(5.3a), GPMUL (5.3b), LS (5.3c). Figures (5.3a), (5.3b), (5.3c), have median fitness
(RMSE) on the vertical axes and computational effort on horizontal axes (calculated as
the number of nodes evaluated during training). Figure (5.3d) reports the performance
of GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 57

0e+00 1e+07 2e+07 3e+07 4e+07

9
10

11
12

13
14

15

0e+00 1e+07 2e+07 3e+07 4e+07

9
10

11
12

13
14

15

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
8

9
10

11
12

13
14

0e+00 2e+07 4e+07 6e+07
8

9
10

11
12

13
14

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07 6e+07

7
8

9
10

11
12

13

0e+00 2e+07 4e+07 6e+07

7
8

9
10

11
12

13

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

6
8

10
12

B
es

t F
itn

es
s

(d)

Figure 5.4: Dataset concrete (test). Results are relative to: GPPLUS technique
(5.4a), GPMUL (5.4b), LS (5.4c). Figures (5.4a), (5.4b), (5.4c), have median fitness
(RMSE) on the vertical axes and computational effort on horizontal axes (calculated as
the number of nodes evaluated during training). Figure (5.4d) reports the performance
of GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 58

0e+00 2e+07 4e+07 6e+07

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

8.
0

0e+00 2e+07 4e+07 6e+07

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

8.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
7.

9
8.

0
8.

1
8.

2
0e+00 2e+07 4e+07 6e+07

7.
9

8.
0

8.
1

8.
2

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07 6e+07 8e+07

7.
3

7.
4

7.
5

7.
6

7.
7

7.
8

0e+00 2e+07 4e+07 6e+07 8e+07

7.
3

7.
4

7.
5

7.
6

7.
7

7.
8

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

7.
0

7.
5

8.
0

8.
5

B
es

t F
itn

es
s

(d)

Figure 5.5: Dataset motor (training). Results are relative to: GPPLUS technique
(5.5a), GPMUL (5.5b), LS (5.5c). Figures (5.5a), (5.5b), (5.5c), have median fitness
(RMSE) on the vertical axes and computational effort on horizontal axes (calculated as
the number of nodes evaluated during training). Figure (5.5d) reports the performance
of GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 59

0e+00 2e+07 4e+07 6e+077.
4

7.
6

7.
8

8.
0

8.
2

0e+00 2e+07 4e+07 6e+077.
4

7.
6

7.
8

8.
0

8.
2

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
7.

95
8.

00
8.

05
8.

10
8.

15
8.

20
0e+00 2e+07 4e+07 6e+07

7.
95

8.
00

8.
05

8.
10

8.
15

8.
20

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07 6e+07 8e+07

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

0e+00 2e+07 4e+07 6e+07 8e+07

7.
4

7.
5

7.
6

7.
7

7.
8

7.
9

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

7.
0

7.
5

8.
0

8.
5

9.
0

B
es

t F
itn

es
s

(d)

Figure 5.6: Dataset motor (test). Results are relative to: GPPLUS technique (5.6a),
GPMUL (5.6b), LS (5.6c). Figures (5.6a), (5.6b), (5.6c), have median fitness (RMSE)
on the vertical axes and computational effort on horizontal axes (calculated as the
number of nodes evaluated during training). Figure (5.6d) reports the performance of
GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 60

0e+00 2e+07 4e+07

9.
8

10
.0

10
.2

10
.4

0e+00 2e+07 4e+07

9.
8

10
.0

10
.2

10
.4

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
10

.7
10

.8
10

.9
11

.0
11

.1
0e+00 2e+07 4e+07 6e+07

10
.7

10
.8

10
.9

11
.0

11
.1

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 4e+07 8e+07

9.
5

9.
6

9.
7

9.
8

9.
9

10
.0

0e+00 4e+07 8e+07

9.
5

9.
6

9.
7

9.
8

9.
9

10
.0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

G
P

M
U

L

F
LS

G
S

G
P

7
8

9
10

11
B

es
t F

itn
es

s

(d)

Figure 5.7: Dataset total (training). Results are relative to: GPPLUS technique
(5.7a), GPMUL (5.7b), LS (5.7c). Figures (5.7a), (5.7b), (5.7c), have median fitness
(RMSE) on the vertical axes and computational effort on horizontal axes (calculated as
the number of nodes evaluated during training). Figure (5.7d) reports the performance
of GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 61

0e+00 2e+07 4e+07

10
.0

10
.2

10
.4

10
.6

10
.8

0e+00 2e+07 4e+07

10
.0

10
.2

10
.4

10
.6

10
.8

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
10

.9
11

.0
11

.1
11

.2
11

.3
0e+00 2e+07 4e+07 6e+07

10
.9

11
.0

11
.1

11
.2

11
.3

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 4e+07 8e+07

9.
7

9.
8

9.
9

10
.1

10
.3

0e+00 4e+07 8e+07

9.
7

9.
8

9.
9

10
.1

10
.3

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

G
P

M
U

L

F
LS

G
S

G
P

7
8

9
10

11
12

B
es

t F
itn

es
s

(d)

Figure 5.8: Dataset total (test). Results are relative to: GPPLUS technique (5.8a),
GPMUL (5.8b), LS (5.8c). Figures (5.8a), (5.8b), (5.8c), have median fitness (RMSE)
on the vertical axes and computational effort on horizontal axes (calculated as the
number of nodes evaluated during training). Figure (5.8d) reports the performance of
GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 62

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

6.
0

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

6.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0.0e+00 1.0e+07 2.0e+07 3.0e+07
5.

35
5.

45
5.

55
5.

65
0.0e+00 1.0e+07 2.0e+07 3.0e+07

5.
35

5.
45

5.
55

5.
65

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 1e+07 2e+07 3e+07

5.
1

5.
2

5.
3

5.
4

5.
5

0e+00 1e+07 2e+07 3e+07

5.
1

5.
2

5.
3

5.
4

5.
5

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

5.
0

5.
2

5.
4

5.
6

B
es

t F
itn

es
s

(d)

Figure 5.9: Dataset protein (training). Results are relative to: GPPLUS technique
(5.9a), GPMUL (5.9b), LS (5.9c). Figures (5.9a), (5.9b), (5.9c), have median fitness
(RMSE) on the vertical axes and computational effort on horizontal axes (calculated as
the number of nodes evaluated during training). Figure (5.9d) reports the performance
of GSGP as well as the ones achieved by the 3 best variants (i.e., with or without filters)

of the proposed system based on equivalence classes.

List of Figures 63

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

0e+00 1e+07 2e+07 3e+07 4e+07

5.
2

5.
4

5.
6

5.
8

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0.0e+00 1.0e+07 2.0e+07 3.0e+07
5.

35
5.

45
5.

55
5.

65
0.0e+00 1.0e+07 2.0e+07 3.0e+07

5.
35

5.
45

5.
55

5.
65

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 1e+07 2e+07 3e+07

5.
2

5.
3

5.
4

5.
5

5.
6

0e+00 1e+07 2e+07 3e+07

5.
2

5.
3

5.
4

5.
5

5.
6

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

F
LS

G
S

G
P

5.
0

5.
1

5.
2

5.
3

5.
4

5.
5

B
es

t F
itn

es
s

(d)

Figure 5.10: Dataset protein (test). Results are relative to: GPPLUS technique
(5.10a), GPMUL (5.10b), LS (5.10c). Figures (5.10a), (5.10b), (5.10c), have median
fitness (RMSE) on the vertical axes and computational effort on horizontal axes (cal-
culated as the number of nodes evaluated during training). Figure (5.10d) reports the
performance of GSGP as well as the ones achieved by the 3 best variants (i.e., with or

without filters) of the proposed system based on equivalence classes.

List of Figures 64

0e+00 2e+07 4e+07 6e+07

2
3

4
5

6

0e+00 2e+07 4e+07 6e+07

2
3

4
5

6

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
1.

5
2.

0
2.

5
3.

0
3.

5
0e+00 2e+07 4e+07 6e+07

1.
5

2.
0

2.
5

3.
0

3.
5

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0.0e+00 1.0e+07 2.0e+07

2
3

4
5

0.0e+00 1.0e+07 2.0e+07

2
3

4
5

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

 F
LS

G
S

G
P

1.
0

1.
5

2.
0

2.
5

3.
0

B
es

t F
itn

es
s

(d)

Figure 5.11: Dataset slump (training). Results are relative to: GPPLUS technique
(5.11a), GPMUL (5.11b), LS (5.11c). Figures (5.11a), (5.11b), (5.11c), have median
fitness (RMSE) on the vertical axes and computational effort on horizontal axes (cal-
culated as the number of nodes evaluated during training). Figure (5.11d) reports the
performance of GSGP as well as the ones achieved by the 3 best variants (i.e., with or

without filters) of the proposed system based on equivalence classes.

List of Figures 65

0e+00 2e+07 4e+07 6e+07

3
4

5
6

7

0e+00 2e+07 4e+07 6e+07

3
4

5
6

7

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+072.
5

3.
0

3.
5

4.
0

0e+00 2e+07 4e+07 6e+072.
5

3.
0

3.
5

4.
0

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0.0e+00 1.0e+07 2.0e+07

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

0.0e+00 1.0e+07 2.0e+07

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

 F
LS

G
S

G
P

2
3

4
5

6
7

B
es

t F
itn

es
s

(d)

Figure 5.12: Dataset slump (test). Results are relative to: GPPLUS technique
(5.12a), GPMUL (5.12b), LS (5.12c). Figures (5.12a), (5.12b), (5.12c), have median
fitness (RMSE) on the vertical axes and computational effort on horizontal axes (cal-
culated as the number of nodes evaluated during training). Figure (5.12d) reports the
performance of GSGP as well as the ones achieved by the 3 best variants (i.e., with or

without filters) of the proposed system based on equivalence classes.

List of Figures 66

0e+00 2e+07 4e+07 6e+07

2
4

6
8

10
12

0e+00 2e+07 4e+07 6e+07

2
4

6
8

10
12

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
2

4
6

8
10

0e+00 2e+07 4e+07 6e+07
2

4
6

8
10

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07 6e+07

1
2

3
4

5
6

7

0e+00 2e+07 4e+07 6e+07

1
2

3
4

5
6

7

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

LS

G
S

G
P

1
2

3
4

5
B

es
t F

itn
es

s

(d)

Figure 5.13: Dataset yacht (training). Results are relative to: GPPLUS technique
(5.13a), GPMUL (5.13b), LS (5.13c). Figures (5.13a), (5.13b), (5.13c), have median
fitness (RMSE) on the vertical axes and computational effort on horizontal axes (cal-
culated as the number of nodes evaluated during training). Figure (5.13d) reports the
performance of GSGP as well as the ones achieved by the 3 best variants (i.e., with or

without filters) of the proposed system based on equivalence classes.

List of Figures 67

0e+00 2e+07 4e+07 6e+07

4
6

8
10

12

0e+00 2e+07 4e+07 6e+07

4
6

8
10

12

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPPLUS
GPPLUS

(a)

0e+00 2e+07 4e+07 6e+07
2

4
6

8
10

0e+00 2e+07 4e+07 6e+07
2

4
6

8
10

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FGPMUL
GPMUL

(b)

0e+00 2e+07 4e+07 6e+07

1
2

3
4

5
6

7

0e+00 2e+07 4e+07 6e+07

1
2

3
4

5
6

7

Computational Effort

M
ed

ia
n

B
es

t F
itn

es
s

FLS
LS

(c)

F
G

P
P

LU
S

F
G

P
M

U
L

LS

G
S

G
P

1
2

3
4

5
6

7
B

es
t F

itn
es

s

(d)

Figure 5.14: Dataset yacht (test). Results are relative to: GPPLUS technique
(5.14a), GPMUL (5.14b), LS (5.14c). Figures (5.14a), (5.14b), (5.14c), have median
fitness (RMSE) on the vertical axes and computational effort on horizontal axes (cal-
culated as the number of nodes evaluated during training). Figure (5.14d) reports the
performance of GSGP as well as the ones achieved by the 3 best variants (i.e., with or

without filters) of the proposed system based on equivalence classes.

List of Figures 68

test set: the RMSE values are comparable to the ones achieved on the training set, hence

suggesting that the solutions returned by these methods are rather robust. As a partial

conclusion, and keeping in mind that all the variants studied outperform standard GP on

all the problems considered, we may assert that GPPLUS and GPMUL show interesting

performance, corroborating the hypothesis that searching using EQC is a viable option.

To have a clearer picture of the impact of filtering on the techniques considered, we have

performed a statistical analysis of the results, for the experiments in which the basic

techniques (GPPLUS , GPMUL and LS) are compared to their filtered counterparts.

Statistics refer to the experiments reported in Figures 5.1 to 5.14. The p-values have

been calculated using the Wilcoxon rank-sum test for pairwise data comparison with a

significance value of α = 0.05. Table 5.2 reports the results of this study.

Table 5.2 shows that, in the large majority of the cases, filtering brings a statistically

significant advantage in terms of RMSE. This can be seen by observing that the third and

the fifth columns of the table often contain negative values (i.e., lower RMSE obtained

by using the filtered variants). The only exceptions are GPMUL on the total problem

and LS on the yacht problem, where the non-filtered techniques present better RMSE

values than the respective filtered counterparts, both on the training and on the test set.

It is interesting to point out the case of the slump dataset: this is the only test problem

in which the best method on the training set does not correspond to the best method

on the test set. Specifically, for this dataset, FGPMUL and FLS perform worse than

their non-filtered counterparts on training data but significantly better on the test set.

This situation is visible comparing Figures 5.11b and 5.12b.

The effect of using the semantic filters is discussed in more detail here. Specifically, to

obtain a better understanding of the advantage related to the use of filters, a wide range

of values for the filter parameter (i.e., the parameter that tunes the effect of the filters,

as presented in Section 4.1) has been considered. We are interested in understanding

how this parameter influences the quality of the generated solutions (in terms of RMSE)

and their size (expressed in terms of the average number of nodes of the individuals in

the population).

The results are presented in Figures 5.15 to 5.21. In all these figures, plots (a) and (b)

report the results obtained by GPPLUS ; plots (c) and (d) report the results obtained by

GPMUL; and plots (e) and (f) report the results obtained by LS . Furthermore, plots (a),

(c) and (e) report the RMSE on the test set for the different values of the filter parameter

that have been studied. The non-filtered version of each method is also reported: it is

List of Figures 69

Technique Dataset P-value
Training

% diff on
training

P-value
Test

% diff on
test

GPMUL

airfoil 0,00 -18,99 0,00 -21,00

concrete 0,00 -11,52 0,00 -11,11

motor 0,02 -0,31 0,46 -0,88

total 0,77 -0,10 0,75 0,60

protein 0,01 -1,24 0,00 -1,41

slump 0,00 32,90 0,00 -25,12

yacht 0,12 -6,58 0,16 -5,67

GPPLUS

airfoil 0,00 -4,40 0,05 -3,79

concrete 0,00 -12,60 0,00 -16,87

motor 0,01 -0,67 0,01 -1,52

total 0,00 -1,59 0,01 -0,58

protein 0,00 -1,86 0,01 -1,65

slump 0,00 -7,58 0,00 -28,82

yacht 0,00 -22,18 0,00 -30,75

LS

airfoil 0,69 -1,57 0,02 -3,02

concrete 0,66 -0,56 0,27 -1,90

motor 0,00 -0,67 0,10 -0,91

total 0,03 -0,71 0,18 -0,76

protein 0,00 -1,14 0,30 -1,28

slump 0,00 82,43 0,01 -1,97

yacht 0,00 10,22 0,16 10,29

Table 5.2 For each technique, the table shows the percentage variation of RMSE, at the
last generation, for both training and test, achieved using filters. The table also reports
the p-values calculated using the Wilcoxon rank-sum test for pairwise data comparison
(significance level was α = 0.05). Bold numbers denote statistically significant results
and negative values means and advantage in using filters having an error reduction. For
the filtered counterparts, we selected the filter parameter that, among the considered
ones, produces the best training performance. Statistics refer to the same experiments
reported in Figures 5.1 - 5.14.

List of Figures 70

the leftmost box on every figure. Plots (b), (d) and (f) show the average number of

nodes in the individuals in the population (identified by the term individuals’ size, or

simply size, from now on), for the same values of the filter parameter. Concerning the

different test problems, the results are organized as follows:

• Figure 5.15 reports the results for the airfoil problem;

• Figure 5.16 reports the results for the concrete problem;

• Figure 5.17 reports the results for the motor problem;

• Figure 5.18 reports the results for the total problem;

• Figure 5.19 reports the results for the protein problem;

• Figure 5.20 reports the results for the slump problem;

• Figure 5.21 reports the results for the yacht problem;

Considering plots (a), (c) and (e) of these figures, we can see that FGPMUL and FGP-

PLUS generally achieve better results than GPMUL and GPPLUS also for very small

values of the filtering parameter. Increasing the value of this parameter, the RMSE

shows an oscillation, until it reaches a minimum value that is, for the large majority of

the problems, just before a steep increase happens. This pattern is visible in all the FGP-

MUL and FGPPLUS experiments, except for the cases of the slump and total datasets,

in which, although present, it is less evident. Increasing the value of the filter parameter

above a certain threshold (that is different for every dataset), the error increases and all

the values of the filter parameter that are larger than that threshold will produce RMSE

values that are comparable to (and even poorer than) the non-filtered counterpart of

the studied method. Considering the LS technique, it is possible to observe a similar

trend, although it is less visible on the test data. The dataset for which the trend is less

visible, in the case of LS , is slump. Still, also for that dataset, it is possible to observe a

worsening of the RMSE when the value of 103 is considered for the filtering parameter

(see Figure 5.20e). To summarize, filtering improved the performance of all the studied

techniques on almost all studied test problems. Interestingly, this holds both on training

and unseen test data. Finally, we remark that the advantage of GPPLUS and GPMUL

in using filters is larger than the one of LS .

Plots (b), (d) and (f) indicate that filters have also an important effect on the size of the

individuals (i.e., the number of tree nodes of the solutions in the population). In partic-

ular, a generally observable trend is that, when the values of the filtering parameter are

high, the generated individuals tend to be smaller than when they are low. However, it is

List of Figures 71

G
P

P
LU

S

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

3
4

5
6

7
B

es
t F

itn
es

s

Filter values

(a)

G
P

P
LU

S

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

0
20

00
40

00
60

00
80

00
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

3
4

5
6

7
B

es
t F

itn
es

s

Filter values

(c)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
20

00
40

00
60

00
80

00
N

od
es

 N
um

be
r

Filter values

(d)

LS
10

−
7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

3.
0

4.
0

5.
0

6.
0

B
es

t F
itn

es
s

Filter values

(e)

LS
10

−
7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
20

00
60

00
10

00
0

N
od

es
 N

um
be

r

Filter values

(f)

Figure 5.15: Dataset airfoil . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 72

G
P

P
LU

S
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

6
8

10
12

14
16

18
B

es
t F

itn
es

s

Filter values

(a)

G
P

P
LU

S
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
20

00
40

00
60

00
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

6
8

10
12

14
16

18
B

es
t F

itn
es

s

Filter values

(c)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(d)

LS

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

6
8

10
12

14
B

es
t F

itn
es

s

Filter values

(e)

LS

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
40

00
80

00
12

00
0

N
od

es
 N

um
be

r

Filter values

(f)

Figure 5.16: Dataset concrete. Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 73

G
P

P
LU

S
10

−
9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

7.
0

7.
5

8.
0

8.
5

B
es

t F
itn

es
s

(a)

G
P

P
LU

S
10

−
9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

7.
5

8.
0

8.
5

9.
0

B
es

t F
itn

es
s

Filter values

(c)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(d)

LS
10

−
7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
46.

8
7.

2
7.

6
8.

0
B

es
t F

itn
es

s

Filter values

(e)

LS
10

−
7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
50

00
15

00
0

25
00

0
N

od
es

 N
um

be
r

Filter values

(f)

Figure 5.17: Dataset motor . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 74

G
P

P
LU

S
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

9.
5

10
.0

10
.5

11
.0

B
es

t F
itn

es
s

Filter values

(a)

G
P

P
LU

S
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
310

.0
10

.5
11

.0
11

.5
12

.0
B

es
t F

itn
es

s

Filter values

(c)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(d)

LS
10

−
7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

9.
0

9.
5

10
.0

10
.5

11
.0

B
es

t F
itn

es
s

Filter values

(e)

LS
10

−
7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
10

00
0

30
00

0
N

od
es

 N
um

be
r

Filter values

(f)

Figure 5.18: Dataset total . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 75

G
P

P
LU

S
10

−
10

10
−

9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

B
es

t F
itn

es
s

(a)

G
P

P
LU

S
10

−
10

10
−

9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
20

00
60

00
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
10

10
−

9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

5.
5

6.
0

6.
5

B
es

t F
itn

es
s

(c)

G
P

M
U

L
10

−
10

10
−

9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
20

00
60

00
10

00
0

N
od

es
 N

um
be

r

Filter values

(d)

LS
10

−
10

10
−

9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

5.
0

5.
2

5.
4

5.
6

B
es

t F
itn

es
s

(e)

LS
10

−
10

10
−

9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

10
4

0
20

00
60

00
10

00
0

N
od

es
 N

um
be

r

Filter values

(f)

Figure 5.19: Dataset protein. Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 76

G
P

P
LU

S

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

5
10

15
B

es
t F

itn
es

s

Filter values

(a)

G
P

P
LU

S

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
20

00
40

00
60

00
80

00
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

2
4

6
8

10
12

B
es

t F
itn

es
s

Filter values

(c)

G
P

M
U

L
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
10

00
0

30
00

0
N

od
es

 N
um

be
r

Filter values

(d)

LS
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

2
4

6
8

10
12

B
es

t F
itn

es
s

Filter values

(e)

LS
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
20

00
60

00
10

00
0

N
od

es
 N

um
be

r

Filter values

(f)

Figure 5.20: Dataset slump. Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 77

G
P

P
LU

S

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

5
10

15
B

es
t F

itn
es

s

Filter values

(a)

G
P

P
LU

S

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(b)

G
P

M
U

L
10

−
9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
5

10
15

B
es

t F
itn

es
s

Filter values

(c)

G
P

M
U

L
10

−
9

10
−

8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(d)

LS
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

2
4

6
8

10
B

es
t F

itn
es

s

Filter values

(e)

LS
10

−
8

10
−

7

10
−

6

10
−

5

10
−

4

10
−

3

10
−

2

10
−

1

10
0

10
1

10
2

10
3

0
50

00
10

00
0

15
00

0
N

od
es

 N
um

be
r

Filter values

(f)

Figure 5.21: Dataset yacht . Figures (a), (c) and (e) show test fitness (RMSE) for
different values of the filter parameter. The first boxplot of each series shows the results
without filtering: GPPLUS on figure (a), GPMUL on (c) and LS on (e). Figures (b),
(d) and (f) show the average number of nodes in the population for the corresponding
filter settings. Also in this case, the first boxplot of each series shows the results without

filtering: GPPLUS on figure (b), GPMUL on (d) and LS on (f).

List of Figures 78

also possible to observe that the size of the individuals does not monotonously decrease

with the increase of the filtering parameter. To statistically evaluate the differences in

terms of individuals’ size between GPPLUS , GPMUL and LS and their filtered coun-

terparts, we consider, for each problem, the best value of the filter parameter (i.e., the

value that produces the best RMSE). Both the average size of the individuals in the

population and the size of the best individual were studied. The Wilcoxon rank-sum

test for pairwise data comparison, employing the significance level α = 0.05, has been

used under the alternative hypothesis that filtered variants produce individuals with a

smaller size than the non-filtered ones. The results of this statistical study are reported,

for the three systems, in Table 5.3. The table also shows the differences among filtered

and non-filtered systems as a percentage.

It is possible to observe that filtered systems always produce individuals that are smaller

than their non-filtered counterparts in a statistically significant way, except for GPMUL

on the concrete and motor problems. An important remark is that, for all the sys-

tems and problems considered, it is always possible to find a parameter setting that

reduces individuals’ size and that also has a beneficial effect on the RMSE (as shown in

Table 5.2).

List of Figures 79

Technique Dataset P-value
average

size

% Diff
pop.

Average
size

P-value
Best size

% Diff on
best ind.

Size

GPMUL

airfoil 0,00 -47,66 0,01 -43,03

concrete 0,59 10,38 0,53 8,63

motor 0,34 33,98 0,48 45,32

total 0,00 -63,76 0,00 -63,00

protein 0,00 -54,94 0,00 -68,11

slump 0,00 -93,31 0,00 -88,70

yacht 0,00 -44,85 0,00 -40,39

GPPLUS

airfoil 0,00 -24,39 0,00 -28,24

concrete 0,27 -5,77 0,94 0,90

motor 0,06 -18,88 0,05 -35,05

total 0,74 -17,98 0,99 -15,07

protein 0,05 -26,27 0,24 -13,14

slump 0,00 -58,43 0,00 -50,16

yacht 0,00 -61,48 0,00 -57,62

LS

airfoil 0,00 -37,70 0,05 -19,02

concrete 0,19 -6,43 0,33 -10,75

motor 0,33 -13,22 0,23 6,14

total 0,23 -26,27 0,27 -27,34

protein 0,70 -1,47 0,34 14,97

slump 0,00 -81,94 0,00 -81,09

yacht 0,00 -63,96 0,00 -63,85

Table 5.3 For each technique, the table shows the percentage variation related to the
size of the best individual (last column) and to the average size of the population (third
column), at the last generation, when the filter is used. The table also reports the p-
values calculated using the Wilcoxon rank-sum test for pairwise data comparison, with
a significance level of α = 0.05. Bold numbers denote significant results and negative
values means and advantage in using filters having a size reduction. For the filtered
counterparts, we selected the filter parameter that produces the best training (RMSE)
performance. Statistics refer to the same experiments reported in Figures 5.1 - 5.14.

Chapter 6

Conclusions and Future Work

In the field of Genetic Programming this thesis proposes a novel framework to enhance

the effectiveness of this meta-heuristic techniques. We start analysing the current re-

search with special emphasis on the so called semantic methods. Indeed, in our opinion,

this techniques represent an important step toward both performances and comprehen-

sion of GP in general. Semantic techniques describe the behaviour of the programs

representing the solutions by their own output vector when executed on the input test

cases. So a semantic vector tell us what that specific solution is computing, different

program can compute the same output vectors thus being completely equivalents from

a solution approximation point of view.

We show in particular that a branch called Geometric Semantic Genetic Programming

(GSGP) has interesting properties from which we were inspired. Interestingly GSGP

techniques induce a unimodal fitness landscape that is easy to descend until the target

and give rise to really interesting performances in goal approximation. Unfortunately

GSGP, in its original form, has an important drawback: the dimension of the solution’s

structure is almost doubling at each generation resulting in an exponential growth. Even

if technical advancement can deal with this issue GSGP remain essentially a black box

approach. We discuss the interesting generalization properties of GSGP guaranteed by

the geometrical construction and discussed alternatives to the geometric strategies to

optimize this particular aspect. Indeed more traditional GP techniques have shown,

thanks to extensive experimentations, that generalization is negatively affected by com-

plex solution’s structures giving some evidence that the Occam razor principle is valid

at some extent.

In this regard we give details on a series of techniques recently introduced, in an our pre-

vious work. Using a semantic evaluation they do not admit any duplicate in the semantic

itself, thus strongly limiting the amount of neutral code that can grow in a solution’s

80

List of Figures 81

structure. In turn this is keeping the solution’s growth low or at least always justified by

an advancement in target approximation. Being this approximation constructed using a

geometrical alignment in a translated semantic space, the error space, the framework it-

self has been named ESAGP Error Space Alignments Genetic Programming. One of the

interesting point of ESAGP is that maintain semantic diversity at the population level,

no duplicate is admitted, even the past population. A key feature of ESAGP is that to

discriminate among semantics it is not using a usual metric to compute a distance but

rather shows the utility of using a pseudo-distance approach in particular ESAGP relay

on Semantic Angles. In this thesis we are building on the following characteristics of

ESAGP: (i)it uses geometrical properties to reconstruct the target(ii) it shows a good

generalization ability thanks to its property of filtering out duplicate semantics and thus

keeping solution complexity low (Occam razor principle strongly enforced) (iii) it uses

pseudo-distance to compare semantics thus enabling an equivalence class approach: all

the semantic vectors aligned in the error space are equivalent from the point of view

of target approximation with a geometric approach because they al stay in te same

vector subspace. We want to generalize ESAGP’s properties (i,ii,iii) keeping in consid-

eration the geometric semantic approach of GSGP and thus we propose a novel flexible

framework based on Equivalence Classes.

The approach presented in this thesis proposes these original contributions from the

theoretical point of view. (i) We show how to generalize the use of pseudo-distance

and its usefulness for the comparison of semantic vectors. This flexibility allows also

to craft or learn useful equivalence relationships. (ii) We define a new formal concept

of duplicate semantics based equivalence classes.(iii) We shows a new effective method

of filtering duplicate semantics (iv) thus permitting only a very controlled growth of

the solution’s structural complexity and a consequent good generalization ability. (v)

We simplify the geometric approach in the context of equivalence classes, losing the

guaranteed geometric properties (unimodal fitness landscape and good generalization

ability) but getting a potentially compact and equally general and accurate solutions.

In this thesis, the idea of semantics-based equivalence classes for Genetic Program-

ming (GP) was presented. This idea is general, and it can be implemented in several

different possible ways. In this work, it was implemented by means of two simple GP sys-

tems, called GPPLUS and GPMUL. Each one of these systems uses a different definition

of equivalence. Moreover, filtered versions of these two systems, called FGPPLUS and

FGPMUL, were introduced. In these versions individuals are rejected if at least another

individual belonging to the same equivalence class already exists in the population. Last

but not least, semantic filters have been applied also to a well-known and widely used

GP system, like linear scaling. Experiments to test the performance of the systems

List of Figures 82

proposed have been conducted on seven complex real-life applications. The results ob-

tained can be summarized as follows: when considering the results on unseen test data,

on five out of the seven studied test problems, the systems proposed are better than

(or comparable to) the state-of-the-art of GP for symbolic regression (i.e. geometric se-

mantic GP). Also, on all the test problems taken into account, filters are beneficial for

improving the performance of the systems. Last but not least, the use of filters allows

the studied systems to generate individuals that are significantly smaller, compared to

their unfiltered counterparts.

In the future, we plan to develop more sophisticated definitions of equivalence. Also,

we are currently investigating the concept of “weak” equivalence in which we relax the

property of the equivalence for a number of fitness cases. In other words, we could admit

that two individuals can stay in the same class of equivalence if their output values are

directly proportional on part of the fitness cases, instead of all of them. Last but not

least, we plan to develop a novel GP system, based on the concept of semantics-based

equivalence classes, which is specialized in solving particular tasks of image processing

and pattern recognition.

Appendix A

ESAGP

A.1 Alignment in the Error Space

Let X = {−→x1,−→x2, ...,−→xn} be the set of input data, or fitness cases, of a symbolic regression

problem, and
−→
t = [t1, t2, ..., tn] the vector of the respective expected output or target

values (in other words, for each i = 1, 2, ..., n, ti is the expected output corresponding

to input −→xi). A GP individual (or program) P can be seen as a function that, for each

input vector −→xi returns the scalar value P (−→xi). Following [20], we call semantics of P

to the vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can be represented as a point

in a n-dimensional space, that we call semantic space. Remark that the target vector
−→
t itself is a point in the semantic space and, in general, it does not correspond to the

origin of the Cartesian system (except for the very particular and rare case in which the

expected output is equal to zero for each fitness case).

We now introduce a new notion, clearly related to the one of semantics, that we call

error vector. The error vector of a GP individual P is the vector −→eP = −→sP −
−→
t . It

can be represented as a point in a n-dimensional space, that we call error space (even

though used for different purposes, a similar idea can be found in [?]). Each vector in

the semantic space is translated in the error space by subtracting
−→
t . So, the target is

translated in the error space into the origin of the Cartesian system. It is worth noticing

that, once we have the error vector of an individual P , it is immediate, for instance, to

calculate the root mean square error (RMSE) of P on training data (RMSE =
√∑n

i=1 e
2
i ,

where ei is the ith coordinate of −→eP), a measure that is often used as fitness by standard

GP in symbolic regression problems (see for instance [21]). We now define a new concept,

whose importance will later become clear.

Definition A.1. (Optimally Aligned Individuals). Two GP individuals A and B

are optimally aligned if it exists a scalar constant k such that: −→eA = k · −→eB

83

List of Figures 84

In other words, two individuals A and B are said to be optimally aligned if their re-

spective error vectors are directly proportional, with a proportionality constant k. The

reason why we use the term “aligned” for such individuals becomes clear by looking at

Figure A.1(a), where a simple bi-dimensional error space is represented. In this figure, A

and B are two optimally aligned individuals: the points that represent their respective

error vectors are aligned with each other and with the origin of the Cartesian system.

(a) (b)

Figure A.1: Part (a): Representation of a simple bi-dimensional error space. Indi-
viduals A and B are optimally aligned, i.e. their respective error vectors are directly
proportional. The angle between the error vector of A (as well as B) and the one of C
is θ. Part (b): A simple tri-dimensional error space. We point out that it is possible to
find a point m that is aligned with the error vectors of any pair of individuals A and

B and optimally aligned with a third individual C.

The concept of optimally aligned individuals is important in the context of this paper

because, given any two optimally aligned individuals, we can obtain a globally optimal

solution in a very simple way. Let A and B be two optimally aligned individuals. Then,

directly applying Definition A.1, we have −→eA = k · −→eB. Applying the definition of error

vector, the previous equation can be rewritten as −→sA −
−→
t = k · (−→sB −

−→
t), from which it

follows that
−→
t = 1

1−k ·
−→sA− k

1−k ·
−→sB. This implies that, if we find two optimally aligned

individuals, whose syntactic structure we represent with A and B, and if we know the

proportionality factor k between their respective error vectors, then individual whose

syntactic structure is:

Popt =
1

1− k
·A− k

1− k
·B (A.1)

has a semantic vector that perfectly corresponds to target
−→
t , and thus it is a globally

optimal solution. Interestingly, this property holds independently from the quality (for

instance measured by means of the RMSE) of A and B: even two extremely “bad”

individuals (in terms of RMSE), if they are optimally aligned, can be used to produce a

globally optimal solution. As a direct consequence, the new objective of GP can now be

to find two optimally aligned individuals, instead of directly finding a globally optimal

solution.

List of Figures 85

This raises at least the following two questions: (1) How can we use GP to look for a pair

of optimally aligned individuals? (2) Is searching for two optimally aligned individuals

easier for GP than directly searching for a globally optimal solution? The answer to

question (1) is that several different strategies can be adopted. In this paper, which

to the best of our knowledge represents the first effort of using GP to look for two

optimally aligned individuals, we propose the ESAGP framework introduced in the

following sections. Section ?? contains a discussion of possible alternative strategies.

In order to answer question (2), we perform experiments where an instance of ESAGP,

whose goal is to find a pair of optimally aligned individuals, is compared with ST-GP [21]

and with GS-GP [77].

A.2 One Step Error Space Alignment GP: ESAGP-1

ESAGP-1 is based on the idea that GP should work with the objective of minimizing

the angle between the error vectors of pairs of individuals (looking for a pair for which

this angle is equal to zero). Figure A.1(a) graphically represents the angle θ between the

error vectors of individuals A (as well as B) and C. Remembering that θ = arccos((−→eA×
−→eC)/(||−→eA|| · ||−→eC ||)) (where × represents the scalar product between two vectors and

||−→v || is the Euclidean norm of vector −→v) the angle between the error vectors of two

individuals is easy to calculate once we have their semantics. It is worth emphasizing

that the objective of ESAGP-1 is to find optimally aligned individuals, regardless of

their individual quality (for instance, as measured by the RMSE). To achieve this goal,

we follow two ideas: (1) all the individuals found during the evolution, and not only the

ones in the population at each generation, can be potential members of an optimally

aligned pair; (2) the search cannot be driven by a measure of distance to the target

in the semantic space (like the RMSE), but instead by a different fitness function that

promotes the discovery of optimally aligned individuals.

To implement idea (1), ESAGP-1 maintains an archive of all the “semantically new”

individuals that have been found during the GP run. Every time a new individual P

is generated, the algorithm checks whether it is optimally aligned with any of the indi-

viduals already in the archive. If it is not, P is added to the archive, unless the archive

already contains an individual with the same semantics, and the algorithm continues.

Otherwise, the algorithm terminates returning the newly found pair of optimally aligned

individuals. In [2] we present experimental results, reporting an RMSE value at each

generation for the ESAGP framework. That error is obtained like this: at each genera-

tion, we consider the pair of individuals (A,B) such that A belongs to the population

and B belongs to the archive, and such that the angle between −→eA and −→eB is minimum.

List of Figures 86

Then, we construct the individual that approximates an optimal solution by applying

Equation (A.1). In order to do that, we need a value for the scalar constant k. Given that

A and B are not optimally aligned, −→eA and −→eB are not perfectly proportional, so k can

only be approximated. Let a1, a2, ..., an be the coordinates of −→eA and b1, b2, ..., bn the co-

ordinates of −→eB. In this work, we use as k the median of the values a1/b1, a2/b2, ..., an/bn.

We remark that this RMSE value is only calculated for comparing the results returned

by the ESAGP framework with ST-GP and GS-GP. It is never used for selection or in

any other way during the evolution.

To implement idea (2), ESAGP-1 uses a fitness function that has no relationship with

the distance to the target in the semantic space. To define this new fitness function,

ESAGP-1 calculates a particular point in the error space, that we call center of attrac-

tion, or simply attractor. The fitness of an individual is the angle between its error

vector and the attractor, and it has to be minimized (in other words, small angles are

better than large ones). The attractor must be chosen in such a way to promote the

evolution of optimally aligned individuals. Our idea is to choose a point that, informally,

represents the majority of the individuals in a population, standing “in the middle of”

an area where most of the error vectors of the individuals in the population are found.

Therefore, the objective of the algorithm becomes driving the population towards this

central point. We use as attractor the following vector: −→a =
∑

P∈Pop
−→eP /||−→eP || where

Pop is the current population and ||−→v || is the Euclidean norm of vector −→v . In principle,

the attractor could be calculated only once in the beginning of the run, using the initial

population, or it could change dynamically during the run, for instance recalculating it

at each generation (or at prefixed intervals). We have evaluated both alternatives in a set

of preliminary experiments. The results suggested that modifying the attractor during

the run does not significantly affect the performance of the algorithm. For this reason,

in this paper we report the results obtained by fixing the attractor in the beginning of

the run, using the individuals in the initial population.

Besides the novel fitness function, another interesting characteristic that distinguishes

ESAGP-1 from standard GP is the procedure that forms the pairs of individuals for

mating. ESAGP-1 uses a strategy that encourages semantic diversity, that we call or-

thogonal coupling. Let d be the dimension of (i.e. the number of individuals belonging

to) the population. Orthogonal coupling works by performing d independent tourna-

ments (using the standard tournament selection algorithm), allowing us to generate a

repository of d parents. Subsequently, an iterative process is performed where, at each

iteration, one parent A is picked at random and its partner B is chosen as the indi-

vidual currently in the repository such that the angle between −→eA and −→eB is the closest

to 90◦. A and B are then removed from the repository and the process iterated until

the repository is empty. Preliminary tests (not shown) have revealed that orthogonal

List of Figures 87

coupling does not help the performance of standard GP on the real-life problems tackled

here. However, when used with a preliminary implementation of ESAGP-1, it allowed

significant improvements. Thus we decided to use orthogonal coupling.

A.3 Two Steps Error Space Alignment GP: ESAGP-2

The main information we gathered from the experiments performed with ESAGP-1

(whose results are discussed in [2]) is that searching for two optimally aligned individuals

is an easier task than directly searching for a globally optimal individual (at least for the

studied problems). This opens an array of new and promising ways of easing the task of

GP, and a question naturally arises: given two individuals whose error vectors are not

aligned with the origin of the Cartesian system, can we still use them to build an optimal

solution? Answering positively to this question is the main objective of ESAGP-2. The

idea is shown in Figure A.1(b). Let us assume that we have two individuals, like A

and B in the figure, for which the straight line joining the error vectors is not aligned

with the origin of the Cartesian system. It is possible to find a point −→m that lies on

the straight line joining −→eA and −→eB and that is aligned with the error vector of another

individual C and the origin. This property holds for any three points that lie on a

bi-dimensional plane intersecting the origin. This allows us to extend Definition A.1 to

the bi-dimensional case.

Definition A.2. (Optimally Coplanar Individuals). Three GP individuals A, B

and C are optimally coplanar if the bi-dimensional plane on which −→eA, −→eB and −→eC lie

also intersects the origin of the Cartesian system in the error space.

Given three optimally coplanar individuals A, B and C, we can obtain an equation to

express target
−→
t , and consequently we can find a globally optimal solution analytically.

In fact, given that −→eA and −→eB are aligned with each other and with −→m, applying the

same reasoning as in Section A.1, we can write: −→sA−−→n = w · (−→sB −−→n), where −→n is the

vector that corresponds to −→m in the semantic space (i.e. −→m = −→n −−→t) and w is a scalar

constant. Analogously, the following relationship holds between −→n and the semantics

of C: −→n −−→t = k · (−→sC −
−→
t), where k is a scalar constant. Now we can obtain −→n from

the first equation, replace it in the second one and solve it to obtain
−→
t . In this way, we

find:
−→
t =

1

(1− k)(1− w)
· −→sA −

w

(1− k)(1− w)
· −→sB −

k

1− k
· −→sC (A.2)

Equation (A.2) can also be written in the following implicit form:

w · −→sB − w · k · −→sC + w · k · −→t − w · −→t + k · −→sC − k ·
−→
t +
−→
t −−→sA = 0 (A.3)

List of Figures 88

Equation (A.3) can be used to find the scalar values k and w. In particular, let a1

and a2 be two different coordinates of vector −→sA. Analogously, let b1 and b2 be the

corresponding coordinates of vector −→sB and c1 and c2 the corresponding ones in vector
−→sC . We can write the following system of equations:w · b1− w · k · c1 + w · k · t1− w · t1 + k · c1− k · t1 + t1− a1 = 0

w · b2− w · k · c2 + w · k · t2− w · t2 + k · c2− k · t2 + t2− a2 = 0
(A.4)

Considering k and w as unknown values, we can solve the system in Equation (A.4),

obtaining:

k =
a1 · b2− a2 · b1− a1 · t2 + a2 · t1 + b1 · t2− b2 · t1

a1 · c2− a2 · c1− b1 · c2 + b2 · c1− a1 · t2 + a2 · t1 + b1 · t2− b2 · t1
(A.5)

w =
a1 · c2− a2 · c1− a1 · t2 + a2 · t1 + c1 · t2− c2 · t1
b1 · c2− b2 · c1− b1 · t2 + b2 · t1 + c1 · t2− c2 · t1

(A.6)

At this point, the values of k and w obtained in Equations (A.5) and (A.6) can be

replaced in Equation (A.2), and this allows us to obtain a globally optimal solution (i.e.

an individual whose semantics is exactly equivalent to the target).

In order to write the system in Equation (A.4), we have to choose two particular coor-

dinates of −→sA, −→sB and −→sC . It is worth pointing out that, if A, B and C are optimally

coplanar, the obtained k and w are the same independently on the chosen pair of co-

ordinates. But given that this event is quite rare, and more often this situation is only

approximated, the choice of the coordinates may be important. Extending the approach

used by ESAGP-1, we exhaustively consider all the possible pairs of coordinates; for each

one of these pairs, we calculate the values of k and w as in Equations (A.5) and (A.6)

and the values used in Equation (A.2) to approximate a globally optimal solution are

the medians of these calculated values.

Basically, ESAGP-2 works as ESAGP-1 with the following two major differences: (1) the

attractor, this time, is not a straight line, but a bi-dimensional plane; (2) every time a

new individual P is generated, it is compared with all the possible pairs of individuals

in the archive, looking for a pair of individuals that are optimally coplanar with P .

To define the attractor (point (1)), ESAGP-2 calculates a plane that informally lies

“in the middle” of the error vectors of the individuals in the population. To do this,

we use a k-means clustering method [78] to partition the error vectors of the initial

population into two groups. Then we use the centroids of these two clusters to calculate

the attractor. In particular, the attractor is the (unique) bi-dimensional plane that

intersects these two centroids and the origin of the Cartesian system in the error space.

The implementation of the k-means algorithm we have used is the one provided by the

List of Figures 89

MATLAB environment [79], in which we have used angles, instead of Euclidean distance

or other types of distances, for calculating the similarity between the vectors (this is an

option that MATLAB provides). All the other parameters of the k-means algorithm

were set to the default values of MATLAB. Once the attractor is defined, ESAGP-2

uses as fitness the angle between the error vector of the individual and the attractor.

In order to calculate an angle between a vector and a plane, we use the SVD (Singular

Value Decomposition) method, exactly as presented in [80].

To control whether three optimally coplanar individuals have been found (point (2)),

every time a new individual P is generated, all the possible pairs of error vectors in

the archive are exhaustively analyzed and the bi-dimensional plane intersecting those

vectors and the origin of the Cartesian system is generated. Then we check whether −→eP
also belongs to that plane. Analogously to ESAGP-1, ESAGP-2 terminates if three

optimally coplanar individuals are found. Otherwise, if the semantics of P is unique,

P is added to the archive and the algorithm continues.

Besides the previously mentioned differences between ESAGP-2 and ESAGP-1, a third

one exists: with ESAGP-2 it may happen that the size of the archive grows considerably

during the evolution, and the exhaustive analysis of all the pairs may slow down the

process excessively (a circumstance that we have never observed for ESAGP-1 in our

experiments). Thus, in ESAGP-2 we have limited the maximum size of the archive using

a predefined parameter M . When the number of individuals in the archive reaches M ,

every time an individual must be added to the archive another one is removed. The

version we present in this paper removes the individual that has the largest angle with

the attractor. In our experiments, we have empirically observed that a good compromise

between computational speed and effectiveness of the method could be obtained by

setting M = 80. Thus, we have used this value here. However, the influence of the

archive size in the overall performance of the system has to be investigated more deeply

in the future.

Generalizing to µ dimensions. If we compare the idea that inspired ESAGP-1

(graphically represented in Figure A.1(a)) with the one of ESAGP-2 (represented in

Figure A.1(b)), we can informally say that the transition from ESAGP-1 to ESAGP-2

consisted in “adding one dimension”: in ESAGP-1 we look for two points that must be

aligned on (i.e. must belong to) a straight line intersecting the origin of the Cartesian

system; in ESAGP-2 we look for three points that must belong to a bi-dimensional plane

intersecting the origin. Interestingly, this last property can also be seen as a composition

of the elementary property (alignment) that has to be respected on a straight line in

ESAGP-1: −→eA, −→eB and −→m have to be aligned; −→m, −→eC and the origin must be aligned,

List of Figures 90

too. It is not hard to convince oneself that this process can be iterated (maintaining

the same informal terminology, we could say that “more dimensions can be added”),

up to a point in which the number of used dimensions is equal to the number of fitness

cases of the regression problem we want to solve. In other words, for any µ between 1

and the number of fitness cases, it is possible to define a GP system whose objective is

to find µ+ 1 individuals that belong to the same µ-dimensional hyperplane intersecting

the origin (a property that can also be seen as the composition of µ alignments), which

we hypothetically call ESAGP-µ. Although in this paper we focus on ESAGP-1 and

ESAGP-2, as a first step in this research path, the definition of a general strategy allow-

ing us to obtain an ESAGP-µ for any possible number of dimensions µ is an important

part of our current research. In that study, the issue of computational complexity has

to be carefully considered: both the complexity of the system of equations needed to

find the expression of the global optimum and the growth of the archive may become

serious problems as µ increases. Thus, while ESAGP-1 has a computational complexity

comparable to ST-GP and the one of ESAGP-2 can be easily controlled by limiting

the size of the archive, ESAGP-µ, for large values of µ, may turn out to have a large

computational cost, and implementation strategies to reduce it may be necessary.

. Devo mettere anche i risultatai sperimentali del vecchio paper ?

Bibliography

[1] Stefano Ruberto, Leonardo Vanneschi, and Mauro Castelli. Genetic programming

with semantic equivalence classes. Swarm and Evolutionary Computation, currently

under evaluation, 2017.

[2] Stefano Ruberto, Leonardo Vanneschi, Mauro Castelli, and Sara Silva. Esagp–a

semantic gp framework based on alignment in the error space. In Genetic Program-

ming, pages 150–161. Springer, 2014.

[3] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford University Press, 1996.

ISBN 9780195099713.

[4] W.B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, 2002.

ISBN 9783540424512.

[5] S.M. Gustafson. An analysis of diversity in genetic programming. PhD thesis,

University of Nottingham, 2004.

[6] Justinian P. Rosca. Genetic programming exploratory power and the discovery of

functions. In John Robert McDonnell, Robert G. Reynolds, and David B. Fogel,

editors, Evolutionary Programming IV Proceedings of the Fourth Annual Conference

on Evolutionary Programming, pages 719–736, San Diego, CA, USA, 1-3 March

1995. MIT Press. ISBN 0-262-13317-2. URL ftp://ftp.cs.rochester.edu/pub/u/

rosca/gp/95.ep.exploratory.ps.gz.

[7] Justinian P. Rosca. Entropy-driven adaptive representation. In Justinian P. Rosca,

editor, Proceedings of the Workshop on Genetic Programming: From Theory to

Real-World Applications, pages 23–32, Tahoe City, California, USA, 9 July 1995.

URL ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.ml.gpw.ps.gz.

[8] N. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic pro-

gramming. Genetic Programming, pages 134–145, 2008.

91

ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.ep.exploratory.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.ep.exploratory.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/95.ml.gpw.ps.gz

Bibliography 92

[9] Krzysztof Krawiec and Pawel Lichocki. Approximating geometric crossover in se-

mantic space. In Guenther Raidl, Franz Rothlauf, Giovanni Squillero, Rolf Drech-

sler, Thomas Stuetzle, Mauro Birattari, Clare Bates Congdon, Martin Midden-

dorf, Christian Blum, Carlos Cotta, Peter Bosman, Joern Grahl, Joshua Knowles,

David Corne, Hans-Georg Beyer, Ken Stanley, Julian F. Miller, Jano van Hemert,

Tom Lenaerts, Marc Ebner, Jaume Bacardit, Michael O’Neill, Massimiliano Di

Penta, Benjamin Doerr, Thomas Jansen, Riccardo Poli, and Enrique Alba, ed-

itors, GECCO ’09: Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pages 987–994, Montreal, 8-12 July 2009. ACM. doi:

doi:10.1145/1569901.1570036.

[10] Lawrence Beadle and Colin G. Johnson. Semantic analysis of program initialisation

in genetic programming. Genetic Programming and Evolvable Machines, 10(3):307–

337, September 2009. ISSN 1389-2576. doi: doi:10.1007/s10710-009-9082-5. URL

http://www.springerlink.com/content/yn5p45723l6tr487.

[11] D. Jackson. Phenotypic diversity in initial genetic programming populations. Ge-

netic Programming, pages 98–109, 2010.

[12] D. Jackson. Promoting phenotypic diversity in genetic programming. Parallel

Problem Solving from Nature–PPSN XI, pages 472–481, 2011.

[13] L. Beadle and C.G. Johnson. Semantically driven crossover in genetic program-

ming. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on

Computational Intelligence). IEEE Congress on, pages 111–116. IEEE, 2008.

[14] S. Gustafson, E.K. Burke, and N. Krasnogor. On improving genetic program-

ming for symbolic regression. In Evolutionary Computation, 2005. The 2005 IEEE

Congress on, volume 1, pages 912–919. IEEE, 2005.

[15] Q. Nguyen, X. Nguyen, and M. O Neill. Semantic aware crossover for genetic

programming: the case for real-valued function regression. Genetic Programming,

pages 292–302, 2009.

[16] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, R. I. McKay, and Edgar

Galvan-Lopez. Semantically-based crossover in genetic programming: application

to real-valued symbolic regression. Genetic Programming and Evolvable Machines,

12(2):91–119, June 2011. ISSN 1389-2576. doi: doi:10.1007/s10710-010-9121-2.

[17] R. Poli, L. Vanneschi, W.B. Langdon, and N.F. McPhee. Theoretical results in

genetic programming: the next ten years? Genetic Programming and Evolvable

Machines, 11(3):285–320, 2010.

http://www.springerlink.com/content/yn5p45723l6tr487

Bibliography 93

[18] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465 – 471,

1978. ISSN 0005-1098. doi: 10.1016/0005-1098(78)90005-5. URL http://www.

sciencedirect.com/science/article/pii/0005109878900055.

[19] Alberto Moraglio, Krzysztof Krawiec, and Colin Johnson. Geometric semantic

genetic programming. In Christian Igel, Per Kristian Lehre, and Carsten Witt, edi-

tors, The 5th workshop on Theory of Randomized Search Heuristics, ThRaSH’2011,

Copenhagen, Denmark, July 8-9 2011. URL http://www.thrash-workshop.org/

slides/moraglio.pdf.

[20] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. Geometric semantic

genetic programming. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy

Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Parallel Prob-

lem Solving from Nature, PPSN XII (part 1), volume 7491 of LNCS, pages 21–31.

Springer, 2012.

[21] John R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[22] Alan M Turing. Computing machinery and intelligence. Mind, 59(236):433–460,

1950.

[23] Riccardo Poli and John Koza. Genetic Programming. Springer, 2014.

[24] JohnR. Koza. Genetic programming as a means for programming computers by

natural selection. Statistics and Computing, 4:87–112, 1994. ISSN 0960-3174. doi:

10.1007/BF00175355.

[25] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Professional, 1 edition, January 1989. ISBN 0201157675.

URL http://www.worldcat.org/isbn/0201157675.

[26] P. Nordin, W. Banzhaf, et al. Evolving turing-complete programs for a register

machine with self-modifying code. In Genetic algorithms: proceedings of the sixth

international conference (ICGA95), pages 318–325. Pittsburgh, PA, USA, 1995.

[27] L. Spector, J. Klein, and M. Keijzer. The push3 execution stack and the evolution

of control. In Proceedings of the 2005 conference on Genetic and evolutionary

computation, pages 1689–1696. ACM, 2005.

[28] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A field

guide to genetic programming. Lulu. com, 2008.

http://www.sciencedirect.com/science/article/pii/0005109878900055
http://www.sciencedirect.com/science/article/pii/0005109878900055
http://www.thrash-workshop.org/slides/moraglio.pdf
http://www.thrash-workshop.org/slides/moraglio.pdf
http://www.worldcat.org/isbn/0201157675

Bibliography 94

[29] J.R. Koza. A genetic approach to the truck backer upper problem and the inter-

twined spiral problem. In Neural Networks, 1992. IJCNN., International Joint

Conference on, volume 4, pages 310–318. IEEE, 1992.

[30] P. Nordin, W. Banzhaf, et al. Complexity compression and evolution. In Genetic

Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages

310–317, 1995.

[31] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns

and destructive crossover in genetic programming. In Justinian P. Rosca, editor,

Proceedings of the Workshop on Genetic Programming: From Theory to Real-World

Applications, pages 6–22, Tahoe City, California, USA, 9 July 1995. URL http:

//citeseer.ist.psu.edu/nordin95explicitly.html.

[32] Peter John Angeline. Genetic programming and emergent intelligence. In Ken-

neth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages

75–98. MIT Press, 1994. URL http://citeseer.ist.psu.edu/187189.html.

[33] Terence Soule and James A. Foster. Removal bias: a new cause of code growth

in tree based evolutionary programming. In 1998 IEEE International Conference

on Evolutionary Computation, pages 781–786, Anchorage, Alaska, USA, 5-9 May

1998. IEEE Press. ISBN 0-7803-4869-9. doi: doi:10.1109/ICEC.1998.700151. URL

http://citeseer.ist.psu.edu/313655.html.

[34] W. B. Langdon and R. Poli. Fitness causes bloat. Technical Report CSRP-97-

09, University of Birmingham, School of Computer Science, Birmingham, B15

2TT, UK, 24 February 1997. URL ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/

CSRP-97-09.ps.gz.

[35] Riccardo Poli, William B Langdon, and Stephen Dignum. On the limiting distribu-

tion of program sizes in tree-based genetic programming. In European Conference

on Genetic Programming, pages 193–204. Springer, 2007.

[36] S. Dignum and R. Poli. Generalisation of the limiting distribution of program

sizes in tree-based genetic programming and analysis of its effects on bloat. In

Proceedings of the 9th annual conference on Genetic and evolutionary computation,

pages 1588–1595. ACM, 2007.

[37] T.M. Mitchell et al. Machine learning, 1997.

[38] S. Silva, S. Dignum, and L. Vanneschi. Operator equalisation for bloat free genetic

programming and a survey of bloat control methods. Genetic Programming and

Evolvable Machines, 13(2):197–238, 2012.

http://citeseer.ist.psu.edu/nordin95explicitly.html
http://citeseer.ist.psu.edu/nordin95explicitly.html
http://citeseer.ist.psu.edu/187189.html
http://citeseer.ist.psu.edu/313655.html
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-09.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-09.ps.gz

Bibliography 95

[39] N.F. McPhee and N.J. Hopper. Analysis of genetic diversity through population

history. In Proceedings of the Genetic and Evolutionary Computation Conference,

volume 2, pages 1112–1120. Citeseer, 1999.

[40] N.T. Hien and N.X. Hoai. A brief overview of population diversity measures in ge-

netic programming. In Proc. 3rd Asian-Pacific Workshop on Genetic Programming,

Hanoi, Vietnam, pages 128–139. Citeseer, 2006.

[41] Una-May O’Reilly. Using a distance metric on genetic programs to understand

genetic operators. In IEEE International Conference on Systems, Man, and

Cybernetics, Computational Cybernetics and Simulation, volume 5, pages 4092–

4097, Orlando, Florida, USA, 12-15 October 1997. ISBN 0-7803-4053-1. URL

http://ieeexplore.ieee.org/iel4/4942/13793/00637337.pdf.

[42] Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. Reducing bloat and

promoting diversity using multi-objective methods. In Lee Spector, Erik D. Good-

man, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen,

Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors,

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2001), pages 11–18, San Francisco, California, USA, 7-11 July 2001. Morgan

Kaufmann. ISBN 1-55860-774-9. URL http://www.demo.cs.brandeis.edu/papers/

rbpd gecco01.pdf.

[43] Aniko Ekart and S. Z. Nemeth. A metric for genetic programs and fitness shar-

ing. In Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian F. Miller,

Peter Nordin, and Terence C. Fogarty, editors, Genetic Programming, Proceedings

of EuroGP’2000, volume 1802 of LNCS, pages 259–270, Edinburgh, 15-16 April

2000. Springer-Verlag. ISBN 3-540-67339-3. URL http://www.sztaki.hu/∼ekart/

new metric.ps.

[44] Maarten Keijzer. Efficiently representing populations in genetic programming. In

Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming

2, chapter 13, pages 259–278. MIT Press, Cambridge, MA, USA, 1996. ISBN 0-

262-01158-1. URL http://cisnet.mit.edu/Advances-in-Genetic-Programming/276.

[45] M. Looks. On the behavioral diversity of random programs. In Proceedings of the

9th annual conference on Genetic and evolutionary computation, pages 1636–1642.

ACM, 2007.

[46] L. Beadle and C.G. Johnson. Semantically driven mutation in genetic programming.

In Evolutionary Computation, 2009. CEC 09. IEEE Congress on, pages 1336–1342.

IEEE, 2009.

http://ieeexplore.ieee.org/iel4/4942/13793/00637337.pdf
http://www.demo.cs.brandeis.edu/papers/rbpd_gecco01.pdf
http://www.demo.cs.brandeis.edu/papers/rbpd_gecco01.pdf
http://www.sztaki.hu/~ekart/new_metric.ps
http://www.sztaki.hu/~ekart/new_metric.ps
http://cisnet.mit.edu/Advances-in-Genetic-Programming/276

Bibliography 96

[47] Leonardo Vanneschi, Mauro Castelli, Luca Manzoni, and Sara Silva. A new imple-

mentation of geometric semantic GP and its application to problems in pharma-

cokinetics. In Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Uyar, and

Bin Hu, editors, Proceedings of the 16th European Conference on Genetic Program-

ming, EuroGP 2013, volume 7831 of LNCS, pages 205–216, Vienna, Austria, 3-5

April 2013. Springer Verlag.

[48] Ivo Gonçalves, Sara Silva, and Carlos M. Fonseca. On the Generalization Ability

of Geometric Semantic Genetic Programming, pages 41–52. Springer International

Publishing, Cham, 2015. ISBN 978-3-319-16501-1. doi: 10.1007/978-3-319-16501-1

4. URL http://dx.doi.org/10.1007/978-3-319-16501-1 4.

[49] Mauro Castelli, Davide Castaldi, Ilaria Giordani, Sara Silva, Leonardo Vanneschi,

Francesco Archetti, and Davide Maccagnola. An efficient implementation of geomet-

ric semantic genetic programming for anticoagulation level prediction in pharma-

cogenetics. In 16th Portuguese Conference on Artificial Intelligence (EPIA 2013).

Springer, May 2013.

[50] Alberto Moraglio. An efficient implementation of gsgp using higher-order functions

and memoization. In SMGP workshop at PPSN, 2014.

[51] Mauro Castelli, Sara Silva, and Leonardo Vanneschi. A c++ framework for geomet-

ric semantic genetic programming. Genetic Programming and Evolvable Machines,

16(1):73–81, 2015.

[52] Tomasz P Pawlak. Combining semantically-effective and geometric crossover op-

erators for genetic programming. In International Conference on Parallel Problem

Solving from Nature, pages 454–464. Springer, 2014.

[53] Krzysztof Krawiec and Tomasz Pawlak. Locally geometric semantic crossover: a

study on the roles of semantics and homology in recombination operators. Genetic

Programming and Evolvable Machines, 14(1):31–63, 2013.

[54] Tomasz P Pawlak. Competent algorithms for geometric semantic genetic program-

ming. review. PhD thesis. Poznan, Poland: Poznan University of Technology, 2015.

[55] Tomasz P Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Semantic backpropa-

gation for designing search operators in genetic programming. IEEE Transactions

on Evolutionary Computation, 19(3):326–340, 2015.

[56] Quang Uy Nguyen, Tuan Anh Pham, Xuan Hoai Nguyen, and James McDer-

mott. Subtree semantic geometric crossover for genetic programming. Genetic

Programming and Evolvable Machines, 17(1):25–53, 2016. ISSN 1573-7632. doi:

10.1007/s10710-015-9253-5. URL http://dx.doi.org/10.1007/s10710-015-9253-5.

http://dx.doi.org/10.1007/978-3-319-16501-1_4
http://dx.doi.org/10.1007/s10710-015-9253-5

Bibliography 97

[57] Tomasz P Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Review and compara-

tive analysis of geometric semantic crossovers. Genetic Programming and Evolvable

Machines, 16(3):351–386, 2015.

[58] Candida Ferreira. Genetic representation and genetic neutrality in gene expression

programming. Advances in Complex Systems, 5(04):389–408, 2002.

[59] Marcin Szubert, Anuradha Kodali, Sangram Ganguly, Kamalika Das, and Josh C

Bongard. Reducing antagonism between behavioral diversity and fitness in semantic

genetic programming. In Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference, pages 797–804. ACM, 2016.

[60] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through

the search for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[61] John R Koza. Hierarchical automatic function definition in genetic programming.

In FOGA, pages 297–318, 1992.

[62] Una-May O’Reilly and Franz Oppacher. The troubling aspects of a building block

hypothesis for genetic programming. In FOGA, pages 73–88, 1994.

[63] Justinian P. Rosca. Analysis of complexity drift in genetic programming. In Genetic

Programming 1997: Proceedings of the Second Annual Conference, pages 286–294.

Morgan Kaufmann, 1997.

[64] Riccardo Poli and William B. Langdon. Schema theory for genetic program-

ming with one-point crossover and point mutation. Evol. Comput., 6(3):231–

252, September 1998. ISSN 1063-6560. doi: 10.1162/evco.1998.6.3.231. URL

http://dx.doi.org/10.1162/evco.1998.6.3.231.

[65] Riccardo Poli. General schema theory for genetic programming with subtree-

swapping crossover. In European Conference on Genetic Programming, pages 143–

159. Springer, 2001.

[66] Nicholas Freitag McPhee and Riccardo Poli. Using schema theory to explore interac-

tions of multiple operators. In Proceedings of the 4th Annual Conference on Genetic

and Evolutionary Computation, pages 853–860. Morgan Kaufmann Publishers Inc.,

2002.

[67] Riccardo Poli and Nicholas Freitag McPhee. General schema theory for genetic

programming with subtree-swapping crossover: Part ii. Evolutionary Computation,

11(2):169–206, 2003.

http://dx.doi.org/10.1162/evco.1998.6.3.231

Bibliography 98

[68] Kumara Sastry, Una-May OReilly, David E Goldberg, and David Hill. Building-

block supply in genetic programming. In Genetic Programming Theory and Prac-

tice, pages 137–154. Springer, 2003.

[69] Ivo Goncalves, Sara Silva, Carlos M. Fonseca, and Mauro Castelli. Arbitrarily close

alignments in the error space: a geometric semantic genetic programming approach.

In Tobias Friedrich, Frank Neumann, Andrew M. Sutton, Martin Middendorf, Xi-

aodong Li, Emma Hart, Mengjie Zhang, Youhei Akimoto, Peter A. N. Bosman,

Terry Soule, Risto Miikkulainen, Daniele Loiacono, Julian Togelius, Manuel Lopez-

Ibanez, Holger Hoos, Julia Handl, Faustino Gomez, Carlos M. Fonseca, Heike Traut-

mann, Alberto Moraglio, William F. Punch, Krzysztof Krawiec, Zdenek Vasicek,

Thomas Jansen, Jim Smith, Simone Ludwig, JJ Merelo, Boris Naujoks, Enrique

Alba, Gabriela Ochoa, Simon Poulding, Dirk Sudholt, and Timo Koetzing, editors,

GECCO 2016 Companion Volume, pages 99–100, Denver, USA, 20-24 July 2016.

ACM. doi: doi:10.1145/2908961.2908988.

[70] Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear

scaling. In Genetic programming, pages 70–82. Springer, 2003.

[71] T. Brooks, D. Pope, and A. Marcolini. Airfoil self-noise and prediction. Technical

report, NASA RP-1218, 1989.

[72] Mauro Castelli, Leonardo Vanneschi, and Sara Silva. Prediction of high performance

concrete strength using genetic programming with geometric semantic genetic op-

erators. Expert Systems with Applications, 40(17):6856–6862, 2013.

[73] Mauro Castelli, Leonardo Vanneschi, and Sara Silva. Prediction of the unified

Parkinson’s disease rating scale assessment using a genetic programming system

with geometric semantic genetic operators. Expert Systems with Applications, 41

(10):4608 – 4616, 2014. ISSN 0957-4174.

[74] Mauro Castelli, Leonardo Vanneschi, Luca Manzoni, and Aleš Popovič. Semantic

genetic programming for fast and accurate data knowledge discovery. Swarm and

Evolutionary Computation, 26:1–7, 2016.

[75] I-C Yeh. Simulation of concrete slump using neural networks. Proceedings of the

Institution of Civil Engineers-Construction Materials, 162(1):11–18, 2009.

[76] I. Ortigosa, R. López, and J. Garćıa. A neural networks approach to residuary

resistance of sailing yachts prediction. Proceedings of the International Conference

on Marine Engineering MARINE, 2007:250, 2007.

Bibliography 99

[77] Leonardo Vanneschi, Mauro Castelli, Luca Manzoni, and Sara Silva. A new im-

plementation of geometric semantic GP and its application to problems in phar-

macokinetics. In Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Uyar,

and Bin Hu, editors, Proceedings of EuroGP 2013, LNCS, pages 205–216. Springer,

2013.

[78] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[79] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,

2010.

[80] Perake Wedin. On angles between subspaces of a finite dimensional inner product

space. In Bo Kagstrom and Axel Ruhe, editors, Matrix Pencils, volume 973 of

Lecture Notes in Mathematics, pages 263–285. Springer Berlin Heidelberg, 1983.

ISBN 978-3-540-11983-8. doi: 10.1007/BFb0062107. URL http://dx.doi.org/10.

1007/BFb0062107.

http://dx.doi.org/10.1007/BFb0062107
http://dx.doi.org/10.1007/BFb0062107

	List of Figures
	1 Introduction
	1.1 Semantic genetic programming and open problems
	1.2 Equivalence Classes in Genetic Programming
	1.3 Contributions overview
	1.4 Structure of this dissertation

	2 Introduction to genetic programming
	2.1 Genetic Programming
	2.1.1 Introduction to Genetic Programming
	2.1.2 Main features
	2.1.3 GP solutions structures : the trees
	2.1.3.1 Functional symbols
	2.1.3.2 Terminal symbols
	2.1.3.3 Tree structures

	2.1.4 The fitness function.
	2.1.4.1 Fitness function example in regression

	2.1.5 Initialization
	2.1.5.1 Initialization methods: grow and full
	2.1.5.2 Ramped Half-and-Half Method

	2.1.6 Selection
	2.1.6.1 Tournament selection

	2.1.7 Genetic operators
	2.1.7.1 Crossover
	2.1.7.2 Mutation

	2.2 Introducing Genetic Programming Open Problems
	2.2.1 Bloat
	2.2.2 Overfitting
	2.2.3 Diversity
	2.2.3.1 Genotype Diversity
	2.2.3.2 Phenotype diversity: investigating semantic.

	2.2.4 Semantic in Genetic Programming
	2.2.4.1 Semantic analysis during initialization
	2.2.4.2 Semantic in selection
	2.2.4.3 Semantic genetic operators.

	3 Research Contribution
	3.1 More on open problems and semantic Genetic Programming
	3.1.1 Geometric Semantic Genetic Programming
	3.1.2 ESAGP

	3.2 Proposal

	4 Semantic Equivalence Classes Genetic Programming
	4.1 Methodology
	4.1.1 GPPLUS: GP by Translation
	4.1.2 GPMUL: GP by proportions

	5 Experimental study
	5.0.1 Systems and test problems
	5.0.2 Experimental Results

	6 Conclusions and Future Work
	A ESAGP
	A.1 Alignment in the Error Space
	A.2 One Step Error Space Alignment GP: ESAGP-1
	A.3 Two Steps Error Space Alignment GP: ESAGP-2
	Generalizing to dimensions.

