
SSBSE 2013, Guenther Ruhe and Yuanyuan Zhang eds., Saint Petersburg, 24-26 Aug.

Applying Genetic Improvement to MiniSAT

Justyna Petke, William B. Langdon, Mark Harman

CREST Centre, University College London,
Gower Street, London,

WC1E 6BT,
United Kingdom

Abstract. Genetic Programming (GP) has long been applied to several SBSE
problems. Recently there has been much interest in using GP and its variants
to solve demanding problems in which the code evolved by GP is intended for
deployment. This paper investigates the application of genetic improvement to
a challenging problem of improving a well-studied system: a Boolean satisfia-
bility (SAT) solver called MiniSAT. Many programmers have tried to make this
very popular solver even faster and a separate SAT competition track has been
created to facilitate this goal. Thus genetically improving MiniSAT poses a great
challenge. Moreover, due to a wide range of applications of SAT solving tech-
nologies any improvement could have a great impact. Our initial results show
that there is some room for improvement. However, a significantly more efficient
version of MiniSAT is yet to be discovered.

Keywords: Genetic Improvement, GISMOE, SAT

1 Introduction
Genetic improvement [2,8,9,12,15] seeks to use SBSE to automatically improve pro-
grams according to one or more fitness function. Typically, an evolutionary algorithm
has been used based on genetic programming [2,12,15] or a hybrid of genetic program-
ming and other techniques [8,9].

This paper investigates the application of genetic improvement to a challenging
problem of improving the MiniSAT [5] system. This is a significant challenge, because
MiniSAT has been iteratively improved over many years by expert human programmers,
to address the demand for more efficient SAT solvers and also in response to repeated
calls for competition entries in the MiniSat hack track of SAT competitions [1].

We therefore chose MiniSAT because it represents one of the most stringent chal-
lenges available for automated genetic improvement using SBSE. Our goal is to inves-
tigate the degree to which genetic improvement can automatically improve a system
that has been very widely and well studied and for objectives that have been repeatedly
attacked by expert humans.

We report initial results of experiments aimed at the genetic improvement of Mini-
SAT using the GISMOE approach to genetic improvement [8]. Our primary findings
are that one can achieve a more efficient version of MiniSAT by simply getting rid off
assertions and statements related to statistical data. Moreover, deleting certain optimisa-
tions leads to faster runs on some SAT instances. However, a significantly more efficient
version of the system is yet to be discovered.

1

http://www.cs.ucl.ac.uk/people/J.Petke.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/M.Harman/

2 MiniSAT

MiniSAT is a well-known open-source C++ solver for Boolean satisfiability problems
(SAT). It implements the core technologies of modern SAT solving, including: unit
propagation, conflict-driven clause learning and watched literals [13], to name a few.
The solver has been widely adopted due to its efficiency, small size and availability of
ample documentation. It is used as a backend solver in several other tools, including
Satisfiability Modulo Theories (SMT) solvers, constraint solvers and solvers for de-
ciding Quantified Boolean Formulae (QBF) . MiniSAT has also served as a reference
solver in SAT competitions.

In the last few years progress in SAT solving technologies involved only minor
changes to the solvers’ code. Thus in 2009 a new track has been introduced into the
SAT competition, called MiniSAT hack track. In order to enter this track one needs to
modify the code of MiniSAT. This solver has been improved by many expert human
programmers over the years, thus we wanted to see how well an automated approach
scales. We used genetic improvement in order to find a more efficient version of the
solver. In our experiments we used the latest version of the solver - MiniSAT-2.2.01.

3 Our Approach to the Genetic Improvement of MiniSAT

Our objective is to find a version of MiniSAT that is correct, i.e answers whether an
instance is satisfiable or not, and that is faster than the unmodified solver. We used
test cases from SAT competitions2. The training test suite was divided into five groups:
satisfiable/unsatisfiable instances on which MiniSAT runs for less than 1 second, sat-
isfiable/unsatisfiable instances on which MiniSAT runs for between 1 and 10 seconds
and a mixture of satisfiable and unsatisfiable SAT instances on which MiniSAT runs for
between 10 and 20 seconds.

We modified the SAT solver at the level of source code. We used a specialised BNF
grammar to make sure that the evolved code is syntactically correct. Thus individuals
produced have a good chance of compiling and thus high chances of running. We used
time-outs to force termination of individuals which run significantly longer than the
unmodified solver. We changed the code by using three operations:

– copy : copies a line of code in another place,
– replace : replaces a line of code with another line of code,
– delete : deletes a line of code.

There were a few special cases involving loops and if conditions, namely the same
three operations (copy, replace and delete) were applied to conditions in if statements,
while and for loops3.

1 Solver available at: http://minisat.se/MiniSat.html.
2 Instances available at: http://www.satcompetition.org/.
3 Note here, however, that a part of a for loop, for instance, could have only been replaced

with the same part of another for loop. For instance, ‘i + +’ could have been replaced with
‘j ++’, but not ‘j = 0’.

2

We modified two C++ files: Solver.cc, containing the core solving algorithm (321
out of 582 lines of code), and SimpSolver.cc, which simplifies the input instance (327
out of 480 lines of code).

Furthermore, we were evolving a list of changes, that is, a list of copy, replace and
delete instructions. We only kept such lists in memory, instead of multiple copies of an
evolved source code.

For each generation the top half of the population was selected. These were either
mutated, by adding some of the three operations mentioned above, or crossover was
applied, which simply merged two lists of changes together. Mutation and crossover
took place with 50% probability each. New individuals were created by selecting one
of the three mutation operations.

For each generation five problems were randomly chosen from the five groups of test
cases. Fitness was evaluated as follows: if correct answer was returned by an individual,
2 points were added; if, additionally, the modified program was faster, 1 more point
was added. Only individuals with 10 or more points were considered for selection. In
order to avoid environmental factors, we counted the number of lines used to establish
whether a mutated program was more efficient than the original one. The whole process
is presented in Figure 1.

Fig. 1. GP improvement of MiniSAT.

4 Initial Results

A summary of our results is shown in Table 1. We refer to versions of MiniSAT that run
faster than the unmodified solver on the maximum set of instances as ‘best individuals’.

We ran our experiments on a test suite with 71 test cases taken from the 2011 SAT
competition. Each generation contained 20 individuals. Time limit was set to 25 seconds
and it took 14 hours to produce 100 generations. We only modified the Solver.cc file,
containing the core solving algorithm. Of all programs generated 73% of them com-
piled. The best one was more efficient than the unmodified solver on 70 SAT instances,
in terms of lines of code used. However, the modified versions mostly just removed
assertions as well as some statistical data. Some optimisations have also been deleted,
but these in turn led to longer runtimes on certain instances.

Next, we selected the test cases from only the application tracks of SAT competi-
tions. MiniSAT was able to find an answer for 107 problems out of 500 instances tested

3

Test cases Type Population size Generations Compiles Improved Best improvement
71 various 20 100 73% 70 0.937%

107 application 20 100 73% 107 0.859%
107 application 100 20 66% 106 0.858%

Table 1. Results of genetically improving MiniSAT. The ‘Improved’ column shows the number
of test cases on which the best generated version of the solver was more efficient. The ‘Best
improvement’ column shows the highest decrease in lines used for some test case, not necessarily
achieved by the best individual.

within the time limit, which was set to 25 seconds for each instance. Therefore, the 107
SAT problems were used for GP. Again we set population size to 20 and the number of
generations to 100 and around 73% of individuals compiled. In 34 generations there was
an individual that was more efficient than the unmodified solver on all five randomly se-
lected test cases. The best one was more efficient on all 107 instances. However, it only
removed assertions and operations on variables used for statistical purposes. We also
ran the experiments with population size 100 for 20 generations and achieved similar
results (with the exception that 66% of modified programs compiled). In all cases the
number of lines used by a ‘better’ version of MiniSAT generated was less by at most
1% and the average number of lines used during each solver run was in the order of
1010. None of the individuals produced led to large performance improvements. Most
of the changes involved deletion of assertions, operations used for gathering statistical
data or deletion of minor optimisations.

To sum up, in our experiments genetic improvement has mostly found ways to pare
down MiniSAT implementation. This was achieved by removing non-essential code
like assertions. Another type of change performed by GP was removal of minor op-
timisations. We will provide an example: A SAT instance is composed of constraints
called clauses, hence SAT solvers try to find a variable assignment that satisfies all the
clauses. MiniSAT contains a function called satisfied that checks the satisfiability
of a clause and removes it from the database if it’s already satisfied by some variable
assignment that cannot be changed. GP disabled this function by setting the second part
of the main for loop to zero. Thus, during a run of such a modified solver at each vari-
able assignment all clauses were checked for satisfiability, even though some of them
could have already been satisfied. On the other hand, the main body of the satisfied
function was not executed.

5 Related Work

Genetic Programming (GP) has long been applied to several SBSE problems including
project management and testing.

More recently, there has been much interest in using GP and variants and hybrids
of GP to solve demanding problems in which the code evolved by GP is intended for
deployment, rather than merely as a source of decision support (but not ultimate deploy-
ment as a working software system). Much of the recent upsurge in interest in GP can
be traced back to the seminal work of Arcuri and Yao on bug fixing using GP [3] and
the development of this agenda into practical, scalable systems for automated program
repair [11,14]. Recent results indicate that these automated repairs may prove to be as

4

maintainable as human generated patches [6] and that the patches can be computed
cheaply using cloud computing [7].

While previous work on bug fixing has already scaled to large real world systems,
work on whole system genetic improvement has not previously scaled as well. How-
ever, recently Langdon and Harman [10] demonstrated scalability of whole program
genetic improvement for a system of 50,000 Lines of Code on a real-world bioinfor-
matics system. They were able to use a GP hybrid to find new evolved versions of the
DNA sequence analysis system Bowtie2 that are, on average, 70 times faster than the
original (and semantically slightly improved) when applied to DNA sequences from the
1,000 genome dataset.

A general framework of genetic improvement in set out on the ASE 2012 keynote
paper by Harman et al. [8]. In the work reported here we adapt the approach developed
by Langdon and Harman [10] applied to the Bowtie2 system to seek to optimise the
MiniSAT system. Any improvements for implementations of SAT solving that we are
able to achieve may have benefits for the wide and diverse applications of SAT solving.
Even if we can only optimise a SAT solver for a subdomain of application (such as
all constraints of a particular type), then this may allow us to use genetic improvement
to achieve a kind of partial evaluation [4]. Such partial evaluation of SAT solving by
genetic improvement may be useful in specific applications for which a known subset
of formulae of the desired type are prevalent.

6 Conclusions and Future Work

Genetic improvement has successfully been applied to systems such as Bowtie2, lead-
ing to significant speed-ups. Therefore, we wanted to investigate if this could be achieved
on a well-known software system that is easy to analyse and has been engineered by
many expert human programmers. Hence we chose MiniSAT, a very popular Boolean
satisfiability (SAT) solver that has been thoroughly studied. MiniSAT hack track of SAT
competitions was specifically designed to encourage people to make minor changes to
MiniSAT code that could lead to significant runtime improvements, and hence some
new insights into SAT solving technology. We wanted to check how an automated ap-
proach scales.

If Genetic Programming (GP) is allowed to only apply mutations and crossover at
the level of lines of source code, it turns out that little can be done to improve the current
version of MiniSAT. Most changes simply pare down MiniSAT implementation. These
involve deletion of assertions as well as operations used for producing statistical data.
Some minor optimisations have also been removed by GP. A version of the solver that
is significantly more efficient than the unmodified MiniSAT solver is yet to be discov-
ered. We intend to conduct further experiments. We plan to remove assertions from the
GP process and also conduct mutations on smaller constructs than a line of code. One
possibility is to mutate mathematical expressions. Further experiments with varying
population and generation size are also desirable. Furthermore, using a certain type of
test cases, exhibiting, for instance, similar structure, could help find improvements spe-
cific for such classes of problems. We have already started experiments in this direction
by considering test cases from the application tracks of SAT competitions. However,
other classes of problems are yet to be investigated.

5

References

1. MiniSAT hack competition, 2013. In 2013 this is part of the 16th International Conference
on Theory and Applications of Satisfiability Testing.

2. A. Arcuri, D. R. White, J. A. Clark, and X. Yao. Multi-objective improvement of software
using co-evolution and smart seeding. In X. Li, M. Kirley, M. Zhang, D. G. Green, V. Ciesiel-
ski, H. A. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K. C. Tan, J. Branke, and Y. Shi,
editors, 7th International Conference on Simulated Evolution and Learning (SEAL 2008),
volume 5361 of Lecture Notes in Computer Science, pages 61–70, Melbourne, Australia,
December 2008. Springer.

3. A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software bug fixing.
In J. Wang, editor, 2008 IEEE World Congress on Computational Intelligence, Hong Kong,
1-6 June 2008. IEEE Computational Intelligence Society, IEEE Press.

4. D. Bjørner, A. P. Ershov, and N. D. Jones. Partial evaluation and mixed computation. North–
Holland, 1987.

5. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and applications of satisfia-
bility testing, pages 502–518. Springer, 2004.

6. Z. P. Fry, B. Landau, and W. Weimer. A human study of patch maintainability. In Inter-
national Symposium on Software Testing and Analysis (ISSTA’12), Minneapolis, Minnesota,
USA, July 2012. To appear.

7. C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In International Conference on
Software Engineering (ICSE 2012), Zurich, Switzerland, 2012.

8. M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark. The GISMOE
challenge: Constructing the pareto program surface using genetic programming to find bet-
ter programs (keynote paper). In 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2012), Essen, Germany, September 2012.

9. W. B. Langdon and M. Harman. Evolving a CUDA kernel from an nVidia template. In
P. Sobrevilla, editor, 2010 IEEE World Congress on Computational Intelligence, pages 2376–
2383, Barcelona, 18-23 July 2010. IEEE.

10. W. B. Langdon and M. Harman. Genetically improving 50000 lines of C++. Research Note
RN/12/09, Department of Computer Science, University College London, Gower Street,
London WC1E 6BT, UK, 19 Sept. 2012.

11. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic method for auto-
matic software repair. IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

12. M. Orlov and M. Sipper. Flight of the FINCH through the Java wilderness. IEEE Transac-
tions on Evolutionary Computation, 15(2):166–182, Apr. 2011.

13. J. P. M. Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, pages 131–153. IOS Press, 2009.

14. W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest. Automatically finding patches using
genetic programming. In International Conference on Software Engineering (ICSE 2009),
pages 364–374, Vancouver, Canada, 2009.

15. D. R. White, A. Arcuri, and J. A. Clark. Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation, 15(4):515–538, 2011.

6

	Applying Genetic Improvement to MiniSAT

