
SBST-2017, Juan P. Galeotti and Justyna Petke Eds., ICSE17-SBST-1, Buenos Aires, 22-23 May IEEE.

Inferring Automatic Test Oracles

William B. Langdon Shin Yoo Mark Harman
Computer Science, University College London, Gower Street, London, WC1E 6BT, UK.

School of Computing Korea Advanced Institute of Science and Technology, Daejeon 34141 Republic of Korea
shin.yoo@kaist.ac.kr w.langdon@cs.ucl.ac.uk mark.harman@ucl.ac.uk

Abstract—We propose the use of search based learning from
existing open source test suites to automatically generate partially
correct test oracles. We argue that mutation testing and n-
version computing (augmented by deep learning and other
soft computing techniques), will be able to predict whether a
program’s output is correct sufficiently accurately to be useful.
Keywords: SBSE, Multiplicity computing, deep testing, Search
Based Automatic Oracles.

I. INTRODUCTION

WE envisage a future in which most programming is
largely automatic [1]. Will there still be a need to test

such programs? While one might hope for a world of fully
formal (and correct) specifications, we might have to wait
sometime for this world to be realised. Consequently, lack of
automatic testing progress will reduce productivity gains from
automated programming.

Recently we [2] and others [3],[4] have surveyed the Oracle
Problem in testing software. It is clear that although great
strides are being made in the automatic generation of test
suites, determining whether a program has passed a given test
(i.e. the test oracle problem) remains largely manual.

The next section recaps the four existing approaches [3],
while Section III gives our position on using search, modern
optimisation techniques, data mining and Artificial Intelligence
and to improve Automatic Programming via deep testing.

II. EXISTING TEST ORACLES

Nardi et al. [3, page 50] divide existing research papers
into four categories: formal specification based, Metamorphic,
Artificial Intelligence and N-Versions. However, we argue that
none of these techniques is capable of scaling up to meet the
challenge of fully automated software testing.
Formal Specification: In future, it may become easier to
generate both test cases and test oracles to confirm that the
program has indeed passed each test from a formal specifica-
tion, than to automatically generate correct software from the
specification. However, the creation of correct and complete
specifications is hard and may remain so.
Metamorphic Testing: Test oracles based on metamorphic
relationships [5] exploit the fact that some correct implemen-
tations maintain specific relationships between an original and
a follow-up test case. For example, we know that sinx is sym-
metric about x = π

2 . Suppose an implementation my_sin(a)
returned b. Although it may be difficult to check whether
sin a is indeed b, we can easily check whether my_sin(a) =
my_sin(π - a) = b. Despite the elegance of the concept,

often it is difficult to find metamorphic relationships in real
world applications. Nardi et al. [3] report they were unable
to find practical applications of metamorphic oracles.
AI based Test Oracles: AI techniques such as Artificial
Neural Networks, Support Vector Machines, and Decision
Trees [4] have been applied to the test oracle problem in order
to learn from examples where the software is run on a test
suite with known correct answers. In most cases the programs
are limited to giving only one bit (binary classification: true or
false) answers. However, some looked at the Triangle Program
[6; 7] (which has four legal answers). On more complex
problems, it is claimed that ANN could predict the correct
answer more than 90% of the time [3, page 55].
N-Version Testing: At present N-Version testing is considered
very expensive, since it relies on multiple (typically 2 or 3)
instances of the software being independently implemented.
As Bishop et al. [8] found, ensuring independence between
manual implementations is very hard, even the specification
may be a source of common errors. The widespread use of
code search engines and reuse of open source software [9; 10]
will increase the difficulty of keeping versions independent.

III. CURRENT WEAKNESSES AND WAYS FORWARD

A. Artificial Intelligence Deep Test Oracles

Although there has been some work on using AI techniques
as automatic test oracles only a few AI approaches have
been reported and mostly on small programs. Search Based
Software Engineering [11] has recently led to the use of AI to
improve existing human written code [12]. There is great scope
for using SBSE more widely, e.g. for fixing software bugs [13].
We propose the use of SBSE to automatically generate test
oracles, i.e. Search Based Automatic Oracles. The goal of a
100% correct oracle may not be obtainable (and thus “oracle”
is perhaps a misnomer). Nevertheless in future we may see the
automatic generation and running of tens of thousands of test
cases. And so, particularly where much of the software life
cycle has been mechanised, an automated “oracle” which can
deal with this volume of data and just bring to the attention
of a human tester a few suspicious answers, could be a great
boon.

1) Deep Learning from the Internet: Given the huge vol-
ume of open source software, can SBSE be used with deep
learning optimisation techniques to infer some common sense
rules for correctly behaving programs? Although unsupervised
(one-class) learning can be successful, supervised learning, in
which data are labelled, is often regarded as easier. Perhaps

1

http://sbst2017.lafhis.dc.uba.ar/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://coinse.kaist.ac.kr/members/shin.yoo
http://www.cs.ucl.ac.uk/staff/M.Harman/
http://www.cs.ucl.ac.uk/
http://cs.kaist.ac.kr/


mutation testing [7] could be used to inject (non-equivalent)
faults. Thus potentially giving labelled datasets (test cases with
correct outputs and test cases where broken code gave faulty
answers).

2) IDE with ANN for Natural Language and Vision:
Future integrated development environments may use Artificial
Neural Nets to support testing. Two types of ANN have
been particularly successful in natural language processing
and computer vision. Recurrent Neural Nets (RNNs), such as
Long Short Term Memory (LSTM) [14], have many interesting
applications [15], including automated translation. Similarly,
the use of Convolutional Neural Networks (CNNs) [16] has
improved image recognition.

We suggest the combined use of both types of neural net-
works can have a strong impact on test oracles for system level
testing. Current industrial practice for system and integration
level testing is either still largely manual or dependent on man-
aging a separate set of test cases written in Domain Specific
Languages (DSLs). RNNs may be used to translate natural
language requirements into DSLs. Using CNNs automatic test
oracles could be based on treating program output screens as
images rather than needing special interaction event hooks.

B. Automatic N-Version Testing
In a world of automated programming, it would seem straight-
forward to generate two, three or even many versions [17]
of the target software. Indeed if they are created automati-
cally [18], this would remove the possibility of human pro-
grammers assigned to different implementations of the same
task talking to each other and thus leading to common failure
modes in programs which are intended to be independent
of each other. However, the scope for common errors via a
common specification remains and explicit control (e.g. via
randomisation) might be needed to ensure each version of the
software is indeed different.

C. Research Questions in Automatic Test Oracle Inference
Legibility and Maintainability: Will machine generated test
oracles be legible to human engineers? Will they be as
maintainable as human generated ones? Existing work on
automatically generated patches [19] suggests it is possible.

Partial Correctness: Machine generated test oracles are
likely to be only partially correct. Instead of throwing them
away, we would like to focus on their use as a warning
system. Can a group of inferred test oracles be still useful,
if violating a sufficient number of them activates warning for
human intervention?

User Acceptability: Replacing human contribution entirely
is not the goal. Instead the interaction between the automated
components (test generation, execution, and oracle inference)
and human developers should be carefully designed, to make
the most of the human input.

Benchmarks: Research on automated test data generation
had the challenge of establishing an adequate benchmark suite.
We suggest the community carefully plan ahead and invest
in building a reliable benchmark for the test oracle inference
problem.

IV. CONCLUSIONS

Automated generation of test cases continues to make great
strides yet automated oracle generation lags behind. We have
argued that mutation testing, n-version computing and machine
learning could combine to allow automated output checking
to catch up with progress on automated input generation.

Acknowledgement: We thank our anonymous reviewers.

REFERENCES

[1] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the Pareto program
surface using genetic programming to find better programs,” in The 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 12). ACM, Sept. 3-7 2012, pp. 1–14.

[2] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Transactions on Software
Engineering, vol. 41, no. 5, pp. 507–525, May 2015.

[3] P. A. Nardi and E. F. Damasceno, “A survey on test oracles,” Journal
on Advances in Theoretical and Applied Informatics, vol. 1, no. 2, pp.
50–59, 2015.

[4] M. Pezze and C. Zhang, “Automated test oracles: A survey,” in Advances
in Computers. Elsevier, 2015, vol. 95, pp. 1–48.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Department of Computer
Science, Hong Kong University of Science and Technology, Tech. Rep.
HKUST-CS98-01.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, April 1978.

[7] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective higher
order mutation testing with genetic programming,” Journal of Systems
and Software, vol. 83, no. 12, pp. 2416–2430, Dec. 2010.

[8] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll, and
J. Lahti, “PODS a project on diverse software,” IEEE Transactions on
Software Engineering, vol. SE-12, no. 9, pp. 929–940, Sept 1986.

[9] N. Sahavechaphan and K. Claypool, “XSnippet: Mining for sample
code,” in OOPSLA ’06. ACM, 2006, pp. 413–430.

[10] S. Bajracharya and C. Lopes, “Mining search topics from a code search
engine usage log,” in MSR ’09. IEEE, 2009, pp. 111–120.

[11] M. Harman and B. F. Jones, “Search based software engineering,”
Information and Software Technology, vol. 43, no. 14, 833–839, 2001.

[12] W. B. Langdon, “Genetically improved software,” in Handbook of
Genetic Programming Applications, A. H. Gandomi, A. H. Alavi, and
C. Ryan, Eds. Springer, 2015, ch. 8, pp. 181–220.

[13] W. Weimer, “Advances in automated program repair and a call to arms,”
in Symposium on Search-Based Software Engineering, ser. Lecture Notes
in Computer Science, G. Ruhe and Y. Zhang, Eds., vol. 8084. Springer,
Aug. 24-26 2013, pp. 1–3, invited keynote.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems, ser. NIPS’14. MIT
Press, 2014, pp. 3104–3112.

[16] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR2014). CBLS, April 2014.

[17] C. Cadar, P. Pietzuch, and A. L. Wolf, “Multiplicity computing: a
vision of software engineering for next-generation computing platform
applications,” in Proceedings of the FSE/SDP workshop on Future of
software engineering research, ser. FoSER ’10, K. Sullivan, Ed. ACM,
7-11 Nov. 2010, pp. 81–86.

[18] W. B. Langdon and M. Harman, “Optimising existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 118–135, Feb. 2015.

[19] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ISSTA 2012, Z. Su, Ed. ACM, 15-
20 July 2012, pp. 177–187.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://revista.univem.edu.br/index.php/jadi/article/view/1034
http://revista.univem.edu.br/index.php/jadi/article/view/1034
http://dx.doi.org/10.1016/B978-0-12-800160-8.00001-2
http://dx.doi.org/10.1016/B978-0-12-800160-8.00001-2
https://www.cse.ust.hk/~scc/publ/CS98-01-metamorphictesting.pdf
https://www.cse.ust.hk/~scc/publ/CS98-01-metamorphictesting.pdf
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://dx.doi.org/10.1109/TSE.1986.6313048
http://dx.doi.org/10.1109/TSE.1986.6313048
http://dx.doi.org/10.1145/1167473.1167508
http://dx.doi.org/10.1145/1167473.1167508
http://dx.doi.org/10.1109/MSR.2009.5069489
http://dx.doi.org/10.1109/MSR.2009.5069489
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2013_SSBSE.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://openreview.net/document/d332e77d-459a-4af8-b3ed-55ba
http://openreview.net/document/d332e77d-459a-4af8-b3ed-55ba
http://dx.doi.org/10.1145/1882362.1882380
http://dx.doi.org/10.1145/1882362.1882380
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fry_2012_ISSTA.html

	Introduction
	Existing Test Oracles
	Current Weaknesses and Ways Forward
	Artificial Intelligence Deep Test Oracles
	Deep Learning from the Internet
	IDE with ANN for Natural Language and Vision

	Automatic N-Version Testing
	Research Questions in Automatic Test Oracle Inference

	Conclusions
	References

