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Abstract 

Embedding of a digital watermark in a digital media is proving to 
be a workable solution for many of the recent problems like copyright 
protections and content authentication. However, the embedding of a 
digital watermark in a digital media is not without constraints. This 
requires perceptual shaping of a watermark in context of Human Visual 
System (HVS). The goal of this thesis is to develop a new watermarking 
scheme based on intelligent shaping of a digital watermark using GP. To 
achieve this goal, the research focuses on making efficient tradeoffs 
between two of the most important, but contradicting properties of a 
watermarking system; robustness and imperceptibility.  

This thesis makes the following contributions: (1) An analysis of 
the importance of perceptual shaping of a watermark in making a trade 
off between robustness and imperceptibility is performed, (2) intelligent 
search technique, like GP, is used to exploit the characteristics of HVS in 
evolving superior perceptual shaping functions, (3) the concept of bonus 
fitness has been proposed to implement multi-objective fitness function, 
in the GP simulation. This helps in simultaneously handling the 
estimated robustness and imperceptibility requirements during 
embedding stage, and actual robustness during decoding stage, (4) we 
realize that perceptual shaping of a watermark is not only important for 
making a superior trade off, but could also be used to tailor the 
watermark in accordance to an anticipated attack, (5) watermarking 
systems are becoming more and more sophisticated, as such this thesis, 
using intelligent search technique like GP, points towards the solution 
strategy of many complex issues in watermarking that are difficult to be 
computed analytically. A series of empirical investigations are performed 
to analyze the performance of the genetically evolved perceptual shaping 
functions (GPSFs) using standard benchmark, which shows the 
effectiveness of our approach. 
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C h a p t e r  1  

 

Intelligent Perceptual Shaping of a Digital 
Watermark 

 
Digital watermarking has become a matter of more concern over 

the past few years as the urge to find solutions to the many problems 
related to the widespread usage of digital media is being sought. These 
issues, like copyright protection, are becoming hard to protect because 
the illicit attempts to override these by the adversaries, are also 
becoming ingenious. As such, two important realizations need to be 
considered. Firstly, intelligent search techniques are needed to find 
solutions to the complex issues concerning widespread usage of the 
digital media, which are difficult to be handled analytically. Secondly, 
there are very few restrictions on the adversaries, i.e. they are free to 
develop sophisticated attacks regularly. Therefore, there must be some 
adaptive technique to counteract these new attacks effectively by 
modifying the watermarking scheme. 

The field of watermarking started with paper watermarks in 1282 
in Italy. Thin wire patterns were added to paper moulds for generating 
marks [1]. However, not until eighteen century did paper watermarks 
become popular. They were primarily used for making trademarks, and 
as anti-counterfeiting measures on money and other documents. In 1996 
Cox et al. [1], introduced the concept of spread spectrum based 
modulation of a watermark signal to provide robustness regarding the 
anti jamming property of spread spectrum modulation. This work 
brought about a major enhancement in coping with the diverse types of 
watermarking applications. After a year, Piva et al. [4], proposed the idea 
of blind watermarking, whereby the use of original cover image is not 
needed for detecting the watermark signal. Many researchers, then 
started exploiting these two concepts of spread spectrum based 
embedding and blind detection to develop novel watermarking 
approaches. Their detailed discussion can be found in [1, 2]. The third 
major development in watermarking originated through the work of Chen 
et al., whom introduced the concept of quantization index modulation 
based embedding of a watermark signal to implement host interference 
rejection [2]. This prompted the development of several structured coding 
based watermarking approaches, whose detail could be found in [1, 2]. 
Recent major advancement to the approaches of watermarking came 
through the work of Miller et al., who proposed the idea of informed 
embedding and coding based watermarking approach [1]. They argued 
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that since the cover image is available at the embedding stage so why 
should not it be exploited to encode the message and embed the 
resultant watermark in such a way that improves the effectiveness of the 
scheme.  

Watermarking can be divided into two broad categories; robust 
watermarking and fragile watermarking. In robust watermarking, as its 
name implies, the watermark is supposed to be resistant to intentional 
and/or unintentional attacks. Here, the integrity of the watermark itself 
has to be withheld. On the other hand, fragile watermarking refers to the 
situation, where the watermark is used in verifying the integrity of its 
associated cover work. Its main application is content authentication, 
where any possible alteration to the content should be conveyed by the 
watermark. Watermarking has a wide variety of applications that ranges 
from owners identification to authentication encompassing the two broad 
categories of watermarking. Watermarking could be applied to different 
data, e.g. text, digital images, printed documents, audio signals, and 
digital videos etc. The present work is concerned with the robust 
watermarking of digital images. 

Watermarking is an interesting field having intriguing affect of 
providing challenging problems, such as making a tradeoff between 
robustness and imperceptibility, or breaking of an already existing 
robust watermarking scheme through novel malicious attacks, or 
perhaps counterfeiting an intentional attack by proposing novel 
watermarking schemes. The motivation of this work came from studying 
and analyzing the importance of perceptual shaping of a watermark 
related to the first example of the above challenging problems that the 
field of watermarking encompasses. 

Genetic Programming is a simple and effective technique that has 
recently found increasing applications such as automatic programming, 
combinatorial optimization and model induction. The focus of this thesis 
is to use GP for effectively finding a solution to the two important issues 
of a watermarking system, as discussed above; automatic development of 
the perceptual shaping module of the watermarking system and 
adaptation with respect to a specific attack.  

Before being embedded, a watermark is usually shaped according 
to the content of the cover image. The model that exploits the 
sensitivities/insensitivities of Human visual System (HVS) to embed high 
power watermark at places not clearly discernable, is called perceptual 
model. Perceptual model are cover image independent, shaping the 
watermark according to the content of the cover image. Perceptual 
models thus play an important role by ensuring imperceptibility of a 
watermark. However, these models are complex and sub-optimal, as it is 
very difficult to model HVS. Therefore, global search mechanisms like GP 
must be used to further exploit the dependencies on the characteristics 
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of HVS. Using multi-objective fitness function concept, GP is able to 
develop such perceptual shaping functions that not only ensure 
imperceptibility, but also can offer high resistance against an anticipated 
attack. 

 

1.1 Research Perspective 
 

This thesis focuses on the understanding of perceptual shaping of 
a watermark, the ways it can be benefited from, and the development of 
perceptual shaping functions appropriate for a specific application. 
Specifically, some key contributions of perceptual shaping other than 
mere hiding a watermark are uncovered. Theoretically, modelling HVS 
has been difficult; therefore, the majority of perceptual modelling has 
been performed empirically. The approach taken in this thesis is also 
based on considering the optimization of perceptual shaping function by 
treating the tradeoff it makes between robustness and imperceptibility, 
as an optimization problem. Thus, the approach taken is based on the 
careful design and analysis of experimental studies. 

 

1.2 Contributions 
 

This thesis contributes in the following domains: 

 

1) A study of perceptual shaping of a watermark demonstrates the 
complexity in making a tradeoff between robustness and imperceptibility.  

2) Exploitation of the characteristics of HVS using intelligent 
search techniques, such as GP, to evolve superior perceptual shaping 
functions, especially, demonstrating the development of perceptual 
shaping functions tuned for a specific application of watermark. 

3) An analysis of the watermark power-based estimated 
robustness measure shows that the estimated robustness may not 
closely represent the actual robustness at the decoding stage. 

4) Proposing an idea of bonus fitness in GP-based simulation to 
incorporate, simultaneously, estimated robustness and imperceptibility 
requirements at embedding stage, and actual robustness at the decoding 
stage. 

5) Realization and practical demonstration of the important fact 
that perceptual shaping of a watermark is not only important for just 
hiding the watermark, but it can also be used to spread the watermark in 
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such a way that it becomes highly resistant to a specific conceivable 
attack. In addition, such application-specific perceptual shaping 
functions are developed that are resistant against a battery of 
conceivable attacks. 

6) Accentuating the need of using intelligent techniques, 
techniques that are able to obtain solutions to the watermarking issues 
that are becoming complicated with each new day. This consideration is 
important because the watermarking applications are increasing rapidly 
and becoming entangled and complex. Secondly, the technologies at the 
disposal of adversaries are also becoming advanced. 

 

 

1.3 Structure of the thesis 
 

Chapter 2 introduces the basics of watermarking; its properties, 
applications, domains in which it has been applied mostly. It discusses a 
data hiding approach that has been frequently used in this work as a 
test case to analyze the robustness versus imperceptibility tradeoff. 
Detail discussion about the perceptual shaping of a watermark has been 
given. Utilization of intelligent techniques, like GP, in watermarking has 
also been discussed. Chapter 2, in fact is a preamble to the rest of the 
chapters. 

Chapter 3 is the first among the four chapters that describe the 
contributions of this thesis. Development of GPSF for the full frame 
Discrete Cosine Transform (DCT) domain based watermarking is 
discussed. An experimental comparison of the GPSF-based watermarking 
scheme in terms of the tradeoff is made with that of the scheme proposed 
by Piva et al., [4]. 

Chapter 4 develops GPSF for block-based DCT domain 
watermarking systems. First, the GPSF developed are compared with 
that of Watson’s Perceptual Model (WPM), which has been regularly used 
in image compression. The method of developing improved perceptual 
shaping functions from the existing ones, such as WPM, is described 
next. The improvement that has been achieved both in imperceptibility 
and actual robustness, is discussed and analyzed. 

Chapter 5 explores the realization of the fact that whether a 
perceptual shaping, at the embedding phase, could be used to thwart the 
threat from a conceivable attack. Results suggest that such strategy 
against conceivable attack could be highly effective. The performance of 
evolved GPSFs is analyzed with the help of standard benchmark attacks. 
During the evolution phase, the performance against the specific attack 
is introduced using the concept of bonus fitness. 
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Chapter 6 explores the role of perceptual shaping against a battery 
of conceivable attacks. It introduces those scenarios/applications, where 
the watermark has to deal with a set of attacks. Experimental results 
indicate that such application specific perceptual shaping functions 
could be very effective. 

Chapter 7 presents conclusions in the context of results and 
obtained throughout the whole work. A recommendation for future 
research follows next. 
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C h a p t e r  2  

Basics of Digital Watermarking and Machine 
Learning  

 
2.1 Digital Watermarking 
 

In recent years, digital data is obtained and transmitted easily. 
This ease has instigated the wide appearance, transmission, and storage 
of digital data. The technologies that have supported this flooding of 
digital data are internet, World Wide Web (www), CD- ROM, and DVD. 
Although the widespread use of digital data has brought a lot of ease in 
different aspects, nonetheless, it is not without its side effects. These side 
effects are best presented by asking a question: with the digital data 
being so widely used, how are we going to address the issues like privacy, 
copyright infringement, authentication, and security? Three different 
technologies; information hiding, steganography and watermarking, are 
mostly used to address issues like these. These three technologies often 
use similar technical approaches and are closely related [1]. However, 
they do have some philosophical differences that affect their design 
towards a problem. Watermarking is defined as the practice of 
imperceptibly altering a work to embed a message about that work, 
whereas steganography represents the art of concealed communication. 
Here, the very existence of a message being kept secret. On the other 
hand, data hiding is a more general term and encompasses a wide range 
of problems that are either related to making information imperceptible 
or secret. A detailed discussion about the differences in these concepts 
can be found in [1, 2]. 

 

2.1.1 WM Applications: 
 

Watermarking has a wide range of applications. Generally, a 
watermarking scheme is designed in view of its application, as the 
application poses certain requirements to be fulfilled [2]. Watermarking 
has found a large number of applications recently due to its advantages 
over the possible alternative technologies. Details of these advantages 
can be found in the 2nd chapter of [1]. Fragile and robust watermarking 
schemes usually have different applications. A few examples of 
watermarking applications consist of owner identification, tempering 
detection, copyright control, broadcast monitoring, transaction tracking 
and device control etc. 
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2.1.2 Imperceptibility:  
Watermarking systems have some requirements that needs 

considerable attention. The most important of these is the 
imperceptibility requirement (also known as fidelity). A watermarking 
system is of very little use, if it distorts the cover image to the extent of 
being useless. Theoretically, the watermark should be invisible to a 
human eye, even on the highest quality equipment.  

Although visible watermarks are usually more robust, for most of 
the applications it is advantageous for the embedded mark to be 
indiscernible to the human eye or ear. To date, researchers have 
attempted to conceal the watermark in such a way that it is not possible 
to be noticed. However, this constraint contradicts with other 
requirements such as tamper resistance and robustness.  

2.1.3 Robustness: 
A watermarked image could suffer different attacks before the 

watermark is retrieved, where; the attack is defined as any processing of 
the watermarked image that can damage the watermark [1, 3]. 
Resistance against attacks is thus, a fundamental issue while designing 
a watermarking system. With the exception of fragile watermarking 
systems, almost all watermarking systems need to be resistant against 
any intentional or unintentional processing of the watermarked image. 
This attribute of a watermarking system is usually called robustness. 
These attacks and their countermeasures are studied in the context of 
the watermark applications, as different applications are mostly 
concerned with a different set of conceivable attacks [1]. Therefore, while 
designing a watermarking system, its intended application and thus the 
corresponding set of conceivable attacks are of prime importance.  

Digital music, images and video signals, normally include many 
types of distortions. Especially, in the digital image case, these include 
lossy compression, filtering, resizing, contrast enhancement, cropping, 
rotation etc. For the watermarking system to be practical enough, the 
watermark is supposed to be detectable even after such distortions. It is 
a general conclusion [1] that robustness against signal distortion could 
be achieved efficiently, if the watermark is placed in perceptually 
significant parts of the signal. This fact is related to the behavior of lossy 
compression algorithms, which work by dumping perceptually irrelevant 
data. The imperceptibility requirement of a watermark, however, seeks to 
encode information in extra bits that compression expects to remove. 
Thus, ideal watermarking and compression systems are usually at odds. 

On the other hand, in case of malicious attacks, an attacker 
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intentionally tries to disable the watermark, often through a geometric 
distortion or through the addition of noise. In case of image 
watermarking, the resistance to geometric alterations, such as, rotation, 
resizing, translation, and cropping is still an open area of research. Yet, 
such operations are common and a proper solution needs to be 
developed so that watermarking techniques are productively applied for 
copyright protection.  

 

2.1.4 Robustness versus Imperceptibility: 
 

There is an intrinsic relation between the two most important, but 
contradicting properties of a watermarking system; robustness and 
imperceptibility. If we try to improve the watermark imperceptibility, 
robustness decreases and vice versa. Consequently, one needs to make a 
tradeoff according to the application domain. For this purpose, different 
methods, both in spatial as well as transformed domain, have been used 
to tailor a watermark according to the cover image [5-7, 15]. These 
watermarking systems are known to be image adaptive. On the other 
hand, most of the earlier approaches are not image adaptive and use a 
global watermarking strength for all the selected coefficients [4].  

 

2.1.4.1 Watermark Robustness and Imperceptibility Measures  

 

The imperceptibility of a watermark is generally measured in terms 
of weighted Peak Signal to Noise Ratio (wPSNR) [15], Watermark to 
Document Ratio (WDR) (40)  and Structural Similarity Index Measure 
(SSIM) (52) . SSIM measure uses the hypotheses that HVS is highly 
adopted for extracting structural information. It is argued that natural 
image signals are highly structured, as the nearby pixel exhibit strong 
dependencies.  These dependencies provide information about the 
structure of the object in an image, which are overlooked by the error-
based measures. To estimate robustness during GP simulation, we use 
watermark power. We represent watermark power by mean squared 
strength (MSS) given as:  

∑ ∑
= =

=
b dN

u

N

udb

uuα
NN

MSS
1 1

2

21
1 2

),(1  (2.1) 

where, bN is the total number of 88× blocks in the cover image, and 
dN is the number of bandpass (low and mid frequency) DCT coefficients, 

and α  is the perceptual mask. 
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We have used watermark power as an estimate of robustness, 
because in the testing and comparison phase of best evolved GPSF 
(section 5.3), the underlying watermarking technique is the same for 
both WPM and GPSF based perceptual shaping schemes. Hence, we 
assume that the MSS will provide a suitable measure of the estimated 
robustness at the embedding stage of the GP simulation. 

 
2.1.5 Attacks: Categories and their Countermeasures  
 
A watermarked data can be attacked in a variety of different ways.  
However, each application usually has to deal with a specific sequence of 
distortions. Cox et al. [1] and Barni et al. [29] have discussed in detail 
the types and levels of robustness that might be required for a particular 
watermarking application. They have discussed some of the attacks as 
well as their countermeasures. Keeping in view the expected distortions, 
several strategies are implemented to make a watermark system reliable. 
Few examples include; redundant embedding, selection of perceptually 
significant coefficients, spread spectrum modulation, and inverting 
distortion in the detection phase.  
Voloshynovsky et al. (58,60) have classified attacks into four basic 
categories: removal and interference attacks, geometrical attacks, 
cryptographic attacks and protocol attacks.  Intentional tempering, as 
opposed to the common signal processing attacks are difficult to be 
risisted. However, watermark attacks as well as their countermeasures 
are complex and still a topic of research. Therefore, in evaluating the 
potential of a watermarking technique to meet the robustness 
requirements, many assumptions are made especially about the 
attacker. For example, does the attacker know the watermarking 
algorithm, does he possess a detector that he can modify, what tools are 
available to him etc. Once the watermarking system is specified publicly, 
an attacker usually has more freedom as compared to a watermarker 
because the attacker is free to develop extra and more intricate attacks, 
while the watermarker can no longer amend it [1].   

 
2.1.6 WM Domains: 

 
Typical watermarking schemes are based on transform-domain 

techniques (DCT, DFT, Wavelets etc) [5, 6, 9, 13, 14] as well as spatial-
domain methods [2, 15]. Watermarking in spatial-domain is 
straightforward and easy as compared to watermarking in transform-
domain. Spatial-domain watermarking are also the first watermarking 
schemes that were investigated by researchers. On the other hand, 
transform-domain watermarking techniques have the convenience of 
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allowing us more direct understanding of the content of cover data. This 
ease in understanding the content is exploited in many ways. For 
example, perceptual models are used to make sure that the alterations 
are not easily visible. Watermarking based on transform-domain has 
thus become a widely used approach and is mostly encountered in 
literature. Different transform-domain techniques have their pros and 
cons and are mostly selected to exploit their specific features for a certain 
application. In the following section, we discuss the watermarking 
approach proposed by Hernandez et al. [5] that has been mostly used in 
our work. To explain this approach, let us denote the 2-D discrete 
indices in DCT domain by [ ]k . 

2.1.6.1 Block-based DCT Domain Watermarking Approach 

We have used the spread spectrum based watermarking technique 
proposed by Hernandez et al. [5] to test the performance of evolved GPSF. 
This watermarking technique is oblivious as well as image adaptive, 
embedding message into the low and mid frequency coefficients of 88×  
DCT blocks of a cover image. They have shown that the statistical 
modeling of DCT coefficients using generalized Gaussian distribution, 
enable us to construct better detector/decoder structures than the 
simple Gaussian correlation receiver that is mostly used.  This is because 
Gaussian distribution does not suitably model the DCT coefficients. 
Therefore, in order to model them appropriately, [5] and [6] have used 
generalized Gaussian and alpha-stable distribution respectively.  

2.1.6.1.1 Watermark Generation and Embedding 

Let us represent an image in the spatial domain as a discrete 2-D 
sequence x  and its DCT transform as X . The watermark that is being 
added to X , generating watermarked DCT image Y  is viewed as a 2-D DCT 
signal W . Let M be a message, which is mapped to a codeword vector 
(figure 2.1).  At the decoding stage, we have to retrieve this message M. 

The codeword vector is then expanded to generate b , with each 
element ( )Nibi .....1=  repeated over a selected set of DCT coefficients. 
This redundancy bolsters robustness. The resulting signal b  is further 
direct sequence spread spectrum (DSSS) modulated. The DSSS 
modulation is performed using 2-D pseudo random sequence (PRS) 
denoted by S . The PRS behaves as spread sequence taking values 1± and 
has zero mean. Next, to produce the watermark W , the resultant signal 
is shaped according to the cover image. For this purpose, it is multiplied 
with perceptual mask α  (obtained by applying the perceptual model to 
the cover image in DCT domain) as follows:  

bSαW ⋅⋅=  (2.2) 
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Adding this watermark to the original image, coefficient by 
coefficient as follows thus performs the embedding: 

WXY +=  (2.3) 

 

Here the watermark W  is our desired signal, while the cover 
image X  acts as an additive noise. 
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Figure 2.1   Hernandez’s watermark embedding technique 

2.1.6.1.2 Information Decoding 

Hernandez et al. [5] have assumed that, the pdf of the original 
coefficients remains the same even after embedding. Based on this idea, 
they have obtained expressions for maximum likelihood (ML) decoder 
structures. The zero mean generalized Gaussian pdf is given as follows: 

cxβeAxxf −
=)(  

 

(2.4) 

where both A and β  are expressed as a function of the unknown 
parameters c and standard deviationσ : 
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with the Γ denoting gamma function.  
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The unknown parameters c and σ should be estimated from the 
received image at the decoding stage. For this purpose, we follow [5] as 
discussed below. 

 

 Generalized Gaussian Parameter Estimation: The variance for each 
DCT coefficient of 88× block can be estimated using the estimator: 

∑−=
k

k][1)(ˆ)(ˆ 2
,21

2
21

2
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b
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N
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(2.5) 

 

Where ]88[][, 2211
21

lk,lkαllα ++=k is the 2-D sequence of PSF values 

corresponding to the )(i,j DCT coefficient and 21,ll  represent indices inside 
a block. 
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(2.6) 

On the other hand, parameter c is a crucial parameter that 
dictates the shape of distribution. It should be carefully estimated for 
each image. Sometimes, an image independent value of c (0.5 or 0.8) can 
suffice [5]. In the present work, as in [5], the value of parameter c of the 
generalized Gaussian pdf for each )(i,j  DCT sequence is estimated using 
the ML estimator. It is obtained by maximizing the log-likelihood function 
given as: 
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(2.7) 

 

Generalized Gaussian based ML decoder: The Presence of a 
watermark is first verified through a process called watermark detection. 
Once, the watermark is detected, the message is then retrieved using the 
watermark decoder. Since our primary concern is to compare perceptual 
shaping functions in terms of decoding performance and not the 
detection performance. Therefore, before going into the decoding stage, 
we assume that the image is watermarked. Let us suppose there are L 
possible messages. In the verification process, our job is to obtain an 
estimate of the hidden message M from the marked image (figure2.2). We 
know that, in cases where there is less or no knowledge of the priory 
probabilities of the classes/hypotheses, priori probabilities are selected 
that make the classes equally likely. Hence if we assume that the 
messages are equiprobable, then it’s fair to consider maximum likelihood 
(ML) test. The estimated message should satisfy: 



 
Chapter 2 

 13 

lm
Yf
Yf

m

l ≠∀> ,0
)(
)(ln

b
b

 
(2.8) 

 

Where lb  represents the code vector corresponding to the message 
being embedded while, mb represents the code vectors corresponding to 
all other possible messages. 

Hernandez et al. [5] have assumed that the sequences that are 
generated by considering each ),( ji DCT coefficient of all 8x8 blocks 
behave like generalized Gaussian and are statistically independent. Let 
us denote these 2-D sequences by ][ki,jQ , obtained as follows: 

{ }70,,]88[][ 21221121
21
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The ML is then easily proved [5] to be equivalent to finding index 
{ }L,2,1,l LL∈  that obey 
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Figure 2.2   Hernandez’s watermark decoding technique 

We should remember that our bit could be +1 or –1 only i.e. a 
bipolar signal. If now Gi sample vector denote all the DCT coefficients of 
different 88× blocks that correspond to a single bit i, then one can prove 
[5] that the sufficient statistics of this sample vector is given by: 
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For bipolar signal i.e. ]1,1[−∈b , the estimated bits could be: 

},21{)(sgn N,,irb ii L∈∀=
∧

 
 

(2.12) 
 

2.2 Perceptual Shaping of a Digital Watermark 
Development of an adaptive watermarking scheme to tailor a 

watermark requires the understanding of the cover image in the context 
of human visual system (HVS). In spatial-domain, this understanding 
means knowing the distribution of smooth and textured areas in a cover 
image. In transform-domain, it means knowing the distribution of low, 
mid and high frequency components of the cover image. Thus, in order to 
hide the watermark, the watermark is tailored/shaped using perceptual 
models that exploit sensitivities/insensitivities of HVS. The better a 
perceptual model is, the better is the perceptual shaping and hence 
imperceptibility of the watermark. Perceptual model can be viewed as a 
perceptual shaping function (PSF), providing maximum allowed 
alteration to a pixel value (or DCT coefficient) that is not observed by a 
human observer.   

These perceptual models are able to learn the content of a cover 
image by exploiting the sensitivities/insensitivities of an HVS. They take 
advantage of frequency sensitivity models that are based on viewing 
conditions as well as the cover image dependent, luminance sensitivity 
and contrast masking effects. Frequency sensitivity describes the HVS 
sensitivity to sine wave gratings at different spatial frequencies and 
depends only on the surrounding conditions. Luminance sensitivity on 
the other hand, is a measure of the effect of detectability threshold of a 
signal on a constant background. It depends on the average luminance 
value of the background as well as on the signal’s luminance level. In 
block-based DCT case, the DC coefficient of each block dictates the 
luminance sensitivity for that block. The third important property of HVS 
that is exploited for hiding a watermark is the contrast masking. It 
represents the detectability of one signal in presence of another signal. 
This masking (hiding) effect increases when the masking signal and the 
signal to be masked have same spatial frequency, orientation and 
location. In block-based DCT, the AC coefficients dictate this behavior. In 
our present investigations, we have compared the developed GPSF with 
that of WPM.  
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In watermarking schemes based on DCT-domain techniques, 
mostly Watson’s perceptual model [16, 18] is used to shape the 
watermark. Watson’s perceptual model is based on Ahumada’s work [17] 
and has been used in DCT-based JPEG compression. Podilchuk et al. [7], 
using Watson’s perceptual model, have attempted to exploit HVS for 
watermark shaping in DCT domain. They propose image adaptive 
watermarking and use the concept of Just Noticeable Difference (JND) as 
a measure of subsequent distortion being caused by the watermark 
embedding. Hernandez et al. [5] and Briassouli et al. [6] have applied the 
same idea in spread spectrum-like DCT domain watermarking. Rather 
than comparing magnitude of DCT coefficients with JND, they directly 
use the Watson’s perceptual model as a perceptual shaping function. Cox 
et al. [19] have also used the Watson’s perceptual model for perceptually 
shaping the watermark in their informed coding and embedding-based 
watermarking technique. Watson’s perceptual model, although widely 
used in DCT domain-based watermarking, is not the optimal perceptual 
model [1]. Firstly, the model is built on empirical studies and is not 
based on extensive search methods. Secondly, it neglects certain effects 
like spatial masking in frequency domain [5]. 

 

2.2.1 Watson’s Perceptual Model (WPM)  
Consider an image matrix x in spatial domain. The image is 

transformed to matrix X  by applying 8x8 block DCT. According to the 
WPM, we define the visibility threshold )(i,jT  for every )(i,j  DCT coefficient 
of 8x8 block as follows: 
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where i,of and o,jf  denotes the vertical and horizontal frequencies 
(cycles/degree) of the DCT basis functions respectively. minT is the 
minimum value of )(i,jT corresponding  to the minimum frequency minf . 
The rest of the parameters are also set empirically [16-17]. The effect of 
luminance sensitivity is considered by correcting this threshold 
corresponding to average luminance of each block: 
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where o,oX is the DC coefficient of each block and o,oX represents the 
average screen luminance =1024 (for an 8-bit image). The effect of 
contrast masking is incorporated by the following relation: 

])()()([max)( 1 ωω* i,jXi,jT,i,jTi,jT −′′=  (2.15) 
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where )(i,jX is AC DCT coefficient of each block and ω has been 
empirically set to a value of 0.7. These allowed alterations represent the 
perceptual mask denoted by α .  

Watson’s perceptual model although, fair enough to give us 
imperceptible alterations, is not an optimum PSF. This is because some 
effects like spatial masking in frequency domain are ignored as well as 
many of the constants are set empirically. Based on this, we have tried to 
evolve genetically an effective perceptual shaping function. 

 

2.3 Evolutionary Algorithms: Computational Intelligence-
based Approaches 
Evolutionary Algorithms (EAs), inspired by natural selection and 

genetics, is a field of Computational Intelligence. Like other meta-
heuristic methods, EAs implement a search strategy supplemented by an 
objective function and operators. Following are the basic types of EAs: 

1. Genetic Algorithms 

2. Evolutionary Programming 

3. Genetic Programming 

4. Evolutionary Strategies 

 

The distinction in these approaches is largely due to the way they 
implement the search strategy of EAs.  

 
2.3.1 Genetic Programming: The Basics 
The term genetic programming (GP) has been introduced 

independently by Koza and Garis in 1990. Since then it has received 
widespread applications in research academia. It is a category of 
evolutionary algorithms, which are inspired by the mechanism of natural 
selection.   

GP will converge over successive generations towards the global (or near 
global) optimum. Why this simple operation should generate rapid, 
valuable, and robust techniques is largely because Evolutionary 
Algorithms combine direction and chance in the search in an effective 
and efficient manner. Since population implicitly contain much more 
information than simply the individual fitness scores, Evolutionary 
Algorithms combine the good information hidden in a solution with good 
information from another solution to produce new solutions with good 
information inherited from both parents, hopefully leading towards 
optimality.  
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The ability of the algorithm to explore and exploit simultaneously, a 
growing amount of theoretical validation, and successful application to 
real-world problems supports the conclusion that Evolutionary 
Algorithms are a powerful, robust optimization technique. 

 

2.3.1.1 The Primitives of GP 

The terminals to an individual GP tree act like inputs to a program 
(more like an independent variable of a function) and may be constants 
or variables.  On the other hand, non-terminal nodes are called 
functions. These functions process a value that is given as an argument. 
Functions are usually composed of statements and operators and are 
mostly application specific. Together these two primitives: terminals and 
functions make up a GP tree, representing an individual solution. 

Functions and terminals in GP simulation should be powerful 
enough to represent an individual solution to the problem. Most trivial 
functions being used are PLUS, MINUS, DIVISION, AND, TIMES and EXP 
etc. [24, 28, 30]. 

2.3.1.2 Structure of GP Program 

In GP simulation, an individual candidate solution of a population 
is represented through a data structure, mostly by a tree. At the 
beginning of GP simulation, these individual structures are randomly 
constructed from the GP primitives. During the process of generating 
offspring from the selected parents, the genetic operators are applied on 
these data structures. 

 

2.3.1.3 Strategies for Initializing GP Population 

The initial population of a GP simulation is formed by randomly 
generating trees. This randomness is achieved through different ways 
and has a profound effect on the behaviour of the subsequent 
simulation. Three most important strategies are: 

•  The Full method 

• The Ramped Half - and - Half method 

• The Grow method 

 

2.3.1.4 Genetic Operators 

To produce a new generation, mainly three operators: replication, 
mutation and crossover are used in GP (figure 2.3). Replication is mere 
copying an individual into the next generation without any change. In 
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mutation, a small part of an individual’s genome (genetic representation) 
is changed. This small random change often brings diversity in the 
solution space and helps to avoid trapping in local minima/maxima. On 
the other hand, crossover creates an offspring by exchanging genetic 
material, usually between two individual parents. In fact, crossover tries 
to mimic recombination and sexual reproduction. It mainly helps 
converging onto an optimal solution.  
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Figure 2.3 GP search mechanism 

2.3.1.5 Fitness Criteria and Selection Strategies 

In a generation, every candidate solution is evaluated and scored 
using the fitness function, is application dependent. The survival of 
fittest is implemented by retaining the best individuals. The rest are 
deleted and replaced by the offspring of the best individuals.  Together 
(the retained ones and the offspring) make a new generation. Some 
offspring may have high score than their parents in the previous 
generation.  



 
Chapter 2 

 19 

The whole process is repeated for the subsequent generations. 
With the scoring and selection procedure in place, each new generation 
has, on average, a slightly higher score than the previous one. In this 
way the solution space is refined generation by generation and thus 
converges to the optimal/near optimal solution. For a detailed study, one 
may refer to [24, 28, 30]. 

The user according to the application defines the fitness function. 
The better an individual is performing at this function; the better its 
survival is and thus better is its chances of producing children for the 
next generation.  

2.3.1.6 Control Parameters:  

There are certain parameters that affect the basic operation of the 
GP simulation. They comprise of population size, the maximum number 
of generations, and the number of individuals chosen for the next 
generation, and so on. These parameters do not affect the GP simulation 
directly, but their values can affect global properties like the number of 
generations needed before a solution is found. 

2.3.1.7 Termination Criterion:  

There must be a way for the GP simulation to end. This happens 
when the generation count reaches maximum number of generations, or 
when a program surpasses a threshold fitness level. 

 

2.4 Machine Learning: The Basic Concept 
Machine learning is the study of computer algorithms that improve 

automatically through experience. It is a process that starts with the 
specification of the learning domain and ends with testing. Machine 
learning systems are applied to the learning domain, where the 
researcher identifies features of the domain that are useful for the 
prediction of accurate useful results. 

The selection of features, however does not completely define the 
whole process. The learning process occurs by training, where the ML 
systems attempts to learn from examples. Finally the quality of learning 
is appraised by testing the ability of the best solution of the ML system to 
predict outputs from a test set. The test set must contain different 
examples than those of train test. The ability of ML system to test set is 
often called generalization.   

 

2.4.1 GP as a Machine Learning System 
GP includes a population of computer programs that improve 

automatically as they experience the data on which they are trained. As 
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such, GP is a type of machine learning system (24). It has already 
changed the view on a variety of problems that machine learning has 
successfully handled and has mostly exceeded the performance of other 
machine learning systems(27). According to the terminology used in 
machine learning, the fitness cases in GP are referred as training cases. 
The corresponding learning on the training set means that the GP system 
must learn a computer program that is able to predict the outputs of the 
training set from the inputs. The best-evolved computer program of the 
GP simulation is then tested on the test set. Thus GP systems use a 
learning algorithms based on an analogy with natural evolution which in 
case Multilayer feed forward neural networks, analogy with biological 
nervous systems is considered.   

 

2.4.2 Watermarking using Machine Learning Techniques 
Recently machine learning techniques are applied in the field of 

watermarking. Most of them are related to the detection of a hidden 
message i.e. classifying watermarked and unwatermarked works. Lyu et 
al [20] have used high order statistics as features and Support Vector 
Machine (SVM) as classifier for detecting hidden messages in an image.  
Fu et al [21], have proposed optimal watermark detection by exploiting 
the generalization capabilities of SVM. Yu et al [22], have used neural 
networks in watermarking for enhancing robustness against some of the 
common attacks. 

On the other hand, Pereira et al [23] have used Linear 
Programming to optimally embed a watermark in transform-domain, 
subject to a linear set of constraints in spatial-domain. Huang et al [8] 
use Genetic Algorithms at the embedding stage. They propose optimal 
embedding positions in a block-based DCT domain watermarking. The 
use of machine learning techniques has thus proven its worth in the field 
of watermarking. Following the same concept of exploiting machine 
learning capabilities for improvement of watermarking schemes, we have 
been employing GP for developing optimal perceptual shaping functions 
−perceptual shaping functions that make an optimal tradeoff between 
robustness and imperceptibility [9-11] 

 

2.5 Genetic Perceptual Shaping Scheme (GPSS): 
 

We first give a brief description of our proposed technique of 
intelligent perceptual shaping of a watermark using GP. The rest of the 
chapters of this thesis will explain in detail the different approaches that 
we have taken for intelligently shaping a watermark. The basic 
architecture of our proposed scheme for developing a PSF is shown in 
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figure 2.4. Three different modules supplement each other in a cyclic 
fashion. Using the robustness versus imperceptibility tradeoff as an 
optimization problem, GP module produces a PSF. The watermark 
generated by the watermarking scheme is shaped by this PSF. The 
imperceptibility of this shaped watermark is then used as a scoring 
criterion in the GP module. In this way, the GP module evaluates the 
performance of its several generated PSF. In a separate stage, the best-
evolved GPSF is compared with the Watson’s perceptual model. 

Watermarking Module

Shaped 
Watermark

Imperceptibility

Exploiting 
Characteristics 

of HVS

GP Module

Perceptual Shaping 
Module

Watermarking Module

Shaped 
Watermark

Imperceptibility

Exploiting 
Characteristics 

of HVS

GP Module

Perceptual Shaping 
Module

Figure 2.4 Basic architecture of GPSS 
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C h a p t e r  3  

Perceptual Shaping of Full Frame DCT Domain-
based Watermark 

 

A watermark is generally embedded in the selected coefficients of 
the transformed image using a carefully chosen watermarking strength. 
Choice of a good watermarking strength, to perceptually shape the 
watermark according to the cover image is crucial to make a tradeoff 
between the two conflicting properties, namely, robustness and 
imperceptibility of the watermark. Traditionally, a constant watermarking 
strength obtained from spatial activity masking and heuristics has been 
used for all the selected coefficients during embedding. In this Chapter, 
we present an innovative scheme of perceptually shaping watermark to 
the cover images. We consider this tradeoff as an optimization problem 
and investigate an evolutionary optimization technique to find 
optimal/near-optimal perceptual shaping function for full frame DCT 
domain-based watermarking system. First, we describe the full frame 
DCT domain-based watermarking scheme proposed by Piva et al. [4]. We 
have used this scheme to develop GPSF.  

 

3.1 Introduction 
 

In digital watermarking, using the overall information about the 
image characteristics, the watermark is generally embedded in the whole 
image with the same strength without considering the local distribution 
of the cover image content. This embedding usually leads to unwanted 
visible objects, especially in regions, which are more sensitive to noise 
(smooth regions). In order to decrease these deformations, the 
watermarking strength should be decreased. However in doing so, 
robustness is lost. Therefore one needs to perceptually shape the 
watermark, providing a suitable watermarking strength for each of the 
selected DCT coefficients. 

 Generally, watermarking in frequency domain has been used [4, 
31, 32, 33], as it allows the direct understanding of the contents of the 
image. Consequently, the characteristics of HVS can be taken into 
account more easily when one needs to decide the strength and position 
of the watermark to be added to the image. Boland et al. [34] have 
employed frequency domain transformation on block by block basis, 
while Barni et al. [31] and Cox et al. [32],  have employed transformation 
to the image as a whole. Recently Cox et al. [19] and Hernandez et al. [5] 
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have used Watson’s perceptual model [16] to perceptually shape the 
watermark according to the cover image before embedding. But their 
watermarking scheme is based on 8x8 block-based DCT domain 
watermarking. On the other hand, rather than optimizing perceptual 
shaping, Huang et al. [2,8,35] use Genetic Algorithms to find the optimal 
embedding positions in a block-based DCT domain watermarking schemes 
to improve marked image quality. In the present work, we are 
concentrating on the optimization of perceptual shaping of a watermark 
in the whole DCT domain watermarking system as used in [4].  

DCT domain watermarking techniques are important due to the 
extensive use of the DCT in many image and video compression standards. 
The DCT based watermarking techniques provide good resistance against 
many attacks, except geometrical attacks like rotation. In this work, 
nonetheless keeping high invisibility of the watermark, we have improved 
watermark resistance by embedding a watermark of high overall 
strength. 

3.2 Full Frame DCT-domain Watermarking Scheme 
Digital watermarking is a process of embedding information (or 

signature) directly into a multi media data by making small 
modifications. These small modifications however should not affect the 
visibility of the image largely. Similarly, these small modifications should 
be able to survive intentional and unintentional attacks (i.e. should have 
robustness). Robustness is difficult to achieve, since both security levels 
and operational requirements are usually application dependent. In this 
work we are focusing on image watermarking which means that image 
should be able to survive common image preprocessing techniques and 
forgery attacks. In order to achieve invisibility, Cox et al. [32] proposed to 
use a pseudo-random sequence of real numbers as the watermark. These 
sequences should be numerous and easily retrievable. Following his idea 
we are using a pseudo-random sequence of real numbers as the 
watermark. This whole process can be viewed as a communication task 
with the watermark acting like a signal and the cover image acting just 
like a channel. The intentional attacks and unintentional image 
processing can thus be considered just like the noise, which the signal 
should be immune to. Lastly, the scheme should have the ability to 
detect or extract the signal from the corrupted image.  

Based on the need of original cover image during the detection 
stage, there are mainly two types of watermarking techniques [3]: one, 
which requires the original image [32] and the other that does not [2]. We 
have followed the later approach, which is also called a blind detection 
scheme. In the following, we explain the various steps taken in the full 
frame DCT-domain watermarking scheme proposed by Piva et al. [4]. 
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3.2.1 Watermark Embedding and Detection Processes  
Let x denote an original image of size NM ×  then it’s 

DCT transformed image X  is given by: 
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In order to select coefficients for embedding, a zigzag scanning of 
the transformed image in DCT domain is done [4]. It is equivalent to 
sorting according to importance, since the perturbation in the low 
frequency components is generally more perceivable to human eyes than 
high frequency components. The first L coefficients are left intact and the 
watermark is added to the next G coefficients. Suppose the first L+G 
DCT coefficients are: 

{ }GLLL XXXXX ++= ,,,,,, 121 LL0X        (3.4 ) 

And the pseudo-random watermark is given by: 

{ }GSSS ,,, 21 L=S        (3.5 ) 

The new coefficients after embedding are: 

iiLiLiL SXαXY +++ +=        ( 3.6) 

where α is the watermarking strength and i runs from 1 to G. These 
new coefficients are re-inserted into the zigzag scan. Watermark 
embedded image in spatial domain is then obtained by taking the inverse 
of modified DCT coefficients.  

In the detection process, Piva et al. [4] have used the reverse 
process for a given corrupted image. First the NM × DCT coefficients matrix 
is computed. It is then re-ordered by the zigzag scan. The L+1 to L+G 
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coefficients are selected to form a vector Y
)
as follows: 

{ }GLLL YYY ++=
)

L
)))

,,, 10Y        (3.7 ) 

The correlation Z of Y
)
and any mark 

o
S is calculated as: 
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By comparing the correlation Z  to a pre-defined threshold, they 
determine whether watermark exists or not.  

3.2.2 Perceptual Shaping of a Watermark generated in Full-
frame DCT domain 

In order to perceptually shape a watermark according to the cover 
image, one has to exploit the sensitivity/insensitivity of HVS . But HVS is a 
complex system that is mainly composed of three parts: a receiver with a 
pre-processing stage (the eye and the retina), a transmission channel (the 
optic nerve), and a processing channel (the visual cortex). Efforts to 
understand and model HVS have partly remained fruitless due to the lack 
of our knowledge about the way that a stimulus is processed through the 
huge neural network of our brain. Different techniques have been used 
to exploit its properties and thus hide (mask) a signal into another signal. 
For example, edges in images can mask signals of much greater 
amplitude than regions having nearly constant intensity [36]. This fact is 
exploited by spatial masking. But spatial masking is relatively limited 
and is concentrated in a location only few pixels close to the edge. This 
makes it difficult for use in watermarking schemes. However, it is 
observed that regions in an image that are not smooth and have sharply 
changing luminance are able to mask other signals significantly. This 
phenomenon is called noise masking and is difficult to be modeled [37]. 

The concept of entropy masking has also been used, which states 
that masking is a function of the degree to which knowledge about a 
mask is uncertain [37]. The noisier a region is, the greater the entropy is. 
Nadenau et al. [38] gave the concept of similarity masking, which states 
that HVS is more sensitive to a distortion that does not look like its 
surroundings. Another technique, which is based on the subjective 
visual quality measurement, is called spatial activity [39]. The use of 
spatial activity relies on the fact that noise visibility decreases in areas 
with sharp luminosity variations, thus offering easy embedding of noise 
in these areas. Spatial activity m,nA around a pixel position )(m,n  is defined 
as the sum of local variations of surrounding pixels. 

Piva et al. [4] made use of the spatial activity to exploit the 
distinctiveness of the HVS to embed a watermark of high energy content in 
an image at low cost of visibility. In his method the original image X and 
the watermarked image Y are added pixel by pixel according to the local 
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weighting factor m,nβ thus obtaining new watermark image Y′  

)()1( m,nm,nm,nm,nm,nm,nm,nm,nm,n XYβXYββXY −+=+−=′       (3.9 ) 

The weighting factor m,nβ  was used to take into account the 
characteristics of HVS . In highly textured regions, where noise sensitivity 
is low i.e. 1≈m,nβ  and m,nm,n YY ≈′ . Whereas in uniform regions, where 
noise sensitivity is high 0≈m,nβ  and m,nm,n XY ≈′ . For each pixel intestines, 

m,nβ  was computed by obtaining variance of 99×  non-overlapping blocks 
of the image. The average watermarking strength α  was thus obtained 
using m,nβ  

 

3.3 Proposed Technique for Optimizing Perceptual 
Shaping of Watermark 

 

In this work, GP is used to insure invisibility of watermark by 
optimizing perceptual shaping according to HVS. That human visual 
system is sensitive to local changes in variance of an image. A human 
observer can easily observe noise in smooth regions, but not in highly 
textured regions [29, 40]. These local changes in variance can be traced 
by using spatial activity masking [39]. Spatial activity masking thus 
helps us to select those areas whose visibility will be less affected with 
watermark embedding. GP is then used to evolve such a perceptual 
shaping function that embeds high strength watermark in high variance 
areas and low strength watermark in low variance areas.  For this 
purpose, change in local variance of the marked image with respect to 
the original cover image is used as the fitness function inGP simulation. 

It is difficult to simultaneously optimize robustness and perceptual 
invisibility. Therefore, we keep the mean squared strength ( MSS ) that 
represents a measure of robustness, in a suitable range and try to evolve 
such PSF that ensures maximum invisibility of the watermark X . 
This PSF is allowed to have values in range of [0, 1], as the alteration to 
a DCT coefficient should be a fraction of its value. However, it is 
constrained to have MSS greater than certain application dependent lower 
bound.  

∑
=

=
G

i
iαG

MSS
1

21
 (3.10 ) 

where G is the total number of selected DCT coefficient. 

Since the evolved watermarking strength is no more a constant 
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rather a distribution, therefore we can configure an interesting 
modification to the conventional watermarking scheme proposed by Piva 
et al. [4]. Conventionally, the marked image Y  is given by: 

( )SXXY ,f+=  (3.11 ) 

The function ( )SX,f dictates the embedding process and depends 
only on the original image and the pseudo-random mark. Generally it is 
given by: 

( ) SXSX ⋅=,f  (3.12 ) 

A certain constant strength of this is added to the original image. 
Now, since we are not using constant watermarking strength for the 
image; rather we use perceptual mask obtained from GPSF (denoted 
byα ). Consequently, in our case this function also depends on the GPSF 
and the marked image Y  is given by:  

( )αSXXY ,,f+=  (3.13 ) 

with 

( ) αSXSX ⋅⋅=,f  (3.14 ) 

To shape the watermark according to the cover image, the PSF 
should depend on the value of the DCT coefficient to be altered. But a 
question arises here, that using the same PSF for the marked image, how 
one should expect the same perceptual shaping to be obtained at the 
detection stage. Here we assume that the DCT coefficients during the 
embedding process are not heavily altered due to constraint on the image 
fidelity [5]. The experimental results shown in section 3.5 validate this 
assumption. 

If iα denote the watermarking strength for a particular coefficient of 
the selected coefficients, then for our proposed scheme, equation 3.6 and 
3.8, which are used for embedding and detection respectively are 
modified as: 

iiLiiLiL SXαXY +++ +=  (3.15 ) 
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 (3.16 ) 

 

3.4 Implementation Details 
To represent a possible solution with aGP tree, one needs to define 

suitable functions, terminals and fitness criteria according to the 
optimization problem [41]. We have used a variant of Kuhlmann et 
al.GP C++ code [42] for evolving PSF. Matlab [43] has been used for the 
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manipulation of the images including taking DCT of the cover image and 
the subsequent selection of the DCT coefficients. The selected coefficient 
array ( SCA ) is passed on to theGP C++ environment, where each PSF of the 
population is used for embedding in the SCA . The modified SCA is then sent 
back to the Matlab environment and its fitness is computed based on its 
perceptual invisibility. This fitness of the individual PSF is again sent 
toGP C++ environment, where it dictates the mating probability for the 
creation of next generation. Typically, for a population size of 300 and 30 
generations, the GP simulation takes about 4-5 hours on a Pentium IV – 
2.0 GHz  machine 

The best PSF of the last generation is copied and is used for 
watermark embedding in Matlab environment (figure 3.1). Its perceptual 
invisibility is checked using mean squared error ( MSE ) and signal to noise 
ratio ( SNR ) given by (3.17) and (3.18). Interfacing of Matlab to VC++ has 
been used to coordinate among the different steps of the simulation. We 
have used Intel Pentium IV machine with a processing speed of 2.0 GHz 
for our simulation studies.  
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3.4.1 GP Configuration: 
Four binary floating arithmetic operators )*,,,( divisionprotected−+ , if 

less than )(IFLT , if greater than )(IFGT , EXP and ABS are used as 
conventional functions in theGP tree. Nearly 200 constants between -1 
and +1 are used as constant terminals (see table 3.1). Since for 
every DCT coefficient of SCA, GP has to decide the watermarking strength, 
therefore the current DCT coefficient value and its index i in SCA are set as 
the variable terminals in aGP tree. 

3.4.1.1 GP Fitness Criteria: 

Fitness of each PSF individual is computed based on perceptual 
invisibility using spatial activity masking. For this purpose first we 
obtain the marked image in spatial domain using inverse DCT of modified 
image. We then compute the variance of 88×  non-overlapping blocks of 
the image. 
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Table 3.1 GP Parameter setting for evolving GPSF for full-frame DCT-
domain watermarking 

 

These blocks are replaced by their respective variances, which 
gives us a Block Variance Matrix )(BVM of size 88×× NM . Difference 
between this BVM  and that of the original image )( 0BVM is obtained. The 
mean of this difference is then used as the fitness of each PSF . The lesser 
the value of mean is, the higher is the perceptual invisibility and better 
the individual PSF has performed. 

3.5 Results and Discussion 
A. Embedding and Detection: 
In order to check the robustness of our proposed watermarking 

technique, we first use standard Lena image as a cover image. The 
marked image is shown in figure 3.2. The image is marked using 

25000=L  and 16000=G  (equation 3.4), while block size for evaluating 
spatial activity masking is kept equal to 88× . About1000 randomly 
generated watermarks are checked for correlation with the marked 
image. The response to the correct watermark ( 379=seed ) is much larger 
than the responses to the others (see figure 3.3). The correlation value is 
compared to a suitable threshold value. The correlation crossing this 
threshold is considered to be representing the seed of the mark with 
which embedding is performed. Figure 3.4 shows the correlation when 
evolved PSF is not used in detection phase (equation 3.8), whereas figure 
3.3 shows the same when PSF is used in the detection phase .  
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Figure 3.1 Full-frame DCT-domain watermark embedding (a) and detection (b) scheme 

  
 

Figure 3.2 Watermarked Lena image         Figure 3.3 Watermark detection using GPSF 

 
Figure 3.4 Watermark detection without using GPSF Figure 3.5 Histogram of GP 
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3.5.1 Genetic Perceptual Shaping 
Figure 3.5 show the histogram of theGP evolved PSF . It is obtained 

for Lena image of size 512512×  with 16000Gand25000 ==L . Using the 
evolved PSF , suitable SNR values are obtained for different standard images 
with MSS approximately equal to 0.0417. The important property of this 
PSF is that it is cover-image independent and thus makes the 
watermarking scheme an image adaptive one. This fact can be observed 
from table 3.2, where we have used the same GPSF for different standard 
images. It provides high image quality measures while still offers effective 
resistance against Gaussian noise and JPEG compression. The best-
evolved GPSF usingGP simulation is given as: 

α  = divide(minus(cos(sin(cos(sin(0.62621)))),0.58698),cos(cos  

 (cos(cos(DCTcoef)))))          3.19 

where DCTcoef is the DCT coefficient being altered. 

Table 3.2 Performance of the evolved GPSF for different images 

 

3.5.2  Survival against Attacks 
Figure 3.6 and table 3.3 confirm the robustness of our 

watermarking technique against some of the hostile attacks. These are 
compared to the results obtained by simulating Piva’s approach [4,33]. It 
can be observed that our method has an edge over Piva’s method in 
survival against attacks like JPEG compression of 8% quality, Gaussian 
noise of variance=14,000 and combined JPEG and Gaussian. The response 
to the correct watermark can still be detected, although the image 
degradation is quite heavy. However like Piva’s, our method is not robust 
against translation and rotation attacks. For this purpose, one will need 
to use transforms that are invariant to these types of geometric attack 
[44] and then useGP to evolve PSF for such domains. 

 Table 3.3 summarizes the performance of our watermarking 
approach against different attacks. Our watermarking scheme survives 
low-pass filtering and median filtering up to window size of 55× . Similarly 
it survives image resize up to 50%, JPEG compression up to 7% quality, 
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Gaussian noise up to 17000 variance and combined Gaussian 
and JPEG compression up to 5000 variance and 25% quality respectively. 
As expected, with increase in Gaussian noise the threshold increases 
while SNR decreases. 

 
Figure 3.6 (a) Detector response after JPEG attack using GPSS 

 (b) Detector response after JPEG attack using Piva’s approach 

Table 3.3 Performance comparisons against different attacks 
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3.6 Conclusions 
We have considered the robustness versus imperceptibly as an 

optimization problem. Using this idea, a GPSF is evolved that effectively 
shapes the watermark according to the cover image. Unlike the heuristic 
techniques used in [4] that search for a constant watermarking strength 
for each new cover image, the GPSF is image adaptive and selects a 
suitable watermarking strength for each DCT coefficient. The 
optimal/near-optimal shaping of the watermark obtained using the 
evolved GPSF increases its resistance against most of the non-geometric 
attacks. As a result of our simulations, the best evolved GPSF has been 
obtained. Its expression is quite general and can be used in any full 
frame DCT domain-based watermarking technique.  
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C h a p t e r  4  

 

Perceptual Shaping of Block-based DCT-domain 
Watermarking Scheme 

 
The most widely used transformation, both in image compression 

and watermarking is the block-based DCT transformation. In this 
chapter, as opposed to the previous chapter, we will concentrate on 
intelligent perceptual shaping of block-based DCT domain watermarks. 
The performance of the GPSF is compared with that of WPM. This will 
help in establishing the fact that intelligent perceptual shaping of a 
watermark could be applied to a broad category of watermarking 
techniques.  

The proposed technique exploits the characteristics of human 
visual system using GP. We employ a tradeoff between watermark 
robustness and imperceptibility, as an optimization criterion in the GP 
search. The resultant GPSF is a combination of frequency, luminance 
sensitivity and contrast masking, enabling us to shape the watermark 
according to the cover image. 

  

4.1 Introduction 
 

Typical watermarking schemes are based on transform-domain 
techniques (DCT, wavelets etc) [4, 5, 6, 7, 8] as well as spatial-domain 
methods [15, 47]. Transform-domain techniques have the convenience of 
allowing us the direct understanding of the content of the cover data. 

Development of an adaptive watermarking scheme to tailor a 
watermark requires the understanding of the cover image in the context 
of HVS. Recent survey by Cox et al. [46], foresee optimal perceptual 
shaping of a watermark as a fruitful new area of research. The better a 
perceptual model is, the better is the perceptual shaping and hence 
imperceptibility of the watermark.  

In watermarking schemes based on DCT-domain techniques, 
mostly WPM [16, 48] is used to shape the watermark. WPM is based on 
Ahumada’s work [17] and has been used in DCT-based JPEG 
compression. Podilchuk et al. [7, 49], using WPM, have attempted to 
exploit HVS for watermark shaping in DCT domain. Hernandez et al. [5] 
and Briassouli et al. [6] have applied the same idea in spread spectrum-
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like DCT domain watermarking. Cox et al. [19] have also used WPM for 
perceptually shaping the watermark in their informed coding and 
embedding based watermarking technique. WPM, although widely used 
in DCT domain-based watermarking, is not the optimal perceptual model 
[1]. Firstly, the model is built on empirical studies and is not based on 
extensive search methods. Secondly, it neglects certain effects, like 
spatial masking in frequency domain [5]. 

As regards spatial-domain based watermarking schemes, Delaigle 
et al. [47], have used both masking and texture discrimination to embed 
high strength watermark. On the other hand, Voloshynovskiy et al. [15] 
have used the idea of noise visibility function to shape the watermark in 
the spatial-domain. They use a non-stationary Gaussian stochastic 
model to model noise and thus differentiate between smooth and noisy 
regions in a cover image. Recently Kutter et al. [50] have presented a 
perceptual model that takes into account the sensitivity and masking 
behaviour of HVS, by means of a local isotropic contrast measure and a 
masking model. On the other hand, Lambrecht et al. [51] have proposed 
a perceptual model that is based on Gabor filters. 

Although, both in transform and spatial-domain based 
watermarking schemes, a number of efforts have been made to 
appropriately shape a watermark according to the cover image. However, 
very few attempts have been made to consider the watermark shaping as 
an optimization problem. Huang et al. [2, 8] have used Genetic Algorithm 
to choose optimal embedding positions in a block of a block-based DCT 
domain watermarking system. However, they have not considered the 
optimization of perceptual model itself to improve the marked image 
quality. Cox et al. [1] have used Lagrange optimization for optimally 
embedding an already shaped watermark. Pereira et al. [23], using Linear 
Programming, optimally embed a watermark in transform-domain, 
subject to a linear set of constraints in spatial-domain. We address these 
issues through the following contributions: 

1. We concentrate on the optimization of the perceptual 
shaping function itself and propose a technique for developing GPSF.  

2. We consider the perceptual shaping function as a function 
and the characteristics of HVS as independent variables. The GP search 
mechanism is then used to strive for optimal dependency of the 
perceptual shaping function on the characteristics of HVS. 
 

4.2 Proposed Technique for Developing a GPSF 
 

Figure 2.4 shows the basic architecture of our proposed scheme for 
developing perceptual shaping functions. Three different modules 
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supplement each other in a cyclic fashion. Robustness versus 
imperceptibility trade-off is considered as an optimization problem. We 
first explain the overall working of the basic architecture. Details of the 
individual modules are given in section 4.2.1.  

The GP module produces a population of GPSF. Each GPSF is 
presented to the perceptual shaping module, where it is applied on the 
cover image in DCT-domain, generating a perceptual mask. The 
watermark is shaped using the perceptual mask and its imperceptibility 
is then used as a scoring criterion in the GP module. In this way, the GP 
module evaluates the performance of its several generated GPSFs. In a 
separate stage, the best-evolved GPSF is compared with that of the WPM. 

 
4.2.1 Evolution of Perceptual shaping functions 

 
4.2.1.1 The GP Module 

The GP settings for evolving GPSF are as under: 

 

GP Function Set: Function set in GP is a collection of functions 
available to the GP system. In our GP simulations, we have used simple 
functions, including four binary floating arithmetic operators (+, -, *, and 
protected division), LOG, EXP, SIN and COS. 

GP Terminals: To develop initial population of GPSF, we consider 
GPSF as watermark shaping function and the characteristics of HVS as 
independent variables. By doing this, in essence, we are letting GP 
exploit the search space representing different possible forms of 
dependencies of the watermark shaping function on the characteristics of 
HVS. Therefore, visibility threshold )(i,jT , DC and AC DCT coefficients of 
8x8 block are provided as variable terminals ( figure 4.1). Random 
constants in the range [-1,1] are used as constant terminals.  

+

log *

/ sin cos

X(i,j) 0.03 X0,0 T(i,j)

+

log *

/ sin cos

X(i,j) 0.03 X0,0 T(i,j)

+

log *

/ sin cos

X(i,j) 0.03 X0,0 T(i,j)

 
Figure 4.1 An example GP tree for exploiting characteristics of HVS 
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Fitness Function: A fitness function in GP is supposed to grade 
each individual of the population. It is designed to provide feedback 
about how well an individual of the GP population is performing at the 
given task. Figure 2.2 depicts the idea of using fitness function as 
feedback. Every perceptual shaping function of a GP population is 
evaluated in terms of structuring the watermark. The evaluation is based 
on how well is the SSIM measure at a certain level of estimated 
robustness (MSS). 

RESSIMFitness .=  (4.1) 

Thus, each individual perceptual shaping function of a GP 
population is scored using equation 4.1 as a fitness function. The greater 
the fitness is, the better the individual has performed.  

 

Termination Criterion: The GP simulation is ceased when one of the 
following conditions is encountered: 

1. The fitness score exceeds 0.99 with  MSS ≥ 20.0. 

2. The number of generations reaches the predefined maximum 
number of generations. 

 

4.2.1.2 Perceptual Shaping Module 

A perceptual model exploits the characteristics of HVS to tailor a 
watermark according to the cover image. This enables us to embed a 
large energy watermark at low cost of resultant distortion to the cover 
image. The perceptual shaping module receives the individual GPSF 
provided by the GP module as an input. Each GPSF is operated on the 
cover image in DCT-domain. Corresponding to the selected DCT 
coefficient of a block, the GPSF returns a value.  The magnitude of this 
value represents the perceptual strength of the alteration made to that 
coefficient. The functional dependency of the perceptual shaping function 
on the characteristics of HVS can be represented as follows: 

( ) ( ) ( )( )jiXXjiTfkk ,,,,, 0,021 =α  (4.2) 

where the first variable, T is the visibility threshold representing 
frequency sensitivity of HVS. 0,0X is the DC DCT coefficient, while ( )jiX , is 
the AC DCT coefficient of the current block. They represent the 
luminance sensitivity and contrast masking characteristics of HVS 
respectively. 

Operating the GPSF on all of the DCT coefficients, we obtain the 
perceptual mask for the current cover image. The product of the spread-
spectrum sequence and expanded message bits is multiplied with this 
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perceptual mask to obtain the watermark. The 2-D watermark signal 
W (see figure 4.2) is given as: 

bSαW ⋅⋅=  (4.3) 

whereS  is a pseudo random sequence and b is the repetition-based 
expanded code vector, corresponding to the message to be embedded. 
The embedding is performed by adding this watermark to the original 
image in transformed domain: 

WXY +=  (4.4) 

Here the watermark W is our desired signal, while the cover 
image X  acts as an additive noise. As we are developing GPSF, therefore, 
equation 4.3 will be modified as follows: 

bSαW ⋅⋅= G  (4.5) 

where Gα , representing perceptual mask corresponding to GPSF, 
incorporates the dependencies from visibility threshold )(i,jT , AC and DC 
coefficients.  
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Figure 4.2 Detailed structure of GPSS for exploiting characteristics of 
HVS 

4.2.1.3 Watermarking Module 

In order to evaluate the performance of each individual GPSF of the 
GP population, the watermarking module implements the spread 
spectrum based watermarking technique proposed by Hernandez et al. 
[5] ( figure 2.1). This watermarking technique is oblivious and embeds 
message into the low and mid frequency coefficients of 88×  DCT blocks 
of a cover image.  The employed watermarking scheme performs the 
statistical modelling of DCT coefficients using generalized Gaussian 
distribution. This fact helps in constructing better detector/decoder 
structures than the simple Gaussian correlation receiver that is mostly 
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used. One of the reasons for using this watermarking scheme is that the 
DCT is applied in blocks of 8x8 pixels, in a manner similar to that used 
in JPEG algorithm. Hence, it is easy to use and compare WPM with that 
of the GPSF. Secondly, this watermarking scheme has strong theoretical 
foundations [5]. The embedding in DCT-domain is performed using 
equation 4.4. 

The watermarking module of our proposed technique provides the 
imperceptibility of the resultant watermark as a feedback to the GP 
module. The structure of how different sub-modules work within the 
proposed model is shown in figure 4.2. 

 

4.2.3 Testing Performance of the Best-evolved GPSF 
 
In order to assess the performance of the best-evolved GPSF, its 

expression is saved at the end of the GP simulation. The best-evolved 
GPSF is then compared with that of WPM in terms of watermark 
shaping. Where by, the watermark shaping ability is assessed by 
computing watermark imperceptibility as well as robustness measures. 
Figure 4.3 shows the details of the testing method for the evolved GPSF 
using watermarking approach of [5]. In this testing phase, besides using 
the watermarking approach proposed in [5], we also use an algorithm 
similar to the E_PERC_SHAPE algorithm of Cox et al. [1] as well. We 
compare both perceptual shaping functions on the E_PERC_SHAPE 
algorithm, to see whether the GP search mechanism has a bias towards 
Hernandez’s watermarking algorithm used during evolution stage. We 
also evaluate the message retrieval performance in terms of Bit Correct 
Ratio[2]: 

( )
( )

m

L

i
ii

L

mm
BCR

m

∑
=

′⊕
=′ 1, MM  

 

(4.6) 

where M represents the original, while M ′  represents the decoded 
message, mL is the length of the message and ⊕  represents exclusive-OR 
operation. It should be noted that )1( BCR−  represents bit incorrect ratio. 
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Figure 4.3 Details of the testing method for the evolved GPSF 

 4.3 Implementation Details 
 

We have used MATLAB environment for our experimental studies. 
To employ GP, we use GPLAB toolbox [53-54]. The GP parameter settings 
are shown in table 4.1, while the remaining parameters are used as 
default in the software.  

Lena image of size 256x256 is used as a cover image with 22=dN (7 
to 29 in zigzag order) during the GP simulation. Message size is kept 
equal to 64 bits. Following [12, 13], the parameters of WPM are set as 

7.0=r , 15481min .T = , 7281. u = , 683min .f =  cycles/degree and Ta = 0.649. To 
estimate the value of parameter c  for generalized Gaussian Distribution-
based modeling of each (i,j) DCT sequence [5], we have considered its 
range  [0.02, 2.0] with grid step of 0.02. The watermark power, 
represented by MSS, is constrained to lie above a certain lower bound 
(e.g. 20.0) for all the individuals.  

In the testing phase, all images except Baboon and Boat are of size 
256x256. For each of the test image, grid search with a step of 0.01 is 
applied to find the watermark strength needed to produce a resultant 
image of same SSIM measure. In order to develop GPSF, keeping 
population size equal to 300 and no. of generations 30, the GP 
simulation consumes about half an hour on a Pentium IV machine (2.0 
GHz speed and 256 Mb RAM). In the testing phase, the watermarking 
scheme using the best-evolved GPSF spends about 30 sec to watermark 
Lena image. 
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Table 4.1 GP Parameter setting for evolving GPSF for block-based DCT-

domain watermarking 

Objective: To evolve optimal /near-optimal Perceptual 
model 

Function Set: +, -, *, protected division, SIN, COS,  and LOG 

Terminal Set: 
Constants: random constants in range of  [-1, 1] 

Variables : )())((102400 i,jTandi,jXabs,/X ,  

Fitness : SSIM 

Selection: Generational 

Population Size: 260 

Initial max.Tree 

Depth 
6 

Initial population: Ramped half and half 

Operator prob. type Variable 

Sampling Tournament 

Expected no. of 

offspring 
rank89 

Survival  mechanism Keep best 

Real max level 28 

Termination: Generation  30 

4.4 Results and Discussion 
4.4.1 Perceptual Shaping Using GPSF 

In figure 4.4, watermarking strength corresponding to each 
bandpass DCT coefficient of block-based DCT is shown. These strengths 
are produced by the GPSF for Lena image. It is observed that instead of 
keeping same strength for each DCT coefficient; it provides suitable 
imperceptible alterations according to the spatial content of that block. 
This fact indicates that GPSF is able to exploit HVS for shaping the 
watermark according to any cover image. In other words, GPSF makes 
the watermarking technique adaptive with respect to the cover image. 
The resultant watermark is shown in figure 4.5.  

4.4.2 Imperceptibility of the resultant watermark 
In figure 4.8, we have shown the difference image, obtained by 

subtracting the original image (figure 4.6) from the watermarked image 
(figure 4.7) in spatial domain. The pixel intensity of the difference image 
is amplified ten times for illustration purpose. Although, DCT domain is 
used for embedding, still GPSF is able to learn the spatial distribution of 
the Lena image, as most of the strong embedding is performed in highly 
textured areas.  
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Figure 4.4 Watermarking strength distributions 

Figure 4.5 Watermark distribution 

 
Figure 4.6 Original Image  

 
 

 
 

 
Figure 4.8 Difference Image 

Figure 4.7 Watermarked Lena Image using 
the evolved GPSF for block DCT-domain 
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Table 4.2 compares both perceptual shaping functions in terms of the 
marked image quality, estimated robustness and BCR performance for 10 
different standard images. Both perceptual shaping functions are 
multiplied with some scaling factor to achieve a desired Value of SSIM 
that represents watermark imperceptibility. Columns 3 of table 4.2 and 
table 4.3 represents watermark strength, while column 4 represents 
mean squared strength giving a measure of the watermark power. On the 
other hand, columns 5-9 show watermarked image quality in terms of 
different measures. These different image quality measures are used here 
due to two reasons. Firstly, it would be easier for other researchers to 
verify our results. Secondly, because of the complexity in modeling HVS, 
there is no generic and widely accepted image quality measure reported 
so far [52]. Therefore, we use these different measures; however, most of 
our watermark imperceptibility analysis is based on the most recently 
reported SSIM measure.  

It is observed that in case of GPSF, keeping same distortion of the 
resultant image as in WPM case, the watermark being embedded is of 
high power. Specifically, by looking at the MSS values (column 4 of table 
4.2), GPSF is able to embed watermark of approximately double power, 
as compared to that of WPM. This improvement in terms of high power 
embedding can be observed for all of the test images and in both 
watermarking approaches (see table 4.3 as well). Consequently, the 
watermark shaping ability of the evolved GPSF is superior to that of 
WPM.  

4.4.3 Message Retrieval Performance 
Last column of table 4.2 shows the message retrieval performance 

of both the perceptual shaping functions at equal image distortion for 
different test images. Table 4.4, on the other hand, illustrates the 
comparison of both perceptual shaping functions in terms of BCR 
performance, when the message size is varied. It shows the bit extraction 
power of both shaping functions, when the capacity of a watermark is 
increased. We have multiplied both perceptual models by a scaling factor 
to produce watermarked image having SSIM 981.0≥ . With increase in 
message size, GPSF produces high (1-BCR) than that of WPM. This could 
be mainly because equal watermark power may not result in the same 
practical robustness for two different perceptual shaping schemes. In 
other words the estimated robustness measure MSS does not always 
reflect actual robustness.  
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Table 4.2 Perceptual shaping comparisons for different images using 
Hernandez’s watermarking scheme 

Watermark  
strength 

Watermark 
power Watermarked image quality measures Decoding 

performance Test 
Images 

Perceptual 
Model Scaling 

Factor MSS MSE WDR PSNR wPSNR SSIM BCR 

WPM 0.3660 13.3571 4.59020 -35.819 41.5125 44.5196 0.9809 1.0 Lena 
GPSF 0.3910 27.224 9.3570 -32.726 38.4192 42.7858 0.9810 1.0 
WPM 0.413 28.692 9.85670 -33.0527 38.1935 43.2628 0.9810 1.0 Trees GPSF 0.326 52.1633 17.9278 -30.455 35.590 41.703 0.9810 1.0 
WPM 0.504 46.876 16.0850 -29.2547 36.066 44.947 0.9810 1.0 Baboon 

(232x248) GPSF 0.357 68.6184 23.5636 -27.596 34.408 44.023 0.9810 1.0 
WPM 0.440 30.869 10.5910 -31.957 37.881 42.796 0.9809 1.0 Couple  GPSF 0.335 46.064 15.7770 -30.2267 36.1504 41.849 0.9809 1.0 
WPM 0.402 22.979 7.8730 -33.775 39.1691 43.488 0.9809 1.0 Boat 

(232x248) GPSF 0.331 42.9183 14.7246 -31.0567 36.4504 41.968 0.9809 0.984 
WPM 0.244 6.1794 2.1210 -42.596 44.865 46.240 0.9809 1.0 Airplane  GPSF 0.417 27.153 9.3220 -36.166 38.435 41.4217 0.9810 1.0 
WPM 0.259 9.286 3.187 40.748 43.097 45.577 0.9809 1.0 Watch  GPSF 0.467 53.987 18.5227 -33.4538 40.3724 42.569 0.9809 1.0 
WPM 0.331 14.3347 4.926 -37.769 41.206 44.081 0.9810 1.0 Fruits GPSF 0.381 41.854 14.367 -33.1207 36.557 41.307 0.9810 1.0 
WPM 0.314 8.9053 3.0543 -38.3856 43.3814 45.254 0.981 1.0 House GPSF 0.359 20.8086 7.127 -34.7056 39.6014 42.464 0.9810 0.984 
WPM 0.473 28.246 9.7046 -31.1713 28.261 42.7097 0.9809 1.0 Chemical 

Plant  GPSF 0.358 39.538 13.588 -29.709 36.799 42.0516 0.9809 1.0 

Table 4.3 Perceptual shaping comparisons for different images using 
Cox’s E_PERC_SHAPE watermarking scheme 

Watermark  
strength 

Watermark 
power Watermarked image quality measures 

Test 
Images 

Perceptual 
Model Scaling 

Factor MSS MSE WDR PSNR wPSNR SSIM 

WPM 0.245 37.8116 3.5026 -37.0258 42.687 44.6156 0.9803 Lena 
GPSF .53 139.763 11.0403 -32.0416 37.701 40.8717 0.9805 
WPM 0.35 67.671 5.956 -35.27 40.381 43.912 0.9803 Trees GPSF 0.61 316.5 22.979 -29.408 34.5174 39.788 0.9809 
WPM 0.47 118.77 10.23 -31.332 38.031 44.734 0.9808 Baboon 

(232x248) GPSF 1.0 322.188 23.205 -27.781 34.475 42.442 0.9810 
WPM 0.37 82.586 7.21 -33.66 39.552 43.312 0.9806 Couple  GPSF 0.71 238.243 19.43 -29.36 35.246 40.152 0.9808 
WPM 0.3 49.86 4.516 -36.282 41.583 44.283 0.981 Boat 

(232x248) GPSF 0.68 15.66 16.62 -30.63 35.924 40.26 0.9806 
WPM 0.15 18.094 1.85 -43.213 45.46 46.076 0.9803 Airplane  GPSF 0.63 104.32 9.2 -36.246 38.493 41.389 0.9806 
WPM 0.15 21.492 2.123 -42.535 44.862 45.993 0.9809 Watch  GPSF 0.56 224.62 21.12 -22.56 34.884 38.198 0.9807 
WPM 0.225 35.034 3.262 -39.584 42.996 44.568 0.9802 Fruits GPSF 0.63 57.248 12.133 -33.881 37.291 44.550 0.9807 
WPM 0.205 24.436 2.364 -39.526 44.393 45.584 0.9808 House GPSF 0.57 155.29 12.344 -32.354 37.212 40.459 0.9807 
WPM 0.4 78.486 6.919 -32.678 39.73 43.127 0.981 Chemical 

Plant  GPSF 0.77 277.883 22.391 -27.583 34.63 39.728 0.9809 
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With an increase in message size, the watermarked image quality 
remains the same for both perceptual shaping functions. This is because, 
only the number of repetitions of a bit in different blocks decreases with 
increase in message size. The BCR performance can be increased by 
using advance channel coding like low-density parity check code [40] in 
concatenation to the simple repetitive coding that we have used. Since in 
this work we are concentrating on the perceptual shaping of the 
watermark, therefore we use repetitive coding only.  

4.4.4 Best-evolved GPSF 
Expression of the best GPSF in normal notation is: 

{ }7.....0,)583018.0),((log))),(/)1024/((),(((),( 0,021 ,,ji,jiTjivXSINjiXkk ∈−−−=α  (4.7) 
where )),(/10025.0),((()4023.1),((),( jiXjiTjiTjiv −⋅−=  

Table 4.4 Imperceptibility versus message retrieval performance 
SSIM (1-BCR) Message Size 

WPM GPSF WPM GPSF 
64 0.981 0.981 0.0 0.0 
128 0.981 0.981 0.00 0.0313 
256 0.981 0.981 0.0117 0.0430 
512 0.981 0.981 0.0371 0.0898 
1000 0.981 0.981 0.051 0.1510 

Figure 4.9 shows the accuracy versus complexity plot of GP 
simulation. It is observed that as generations pass by, improvement in 
fitness of the best individual is achieved at cost of its complexity. That 
is, with increase in fitness of the best perceptual shaping function of a 
generation, its genome’s total number of nodes as well as its average 
tree depth increases. 

 
Figure 4.9 Accuracy versus Complexity plot of GP simulation 



 
Chapter 4 

 46 

 
4.5. Conclusions 
We have considered the robustness versus imperceptibility tradeoff 

in a watermarking system as an optimization problem to obtain 
optimal/near–optimal GPSF. The developed GPSF is image independent 
and can be used for any cover image. It is a combination of frequency 
and luminance sensitivity as well as contrast masking. It offers superior 
performance to that of Watson’s perceptual model in terms of 
watermarked imperceptibility but not in terms of message decoding. Our 
analysis shows that high power embedding does not always reflect high 
practical robustness. Developing GPSF by employing GP needs 
considerable execution time (approximately half an hour). However, once 
the best GPSF is developed, then employing GPSF for watermark shaping 
is quite straightforward and easy to implement. Even in the development 
phase, using fast and parallel processing based implementations of GP 
[24, 55, 56], it is possible to use GP-based watermarking to real business 
applications. The concept of Pareto optimization [25], if applied for 
simultaneously improving robustness, imperceptibility as well as 
capacity of a watermark, may further improve the proposed method.  The 
proposed technique can be applied in other watermarking domains, like 
FFT, Wavelet and Spatial as well. Currently work is in progress to 
enhance the proposed technique for developing GPSF, by exploiting 
information about the conceivable attacks as well. 
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Chapter 5 
 
Exploiting Attack information during Watermark 
Shaping 

Survival of a watermark mostly depends on the type and strength 
of the subsequent distortions faced by the watermarked image. There is 
no generic watermarking scheme that could resist all sorts of attacks. 
However, most of the watermarking applications are concerned only with 
a specific set of attacks. As such, knowledge about the conceivable attack 
could be utilized before hand at the encoding, embedding or 
detection/decoding stage thwarting the subsequent reduction in message 
retrieval performance. In this chapter, we introduce a new idea of 
utilizing conceivable attack information during watermark shaping. In 
essence, this chapter introduces a generic scheme of intelligently 
developing specific attack-resistant perceptual shaping functions. 

 

5.1 Introduction 
 

Watermarks are rendered undetectable with an attack, where the 
attack is defined as any processing of the watermarked data that might 
damage the watermark [1, 3]. Thus watermarking can be viewed as a 
reliable mode of communication to transfer important information (i.e. a 
watermark) embedded in a signal (e.g. a cover image) safely through a 
hostile environment [57]. Attacks can be intentional such as watermark 
estimation using Wiener filtering or unintentional such as JPEG 
compression. An extensive list of attacks appears in [1, 58-62].  

Due to the nature of diverse types of attacks, there is no generic 
watermarking scheme that could resist all sorts of attacks. However, it 
can be assumed that many applications are not concerned with all 
conceivable attacks, but with specific attacks that might occur before 
decoding [1].  Investigators have addressed this problem in various ways. 
One way is to develop watermarking approaches suitable for the 
anticipated attack [63]. For example, in case of rotational attack, 
alteration in the phase, rather than the amplitude of the Fourier 
component, is performed to embed a watermark [64]. Another possibility 
is to achieve robustness against the probable processing of the 
watermarked image, by restructuring the watermark. In this scenario, 
robustness is often achieved at the expense of imperceptibility, 
computational cost, data payload, or even robustness to some other 
processing.  
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To defend attacks, efforts have been made to increase robustness 
at low cost of imperceptibility. For instance Jonathan et al. [3] have 
taken a theoretical approach to answer the complex question of “how 
should a watermark be structured to maximize its robustness”. They 
have proposed  that the watermark power spectrum should be 
proportional to that of the original signal. Liang et al. [65] propose robust 
watermarking using robust coefficients for embedding. Huang et al. [2, 
8], on the other hand, have used Genetic Algorithms for the selection of 
coefficients to be altered for watermark embedding. However, these 
efforts concentrate on tailoring just the choice of specific coefficients, not 
the whole watermark, to a cover image and intended attack. In fact, they 
are not using perceptual shaping functions; rather a fixed strength of the 
alteration is used for each selected DCT coefficient. 

Perceptual models [23-26], as those of Watson’s, which have been 
frequently used in image compression are used to compute the strength 
of the alteration for each selected coefficient. These perceptual models 
make a tradeoff between robustness and imperceptibility according to the 
cover image. However, they do not take into consideration the watermark 
application and thus the intended attacks. For instance, when the 
watermarked image is expected to be JPEG compressed, it is judicious to 
structure the watermark in view of the JPEG compression. Pertinent 
examples exist in literature [66], where appropriate watermarking 
approaches as well embedding domains have been studied to achieve 
robustness against JPEG compression.  

One way to restructure a watermark in view of the anticipated 
attack is to keep high watermark strength for those selected coefficients 
that are less affected by the attack. However, firstly this requirement 
needs to consider limitations imposed by imperceptibility. Secondly, this 
requirement vary for different types of attacks. Consequently, our aim in 
this work is to propose and study an automatic system that can 
restructure the watermark in accordance to the cover image and 
intended attack. Specifically, to develop a system capable of generating 
suitable perceptual shaping functions, which are image independent and 
intended attack-resistant.  

We address these requirements through the following 
contributions: 

1. We consider the perceptual shaping of a watermark to be 
vital, not only for imperceptibility enhancements, but we realize it to be a 
method of structuring the watermark in accordance to the anticipated 
attack. 

2. We introduce the concept of developing complex and 
appropriate perceptual shaping functions from the existing ones. 
Specifically, we consider Watson’s perceptual model, characteristics of 
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the HVS and information about the distortion caused by the anticipated 
attack, as independent variables and genetically search for application-
specific perceptual shaping functions.  

The idea used is analogous to combining classifiers for developing 
complex, but appropriate classifier for a certain application of pattern 
recognition [67]. We call this technique as Genetic Perceptual Shaping 
Scheme (GPSS) and the genetically developed perceptual shaping 
functions as Genetic Perceptual Shaping Function (GPSF).  
 

5.2 Proposed Technique for Developing a GPSF 
 

The basic architecture of our proposed scheme for developing 
GPSF is shown in figure 5.1. Five modules work in a cyclic fashion. We 
first explain the overall working of the basic architecture. Details of the 
individual modules are given in section 5.2.1.  

The GP module produces a population of GPSF. Each GPSF is 
presented to the perceptual shaping module, where it is applied to the 
cover image in DCT-domain, generating a perceptual mask. In the 
watermarking stage, the watermark is shaped using the perceptual 
mask. The conceivable attack is performed on the watermarked image in 
the attack module. In the decoding module, the embedded message is 
retrieved from the corrupted image. The watermark imperceptibility at 
the embedding stage and BCR at the decoding stage, are then used in the 
scoring criterion of the GP module. In this way, the GP module evaluates 
the performance of its several generated GPSFs.  
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Figure 5.1 Basic architecture of attack-resistant GPSS 
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5.2.1 Evolution of Perceptual Shaping Function 

 

5.2.1. The GP Module 
 

The GP settings for evolving GPSF are as under: 

GP Function Set: Function set in GP is a collection of functions 
available to the GP system. In our GP simulations, we have used simple 
functions, including four binary floating arithmetic operators (+, -, *, and 
protected division), LOG, EXP, SIN and COS. 

 

GP Terminals: To develop initial population of GPSF, we consider 
GPSF as watermark shaping function and the characteristics of HVS as 
independent variables. By doing this, in essence, we are letting GP 
exploit the search space representing different possible forms of 
dependencies of the watermark shaping function on the characteristics of 
HVS. Therefore, the current value of WPM-based perceptual mask, DC 
and AC DCT coefficients of 8x8 block are provided as variable terminals 
(equation 5.2 and figure 5.2). Random constants in the range [-1,1] are 
used as constant terminals.  

+

sin *

/ log cos

X(i,j) 0.6 X0,0 α(i,j)

+

sin *

/ log cos

X(i,j) 0.6 X0,0 α(i,j)

+

sin *

/ log cos

X(i,j) 0.6 X0,0 α(i,j)

 
Figure 5.2 An example GP tree representing attack-resistant GPSF 

 

Fitness Function: As explained earlier, a fitness function in GP 
directs the GP search mechanism towards the desired solution. In 
analogy to filtering process, it could be considered as providing feedback 
about how sound an individual of the GP population is performing at the 
given task. Every perceptual shaping function of a GP population is 
evaluated in terms of structuring the watermark. The evaluation is based 
on how well is the SSIM measure at a certain level of watermark power 
as well as how high the BCR value is: 

attackSE BCRWSSIMWFitness ** 2.1 +=  (5.1) 
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where SESSIM . denotes the structure similarity index measure of the 
marked image at a certain level of estimated robustness. 1W  and 2W  
represent the corresponding weightage of the two terms in the fitness.  

If 1W and 2W are set to 1.0, the fitness attains a maximum value of 
2.0. Thus, each individual perceptual shaping function of a GP 
population is scored using equation 5.1 as a fitness function. The greater 
the fitness is, the better the individual has performed.  

 

Termination Criterion: The GP simulation is ceased when one of the 
following conditions is encountered: 

1. The fitness score exceeds 1.99 with  MSS ≥ 20.0. 

2. The number of generations reaches the predefined maximum 
number of generations. 

 

5.2.1.2 Perceptual Shaping Module: Achieving Resistance against 
Conceivable Attack 

 

Since an image/video, after all is going to be viewed by a human 
observer, therefore, HVS must be considered while modelling an 
image/video watermarking system. To exploit the characteristics of HVS, 
a perceptual model is used to tailor a watermark according to the cover 
image. This enables us to embed a large energy watermark at low cost of 
resultant distortion to the cover image. The perceptual shaping module is 
provided with the individual GPSF by the GP module. Each of these 
GPSFs is operated on the cover image in DCT-domain. GPSF returns a 
value corresponding to the selected DCT coefficient of a block. The 
magnitude of this value represents the perceptual strength of the 
alteration made to that coefficient. The functional dependency of the 
perceptual shaping function on the characteristics of HVS can be 
represented as follows: 

( ) ( ) ( )( )jiXXjiTfkk ,,,,, 0,021 =α  (5.2) 

where the first variable, T is the visibility threshold representing 
frequency sensitivity of HVS. 0,0X  is the DC DCT coefficient, while ( )jiX , is 
the AC DCT coefficient of the current block. They represent the 
luminance sensitivity and contrast masking characteristics of HVS 
respectively. 

Operating the GPSF on all of the DCT coefficients, we obtain the 
perceptual mask for the current cover image. The product of the spread-
spectrum sequence and expanded message bits is multiplied with this 
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perceptual mask to obtain the watermark. The 2-D watermark signal 
W (figure 2.1 and 5.3) is given as: 

bSαW ⋅⋅=  (5.3) 

As we are genetically tuning WPM whose corresponding perceptual 
mask is represented by α , therefore, equation 5.3 will be modified as 
follows: 

bSαW ⋅⋅= G  (5.4) 

Where Gα , representing perceptual mask corresponding to GPSF, 
incorporates the dependencies from WPM, AC and DC coefficients and 
the intended attack.  
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Figure 5.3 Detailed structures of the attack-resistant GPSS 

If A denotes the information about the distortion of the intended 
attack, then equation 5.2 is modified to include the resultant changes in 
the distribution of the DCT coefficients caused by the attack as follows: 

( ) ( ) ( )( )AjiXXkkfkkG  ,,,,,, 0,02121 αα =  (5.5) 

It should be noted that the dependence of Gα  on A is not explicit; 
rather it represents the implicit learning of the GP search mechanism in 
view of the conceivable attack. 

5.2.1.3 Watermarking Module 

 

The performance of each individual GPSF of the GP population is 
evaluated by watermarking module. This module implements the spread 
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spectrum based watermarking technique proposed by Hernandez et al. 
[5]. The embedding in DCT-domain is performed using equation 4.4. The 
watermarking module of our proposed technique provides the 
imperceptibility of the resultant watermark as a feedback to the GP 
module. The structure of how different sub-modules work within the 
GPSS is shown in figure 5.3.   

5.2.1.4 Attack Module 

In this module, the anticipated attack is performed on the 
watermarked image. We assume that the decoding module is fixed and 
does not modify in accordance to the attack. Specifically, to develop 
Wiener attack-resistant GPSF, before decoding the embedded message, 
we perform Wiener attack. Similarly to develop JPEG, Median filtering, 
and Gaussian attack-resistant GPSFs, GP simulations are carried out 
separately with each attack being performed before decoding the 
message. 

5.2.1.5 Decoding Module 

The decoding module receives the corrupted image after an attack 
as an input. It performs decoding of the embedded message as discussed 
in [5]. The same GPSF, as used in the embedding stage, is used to obtain 
the perceptual mask for the received image. The perceptual mask is then 
used to obtain sufficient statistics for the Maximum Likelihood based 
decoder. 

 
5.2.2 Bonus Fitness-based Evolution 

In the decoding stage, both imperceptibility and robustness 
requirements of a watermark are implemented through the use of multi-
objective fitness function [24-27]. One way to perform this is to use 
equation 5.1. However, the drawback of this type of fitness function is 
that due weightage for learning the distribution of the DCT coefficients of 
each block of a cover image is not incorporated. In other words, instead 
of searching for a superior and image independent GPSF, main effort of 
the GP search is spent on searching a GPSF that results in high BCR 
value. Consequently, optimization of robustness versus imperceptibility 
tradeoff is belittled. This type of GPSF is not image adaptive and might 
have very poor performance for attacks other than the intended attacks. 
This problem is solved by using the idea of bonus fitness that we have 
used in our earlier work [35]. As can be examined from figure 5.3, those 
GPSF that make a better tradeoff between robustness and 
imperceptibility, are given bonus fitness. The bonus fitness is the 
amount of resistance against the intended attack in terms of attackBCR . 
Thus equation 5.1 is modified as follows: 
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   (5.6) 

where SESSIMFitness .1 =  while attackBCRFitness =2  and 1T , 2T are lower 
bounds of SESSIM . and MSS respectively. 

In this way, the second driving force is separated from the first and 
basic driving force through the concept of bonus fitness. Otherwise, the 
GP simulation will usually tend to focus on the second requirement and 
will altogether neglect the basic requirement. Figure 5.4 elaborates this 
idea of bonus fitness incorporated in the GP search. We can observe that 
in each generation, those GPSF that make a good tradeoff are tagged 
(they are represented with star symbol and thus conceptually separated 
from the main GP search beam). A competition in terms of the 2nd fitness 
among these tagged GPSF then starts immediately. The overall fitness is 
improved with improvement in both types of fitness. The selection of 
when to tag an individual GPSF, by judging the tradeoff, is of crucial 
importance. It is implemented by requiring the MSS and SSIM values to 
lie above certain lower bounds. The smaller these lower bounds for 
fulfilling the first fitness criteria are, the larger is the diversity among the 
tagged GPSFs.  

No. of Generations

If SSIM ≥ T1& MSS ≥ T2

No. of Generations

If SSIM ≥ T1& MSS ≥ T2

 
Figure 5.4 Block diagram of the bonus fitness idea 

5.2.3 Testing Performance of the Best-evolved GPSF 

In order to assess the performance of the best-evolved GPSF, its 
expression is saved at the end of the GP simulation. The best-evolved 
GPSF is then compared with that of WPM in terms of watermark 
shaping. Where by the watermark shaping ability is assessed by 
computing watermark imperceptibility as well as robustness measures. 
Figure 5.5 shows the details of the testing phase for the evolved GPSF. 

 

 
5.3. Implementation Details 
 

The GP parameter settings are shown in table 5.1, while the 
remaining parameters are used as default in the software. The 
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watermark power, represented by MSS, is constrained to lie above a 
certain lower bound for all the individuals. To assign bonus fitness, we 
have taken 1T , 2T , 1W  and 2W as 0.96 , 20.0, 1.0 and 1.0 respectively. The 
values of 1T , 2T  are set empirically. 
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Figure 5.5 Details of the testing method for the attack-resistant GPSF 

In the testing phase, all images except Baboon and Boat are of size 
256x256. The attacks for which specific GPSF are developed, include 
adaptive Wiener filtering of window size 3x3, JPEG compression (QF = 
80), Median filtering of window size 3x3 and Gaussian noise of σ = 50. In 
order to develop GPSF, keeping population size equal to 300 and no. of 
generations 30, the GP simulation consumes about one hour on a 
Pentium IV machine (2.0 GHz speed and 256 Mb RAM). In the testing 
phase, the watermarking scheme using the best-evolved GPSF spends 
about 30 sec to watermark Lena image. The rest of the implementation 
details are the same as in section 4.3. 

 
 
 
5.4 Results and Discussion 

 
5.4.1 Perceptual Shaping Using GPSF 

 

In figure 5.6, watermarking strength corresponding to each 
bandpass DCT coefficient of block-based DCT is shown. These strengths 
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are produced by the Wiener attack-resistant GPSF for Lena image. It is 
observed that depending upon the current AC and DC coefficient, it 
provides suitable imperceptible alterations according to the spatial 
content of that block. This fact indicates that GPSF is able to exploit HVS 
for shaping the watermark according to any cover image. In other words, 
GPSF makes the watermarking technique adaptive with respect to the 
cover image. The resultant watermark is shown in figure 5.7. 

Table 5.1 GP Parameter setting for evolving anticipated attack-resistant 
GPSF 

Objective: To evolve conceivable attack-resistant GPSF 

Function Set: +, -, *, protected division, SIN, COS,  and LOG 

Terminal Set: 
Constants: random constants in range of  [-1, 1] 

Variables : )()(102400 i,jandi,jX,/X , α  

Fitness : SSIM 

Selection: Generational 

Population Size: 260 

Initial max.Tree 

Depth 
6 

Initial population: Ramped half and half 

Operator prob. 

type 
Variable 

Sampling Tournament 

Expected no. of 

offspring 
rank89 

Survival  

mechanism 
Keep best 

Real max level 31 

Termination: Generation  32 

 
5.4.2 Imperceptibility of the resultant watermark 

 

In figure 5.10, we have shown the difference image, obtained by 
subtracting the original image (figure 5.8) from the watermarked image 
(figure 5.9) in spatial domain. The pixel intensity of the difference image 
is amplified ten times for illustration purpose. Although, DCT domain is 
used for embedding, still GPSF is able to learn the spatial distribution of 
the Lena image, as most of the strong embedding is performed in highly 
textured areas.  
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5.4.3 GPSF developed for Wiener Attack 

In table 5.2, both WPM and Wiener attack-resistant GPSF are 
compared in terms of the marked image quality and )1( attackBCR− for 8 
different standard images. The perceptual masks corresponding to both 
perceptual shaping functions are multiplied with some scaling factor to 
achieve equal distortion of the resultant watermarked image (in terms of 
approximately equal SSIM value for each image). It is observed that 
although evolved using Lena image, Wiener attack-resistant GPSF is 
image independent. This is because its imperceptibility measures are 
comparable to that of WPM for the entire test images. However, in terms 
of )1( attackBCR− performance, the Wiener attack-resistant GPSF has superior 
performance as compared to that of WPM, for almost all of the test 
images. The Wiener attack-resistant GPSF is given below: 

( ) ( )( ) ( )( ) ( )( )( ) ( )     ,*22897.00.22897coslog ,,sincos  , 212121 jiXkkkkkk +++= αααG  (5.7) 

It can be observed that in this realization of Gα , Gα  depends on α  and 
( ) , jiX . While, the dependence on A is implicitly being learned. 

 
5.4.4 GPSF developed for Gaussian Noise Attack 

Table 5.3, shows the same comparison in case of Gaussian noise 
attack (σ = 50). Again, Gaussian attack-resistant GPSF has comparable 
performance to that of WPM in terms of imperceptibility, while superior 
performance in case of robustness )1( attackBCR− . Figure 5.11, shows the 
watermarked image after being attacked by the Gaussian noise. 
Whereas, figure 5.12 demonstrates the )1( attackBCR− versus standard 
deviation performance of both perceptual shaping functions. It can be 
observed that Gaussian noise attack-resistant GPSF has low 

)1( attackBCR− values corresponding to different standard deviations.  

 
5.4.5 GPSF developed for JPEG Compression Attack 

Figure 5.13, 5.14 and table 5.4 show the same comparison in case 
of JPEG attack. It is observed that imperceptibility performance of the 
JPEG attack-resistant GPSF is low as compared to that of WPM (low 
SSIM values corresponding to less energy watermark embedding). But on 
the other hand, the improvement in )1( attackBCR−  performance in this case 
is far better from the previous two cases. 
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5.4.6 GPSF developed for Median Filtering Attack 

Table 5.5, compares the evolved Median attack-resistant GPSF to 
that of WPM. In this case the imperceptibility performance at a certain 
level of watermark power is comparable, but )1( attackBCR−  performance is 
again superior.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.9 Watermarked Lena Image using 

Attack-resistant GPSF 

 
Figure 5.6 Watermarking strength distribution 

corresponding to the attack-resistant GPSF 
 

 
Figure 5.7 Watermark distribution 

corresponding to the attack – resistant GPSF 
 

 
 

Figure 5.8 Original Image 
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Figure 5.12 (1- BCR) versus standard 

deviation performance of both perceptual 
shaping functions 
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Figure 5.14 (1- BCR) versus quality factor of JPEG 

compression attack 
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Figure 5.15 (1- BCR) versus JPEG attack (QF= 70) for 

different images 
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Figure 5.16 Accuracy versus complexity plot of GP 

simulation for evolving median filtering attack-resistant 
PSF 

Figure 5.10 Difference Image 
 

Figure 5.11 Watermarked image after 
Gaussian attack 
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Table 5.2 Wiener attack-resistance performance comparisons 
 

Images Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.125 Trees 
GPSF 0.48 83.991 0.9738 -28.386 39.951 0.0469 
WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.2656 Lena 
GPSF 1.282 17.1462 0.9816 -34.7357 44.0532 0.0 
WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.0469 Baboon 

(232x248) GPSF 0.519 89.7937 0.9779 -26.4274 43.277 0.0313 
WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.0938 Couple 
GPSF 0.552 80.3543 0.9711 -27.8227 39.68 0.0781 
WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.125 Boat 

(232x248) GPSF 0.52 67.9235 0.9731 -29.065 40.144 0.0313 
WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.2344 Fruits 
GPSF 0.513 71.0392 0.9771 -30.818 39.7361 0.1719 
WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.0781 House 
GPSF 0.5524 39.1316 0.9745 -31.9648 39.7503 0.0781 
WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.0781 Chemical 

Plant GPSF 0.494 56.589 0.9778 -28.1518 40.8834 0.0561 
 

Table 5.3 JPEG attack-resistance performance comparisons 
 

Images Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.0625 Trees 
GPSF 1.505 67.8033 0.9737 -29.3161 40.4706 0.0469 
WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.2031 Lena 
GPSF 1.554 25.126 0.9816 -33.0744 43.1152 0.1875 
WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.0781 Baboon 

(232x248) GPSF 1.59 74.627 0.9778 -27.232 43.45 0.0313 
WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.0625 Couple 
GPSF 1.694 67.173 0.9712 -28.588 40.1253 0.0469 
WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.0938 Boat 

(232x248) GPSF 1.594 57.696 0.973 -29.772 40.606 0.0938 
WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.1563 Fruits 
GPSF 1.53 42.734 0.9771 -33.025 41.0104 0.1406 
WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.1719 House 
GPSF 1.609 27.1527 0.9745 -33.547 41.288 0.1563 
WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.0781 Chemical 

Plant GPSF 1.51 46.917 0.9778 -28.966 41.289 0.0781 
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Table 5.4 Gaussian noise attack-resistance performance comparisons 
 

Images Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.2344 Trees 
GPSF 0.787 40.533 0.9737 -31.55 40.7437 0.0469 
WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.1719 

Lena 
GPSF 1.252 18.83 0.9816 -34.329 43.313 0.0 
WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.3438 Baboon 

(232x248) GPSF 1.163 78.475 0.9778 -27.014 41.488 0.2188 
WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.2188 

Couple 
GPSF 1.072 104.39 0.971 -26.659 36.9406 0.0781 
WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.1563 Boat 

(232x248) GPSF 1.178 63.283 0.973 -29.362 38.104 0.0781 
WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.25 

Fruits 
GPSF 1.563 49.919 0.9771 -32.353 40.3825 0.0625 
WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.1719 

House 
GPSF 1.818 24.124 0.9745 -34.055 41.562 0.0 
WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.1875 Chemical 

Plant GPSF 0.978 20.622 0.9778 -32.535 42.4616 0.0781 

 
 

Table 5.5 Median filtering attack-resistance performance comparisons 
 

mages Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.1563 
Trees 

GPSF 1.413 26.869 0.9737 -33.34 42.5537 0.0156 

WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.1563 
Lena 

GPSF 1.128 10.2681 0.9816 -36.9644 45.06 0.0 

WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.3438 Baboon 
(232x248) GPSF 1.544 35.026 0.9779 -30.527 44.149 0.25 

WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.2188 
Couple 

GPSF 1.65 34.089 0.971 -31.53 41.4407 0.0 

WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.1563 Boat 
(232x248) GPSF 1.382 23.9525 0.973 -33.6025 42.4273 0.0 

WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.125 
Fruits 

GPSF 1.066 12.3244 0.9771 -38.4293 41.865 0.0313 

WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.2031 
House 

GPSF 1.003 10.0407 0.9745 -37.8633 44.3606 0.0469 

WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.0156 Chemical 
Plant GPSF 1.405 24.8827 0.9778 -31.7236 42.4763 0.0781 
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The reason behind this is that the attack-resistant GPSF spreads the 
watermark energy in such areas, where the attack as well as the 
distortion affect is less.  

Figure 5.15 shows the accuracy versus complexity plot of GP simulation. 
It is observed that as generations pass by, improvement in fitness of the 
best Median attack-resistant GPSF is achieved at the cost 

of its complexity. That is, with increase in fitness of the best GPSF of a 
generation, its genome’s total number of nodes as well as its average tree 
depth increases. The above analysis of the various evolved GPSFs 
indicate that GPSS develops GPSF that results in cover image as well as 
attack dependent restructuring of the watermark. 

 
5.5 Conclusions 
In this chapter we have considered the GP-based perceptual 

shaping of a digital watermark in accordance to the cover image and 
anticipated attack. The GP tuned GPSFs are image adaptive and the 
GPSS as a whole is attack adaptive. A significant improvement in 
resistance against the intended attack is achieved by letting the GP 
search exploit the attack information. This is in essence, like attack-
informed embedding. Both these attributes of a GPSF; superior tradeoff 
and high resistance against an anticipated attack, are obtained by 
incorporating the concept of bonus fitness in multi-objective fitness 
function. Developing GPSF needs considerable execution time (about one 
hour). However, once the best GPSF is developed, then employing GPSF 
for watermark shaping is quite straight forward and easy to implement. 
Even in the development phase, with the use of fast and parallel 
processing based implementations of GP [38-39], it is possible to use GP-
based watermarking to real business applications. The proposed GPSS is 
applicable for tuning other perceptual shaping functions as well. In 
addition to the selection of suitable strength, the selection of DCT 
coefficients for embedding as proposed in [8] may also be performed. This 
will require the whole 63 AC coefficients of a DCT block to be considered 
for embedding, instead of the middle frequency coefficients. This may 
further improve the resistance against the intended attack, as different 
attacks usually affect different frequency bands in DCT block.  
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Chapter 6 
 

Achieving Robustness against a Cascade of 
Conceivable Attacks during Watermark Shaping 

 
In this chapter, we let the GP exploit the characteristics of human visual 
system, as well as information pertaining to the distortion caused by a 
set of conceivable attacks. The set of conceivable attacks are carried out 
in sequence, before extracting the embedded message obliviously. 
Improvement in imperceptibility and reduction in bit incorrect ratio after 
attack, have been employed as the multi-objective fitness criteria in the 
GP search. The actual performance of the genetic perceptual shaping 
function is judged through experiments, which validate the use of 
intelligent search techniques in shaping a watermark according to the set 
of conceivable attacks.  
 

6.1 Introduction 
 
With the exception of fragile watermarking systems, almost all 
watermarking systems need to be resistant against any intentional or 
unintentional processing of the watermarked image. This attribute of a 
watermarking system is usually called robustness. These attacks and 
their countermeasures are studied in the context of the watermark 
applications, as different applications are mostly concerned with a 
different set of conceivable attacks [1]. Therefore, while designing a 
watermarking system, its intended application and thus the 
corresponding set of conceivable attacks are of prime importance.  
Usually robustness is achieved at the cost of imperceptibility. As these 
two properties contradict each other, therefore, while designing a 
watermarking system, one need to make a delicate balance between 
these properties in accordance to the anticipated application. This need 
has prompted the use of intelligent optimization techniques; where by 
the issue of making balanced alteration to the original features during 
embedding is formulated as an optimization problem. This includes the 
work by Huang et al [8], where keeping in view the robustness versus 
imperceptibility tradeoff; optimal embedding positions in a block-based 
DCT domain watermarking are selected using Genetic Algorithms. 
Exploiting machine-learning capabilities for improvement of 
watermarking schemes, we have been employing GP for developing 
optimal perceptual shaping functions-shaping functions that make an 
effective tradeoff between robustness and imperceptibility [9-11]. In 
chapter 3, we have concentrated on optimal shaping of a digital 
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watermark for the whole DCT-domain based watermarking scheme. In 
chapter 4 using GP, we have developed perceptual shaping functions for 
the block-based DCT domain watermarking schemes. This model is 
image adaptive and offers superior performance in terms of tradeoff as 
compared to the conventional Watson’s model originally designed for 
JPEG compression. On the other hand, in chapter 5, in addition to the 
tradeoff, we have exploited the conceivable attack information as well. 
For this purpose, we have considered it as a multi-objective optimization 
problem, achieving an optimal tradeoff as well as structuring the 
watermark in accordance with the conceivable attack. 
Besides striking a tradeoff between robustness and imperceptibility, 
machine-learning techniques are also applied to the detection of a hidden 
message i.e. classifying watermarked and unwatermarked works. Lyu et 
al [20] have used high order statistics as features and Support Vector 
Machine (SVM) as classifier for detecting hidden messages in an image.  
Fu et al [21], have proposed optimal watermark detection by exploiting 
the generalization capabilities of SVM. Yu et al [22], have used neural 
networks in watermarking for enhancing robustness against some of the 
common attacks. 
Perceptual models as those of Watson’s, do not take into consideration 
the watermark application and thus the anticipated attacks. For 
instance, we consider a scenario, where a watermarked image is expected 
to be JPEG compressed, transmitted through a channel characterized by 
Gaussian noise, and further distorted by an adversary using Wiener 
estimation. In this set of circumstances, it is judicious to structure the 
watermark in view of these anticipated attacks. Other pertinent 
examples, where the watermarking system needs to be robust against a 
set of conceivable attacks exist in literature [1]. Few set of conceivable 
attacks that are likely to occur between embedding and detection stages 
of a watermark include; digital-to-analog conversion, analog recording , 
re-recording and noise reduction in case of audio signal, while analog-to-
digital conversion, lossy compression and format conversion in case of a 
possible video transmission. 
Restructuring of a watermark in view of the anticipated attack is mostly 
performed by keeping high watermark strength for those selected 
coefficients that are less affected by the attack. However, firstly this 
requirement needs to consider limitations imposed by imperceptibility. 
Secondly, this requirement varies for different types of attacks. 
Consequently, as described earlier, our aim in this work is to propose 
and study an automatic system that can restructure the watermark in 
accordance to the cover image and intended attacks. Specifically, we 
propose a system for developing suitable perceptual shaping functions, 
which are application-specific, but image independent.  
We address these requirements through the following contributions: 

1. We comprehend the fact that while dealing with attacks, achieving 
resistance against of a set of conceivable attacks is a more realistic 
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approach instead of making a watermark resistant to an individual 
conceivable attack. 

2. We realize the fact that making a watermark robust against a set of 
conceivable attacks is hard to be handled analytically, and thus 
propose a method that can intelligently generate an application-
specific PSFs. 

 

6.2. Proposed Attack-resistant Perceptual Shaping 
 
Figure 5.1 illustrates the basic architecture of our proposed scheme for 
developing perceptual shaping functions. Five modules work in a cyclic 
fashion. We first explain the overall working of the basic architecture. 
Details of the individual modules are given in section 6.1.  

The GP module produces a population of GPSF. Each GPSF is presented 
to the perceptual shaping module, where it is applied to the cover image 
in DCT-domain, generating a perceptual mask. In the watermarking 
stage, the watermark is shaped using the perceptual mask. The 
conceivable attacks are performed in a sequence on the watermarked 
image in the attack module. In the decoding module, the embedded 
message is retrieved from the corrupted image. The watermark 
imperceptibility at the embedding stage and BCRattack at the decoding 
stage, are then used in the scoring criterion of the GP module (figure 
5.1). In this way, the GP module evaluates the performance of its several 
generated GPSFs.  

 

6.2.1 Detailed Structure of the GP Training Phase 
The basic details are the same as given in section 5.2. The modules 
which have been modified are explained as follows: 
 

6.2.1.1 Assessing Performance of each individual of a GP 
Population 
  GP fitness function is supposed to rank each individual of the 
population. It is designed to provide feedback about how well an 
individual of the GP population is performing at the given task. More 
details are given in section 2.3.1. Every perceptual shaping function of a 
GP population is evaluated in terms of structuring the watermark. The 
evaluation is based on how well is the SSIM measure at a certain level of 
watermark power as well as how high the BCR value is: 

attackBCRWFitnessWFitness ** 211 +=  (6.1) 
where )46/(* 11.101 wPSNRWSSIMWFitness SE +=  represents a measure of 
watermark imperceptibility in terms of two recently proposed image 
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quality measures. SESSIM . denotes the structure similarity index measure 
of the marked image at a certain level of estimated robustness. W 
represents the corresponding weightage of the different terms used in the 
fitness.  
A fair enough quality of the resultant watermarked image in terms of 
wPSNR that we observed through empirical analysis is approximately 46 
db, while the maximum value that SSIM can achieve is 1.0. As a result, 
in Fitness1, we divide the wPSNR by 46 in order to scale its value to 1.0 
as well. If 1W and 2W are set to 1.0, while 10W  and 11W  are set 0.5 each, the 
fitness attains a maximum value near to 2.0.  
Thus, each individual perceptual shaping function of a GP population is 
scored using equation 6.1 as a fitness function. The greater the fitness is, 
the better the individual has performed. 

6.2.1.2 Ceasing GP Simulation 
The GP simulation is ceased when one of the following conditions is 
encountered: 

1. The fitness score exceeds 1.99 with MSS ≥ 8.0. 
2. The number of generations reaches the predefined maximum 

number of generations. 
  
6.2.1.3 Attack Module 
 

In this module, attacks are performed on the watermarked image. We 
assume that the decoding module is fixed and does not modify in 
accordance to the attacks. Specifically, to develop the application-specific 
GPSF, the related set of conceivable attacks is carried out on the 
watermarked image before decoding the embedded message. 

The bonus fitness is the amount of resistance against the intended 
attack in terms of attackBCR . Thus equation 6.1 is modified as follows: 

1 1 2 1 1 2

1 1

* *
*

attackW Fitness W BCR if Fitness T and MSS T
Fitness

W Fitness otherwise
+ ≥ ≥⎧

= ⎨
⎩

    (6.2) 

where 1T , 2T are lower bounds of 1Fitness and MSS respectively. 
 
6.2.2 Performance Evaluation on the Test Images 
 
In order to assess the performance of the best-evolved GPSF, its 
expression is saved at the end of the GP simulation. The best-evolved 
GPSF is then compared with that of WPM in terms of watermark shaping 
for various test images. Here in, the watermark shaping ability is 
assessed by computing watermark imperceptibility as well as robustness 
measures. 



 
Chapter 6 

 67 

DCTMessage MSecret Key

Original Image x

Watermarking 
Module

Computing Perceptual 
Mask

X

Fitness = SSIM
Watermarked 

Image y

Compute SSIM

Compute MSS

If  SSIM ≥ T1 and
MSS ≥ T2 yes

No

Decoding 
Module

Fitness = W1*SSIM + 
W2*BCR

BCR

Attacked Image

Fitness Evaluation
Module

GP Module

X

α

Individual 
GPM

JPEG, Wiener, and 
lowpass filtering attacks 

operated in sequence

Cascade Attack 
Module

DCTMessage MSecret Key

Original Image x

Watermarking 
Module

Computing Perceptual 
Mask

X

Fitness = SSIM
Watermarked 

Image y

Compute SSIM

Compute MSS

If  SSIM ≥ T1 and
MSS ≥ T2 yes

No

Decoding 
Module

Fitness = W1*SSIM + 
W2*BCR

BCR

Attacked Image

Fitness Evaluation
Module

GP Module

X

α

Individual 
GPM

JPEG, Wiener, and 
lowpass filtering attacks 

operated in sequence

Cascade Attack 
Module  

Figure 6.1 Detailed structure of the cascade attacks-resistant GPSS 

 

Encoder PRS DCT

Message

M

Secret Key

K

Original Image

x

Repetition Coding Perceptual Analysis using
GPM or WPM

S

X

Y

IDCT

Watermarked Image

W
α

b

X

Compute Image Quality 
Measures 

X

y JPEG, Wiener, and 
lowpass filtering attacks 

operated in sequence

Cascade Attack 
Module

Decoder

BCR

Encoder PRS DCT

Message

M

Secret Key

K

Original Image

x

Repetition Coding Perceptual Analysis using
GPM or WPM

S

X

Y

IDCT

Watermarked Image

W
α

b

X

Compute Image Quality 
Measures 

X

y JPEG, Wiener, and 
lowpass filtering attacks 

operated in sequence

Cascade Attack 
Module

Decoder

BCR

 
Figure 6.2 Details of the testing phase for the evolved cascade attacks-

resistant GPSF 
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We have strived to compare both perceptual shaping functions in a harsh 
environment.  Firstly, low power embedding is performed. Increasing the 
watermark strength and thus reducing imperceptibility will most 
probably improve message retrieval performance in case of both 
perceptual shaping functions. Secondly, only repletion coding is 
employed, both in evolution and testing phase. Employment of advance 
channel coding strategies, for example low density parity check [40] and 
turbo [69] coding, would certainly improve the overall message retrieval 
performance in both cases. Figure 6.2 shows the details of the testing 
phase for the evolved GPSF. 

6.3. Implementation Details 
 
The GP parameter settings are shown in table 5.1, while the remaining 
parameters are used as default in the software.  
To assign bonus fitness, we have taken 1T , 2T , 1W  and 2W as 0.98 , 8.0, 1.0 
and 1.0 respectively. 10W  and 11W  are set 0.5 each. The values of 1T , 2T  are 
set empirically. 
The set of conceivable attacks for which specific GPSF is developed, 
include, JPEG compression (QF = 90), adaptive Wiener filtering of 
window size 3x3, and Lowpass filtering.  
 

6.4. Results and Discussion 
 
6.4.1 Performance Comparison in terms of Perceptual Shaping 
 
Figure 6.3 illustrates the distribution of the selected DCT coefficients. 
Figure 6.4, on the other hand, shows the corresponding distribution of 
the strength of alterations. This distribution of strength of alterations is 
obtained using the best-evolved GPSF for Lena image. It is observed that 
depending upon the current AC and DC coefficient; it provides suitable 
imperceptible alterations according to the spatial content of that block. 
This fact indicates that GPSF is able to exploit HVS for shaping the 
watermark according to any cover image. The resultant watermark is 
shown in figure 6.5. 
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Figure 6.6 Original Image 

 
Figure 6.7 Watermarked Lena Image using the 

evolved cascade attacks-resistant GPSF 

 
Figure 6.3 Distribution of the modified DCT 

coefficients 
 

 
Figure 6.4 Distribution of the watermarking 
strength  

 
Figure 6.8 Difference Image 

 
 

Figure 6.5 Watermark distribution  
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In figure 6.8, we have shown the difference image, obtained by 
subtracting the original image (figure 6.6) from the watermarked image 
(figure 6.7) in spatial domain. The pixel intensity of the difference image 
is amplified ten times for illustration purpose.  
 

6.4.2 Performance Comparison against the Cascade of Conceivable 

Attacks 
 
In table 6.1, both WPM and best-evolved GPSF are compared in terms of 
the marked image quality and )1( attackBCR− for 8 different standard images. 
The perceptual masks corresponding to both perceptual shaping 
functions are multiplied with some scaling factor to achieve equal 
distortion of the resultant watermarked image (in terms of approximately 
equal SSIM value for each image). It is observed that although evolved 
using Lena image, best-evolved GPSF is image independent. This is 
because its imperceptibility measures are comparable to that of WPM for 
the entire test images. However, in terms of )1( attackBCR− performance, the 
best-evolved GPSF has superior performance as compared to that of 
WPM, for almost all of the test images. The best-evolved GPSF in prefix 
notation is given below: 
 

( ) ( ) ( )
( )      sin,logcos

,cos2sin1max,(log(((log(  ,

21

212121

)))(0.12886)))),,(,/(∗( ,(0.25848))),((−(−
),),0.77939)())),∗((,( ),∗+∗=

jiXkkz
kkcckkkk

α
ααGα  (6.3) 

where 

))X,max(z),j),i,max(max(X(  1 0,0α=c     and     )X,j)log(X(i,  2 0,0+=c   
Also, it should be noted that z represents the index of the selected DCT 
coefficient in zigzag order inside a DCT block. This modification of 
allowing z as an independent variable is performed to cope for the 
effectiveness of location inside a DCT block in view of the attacks. 
Besides the first modification; cascade of attacks instead of a single 
attack, this in essence, is the major difference of this chapter as against 
chapter 5. The general functional form of GPSF, in comparison to 
equation 5.5, is now given as: 

( ) ( ) ( )( )AzjiXXkkfkkG , ,,,,,, 0,02121 αα =  (6.4) 
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Figure 6.9 Accuracy versus complexity plot of GP simulation for evolving cascade 

attacks-resistant GPSF 

Table 6.1 GP Parameter setting for evolving anticipated 
Cascade attack-resistant GPSF 

 
Watermark  

strength Decoding performance 
Test 
Images 

Perceptual 
Model Scaling 

Factor wPSNR SSIM 1-BCR 

WPM 0.3660 44.3450 0.9811 0.2344 Lena 
GPSF 0.7100 45.3382 0.9814 0.0625 
WPM 0.4100 43.2389 0.9806 0.1875 Trees GPSF 1.125 44.6309 0.9813 0.1175 
WPM 0.5040 44.5299 0.9810 0.1250 Baboon 

(232x248) GPSF 0.1250 45.1228 0.9813 0.1031 
WPM 0.4400 42.8138 0.9810 0.0938 Couple  GPSF 0.9750 43.8208 0.9812 0.0625 
WPM 0.4020 43.5568 0.9812 0.0938 Boat 

(232x248) GPSF 0.8600 44.5875 0.9813 0.0781 
WPM 0.2440 46.2615 0.9809 0.0156 Airplane  GPSF 0.5550 46.7912 0.9811 0.0469 
WPM 0.4250 44.3692 0.9813 0.1875 Watch  GPSF 0.7200 45.6630 0.9813 0.1094 
WPM 0.3310 44.0709 0.9807 0.0469 Fruits GPSF 0.7100 45.0101 0.9813 0.0313 
WPM 0.3140 45.3106 0.9815 0.0625 House GPSF 0.6400 45.8659 0.9812 0.0250 
WPM 0.4730 42.7162 0.9810 0.1719 Chemical 

Plant  GPSF 0.9450 43.6662 0.9813 0.1094 



 
Chapter 6 

 72 

 
6.4.3 Fitness-gain versus Complexity of GP Simulation 
 
Striving for improved fitness-based performance, the GP simulation 
mostly generates complex individuals during the stepwise refinement 
process. This is because more lengthy and complex expressions may 
incorporate exploitation of certain features ignored by others. In GP 
literature [25, 26, 30], several techniques are applied to help evolve 
concise, but accurate expressions. The accuracy versus complexity curve 
of our GP simulation is shown in figure 6.9. It can be observed that as 
generations pass by, improvement in fitness of the best individual is 
achieved at cost of its complexity. That is, with increase in fitness of the 
best perceptual shaping function of a generation, its genome’s total 
number of nodes as well as its average tree depth increases. 
 
6.5. Conclusions 
 
We have practically demonstrated the potential of watermark shaping 
stage for fusing the watermark in accordance to a set of conceivable 
attacks. The proposed scheme develops image adaptive and application-
specific perceptual shaping functions, able to shape the watermark in 
accordance to any cover image and a given set of conceivable attacks. 
Watermark imperceptibility is ensured by making GP exploit HVS 
Characteristics in the DCT domain. On the other hand, the significant 
improvement in resistance against the a given set of conceivable attacks 
is achieved by letting the GP search, exploit the information pertaining to 
the distortion caused by given set of conceivable attacks. Both the 
imperceptibility and effective robustness attributes are obtained by 
incorporating the concept of bonus fitness in multi-objective fitness 
function. The proposed technique is easy to understand, implement, and 
possess potential of being used in real business applications. 
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Chapter 7 

 

Conclusions  
 

Concealment of a watermark is an interesting problem. In order to 
make the watermark imperceptible, one is prompted to use the 
perceptually insignificant coefficients. This generally, tilts the 
distribution of watermark energy towards the high frequency, which 
lessens the expected robustness. The reliability of a watermark, on the 
other hand, generally entails watermark energy to be embedded in 
perceptually significant coefficients. Thus, from one end we are pushed 
to use high frequency, while from the other end to use low frequency. 
This leaves us with nothing, except to make a delicate balance between 
these two contradicting requirements. The distribution of this balance, 
considering the two dimensional distribution of coefficients, depends on 
the given cover image as well as the application. A given cover image 
could be highly textured in nature, on contrary; it could be of smooth 
nature. Further, it could have low and high components both in balanced 
amount. Even further, some applications may require high robustness 
and low concealment or low robustness but high concealment. 
Consequently, an efficient, intelligent, and dynamic system that can fulfil 
these basic requirements is needed the most.  

We have tried to develop such intelligent technique−technique 
based on GP, which develops applications–specific, but image adaptive 
perceptual shaping functions. Chapter 3-4 discuss the development of 
perceptual shaping functions possessing image adaptive capabilities. 
Here, the main target in the optimization problem is to decrease the 
perceptual distance between the watermarked and original image, while 
keeping the estimated robustness fixed.  

Chapter 5-6, on the other hand, discuss the development of 
perceptual shaping functions possessing image adaptive as well as 
application-specific capabilities. In these chapters, we remodel our 
optimization problem and try to first decrease the perceptual distance at 
certain level of estimated robustness. But, once a certain lower level of 
perceptual distance is reached, we also strive for improvement in actual 
robustness through the use of our bonus fitness idea for implementing 
multi-objective function in GP. Specifically, chapter 6 explains our 
proposed approached of developing perceptual shaping functions that 
shape the watermark not only according to the given cover image, but 
according to a battery of conceivable attacks as well. 
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7.1 Contributions: Details in reference to individual 
chapters 

We further elaborate our main contributions by answering 
questions related to the perceptual shaping of a watermark. These 
questions are related to the hypothesis of our research work and are as 
follows: 

1. Could we enhance the tradeoff between robustness and 
imperceptibility as compared to the existing perceptual 
shaping functions? 

2. Is the actual robustness truly depicted by estimated 
robustness? 

3. Besides enhancing tradeoff, could we use perceptual shaping 
for achieving effective resistance against anticipated attacks? 

4. Does the increasingly trend of sophistication of the 
watermarking systems and of the corresponding malicious 
attempts, requires the use of intelligent search techniques in 
watermarking?   

The relevant details concerning answers to these questions are as 
follows: 

 
 7.1.1 Could we enhance the tradeoff between robustness and 
imperceptibility as compared to the existing perceptual shaping 
functions?  

In chapter 3, a GPSF is evolved that effectively shapes the 
watermark according to the cover image in full-frame DCT domain. 
Unlike the heuristic techniques used in [2] that search for a constant 
watermarking strength for each new cover image, the GPSF is image 
adaptive and selects a suitable watermarking strength for 
each DCT coefficient. The evolved perceptual shaping functions for full-
frame DCT is quite general and can be used in any full 
frame DCT domain-based watermarking technique.  

 In chapter 4, the developed perceptual shaping functions for 
block-based DCT domain is a combination of frequency and luminance 
sensitivity as well as contrast masking. It offers superior performance to 
that of Watson’s perceptual model [16] in terms of watermarked 
imperceptibility.  
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7.1.2 Is the actual robustness truly depicted by estimated 
robustness based on watermark power? 

Our analysis in chapter 4 shows that high power embedding does 
not always reflect high practical robustness. We have assumed 
watermark power to be depicting robustness. For this purpose, we have 
used MSS (equation 2.1) as a measure representing estimated 
robustness. However, our analysis in chapter 4 shows that high power 
embedding may not always mean high actual robustness. 

 
7.1.3 Besides enhancing tradeoff, could we use perceptual shaping 
for achieving effective resistance against anticipated attacks?  

In chapter 5, we have considered the GP-based perceptual shaping 
of a digital watermark in accordance to the cover image and anticipated 
attack. The GP tuned GPSFs are image adaptive and the GPSS as a 
whole is attack adaptive. A significant improvement in resistance against 
the intended attack is achieved by letting the GP search exploit the 
attack information. This is in essence, like attack-informed embedding. 
Both these attributes of a GPSF; superior tradeoff and high resistance 
against an anticipated attack, are obtained by incorporating the concept 
of bonus fitness in multi-objective fitness function.  

In chapter 6, We have practically demonstrated the potential of 
watermark shaping stage for fusing the watermark in accordance to a set 
of conceivable attacks. The proposed scheme develops image adaptive 
and application-specific perceptual shaping functions, able to shape the 
watermark in accordance to any cover image and a given set of 
conceivable attacks.  

 
7.1.4 Does the increasingly trend of sophistication of the 
watermarking systems and of the corresponding malicious attempts, 
requires the use of intelligent search techniques in watermarking?   

This is almost true because even modeling the distortions 
introduced by the watermark addition itself, is not so simple. In addition 
to this, if a single attack is carried out, then modeling the distortion 
becomes more difficult. For example, some effort has been put to model 
distortion introduced due to JPEG compression attack [66]. If instead of 
a single attack, we have a battery of conceivable attacks, then modeling 
the resultant distortion analytically becomes almost impossible. Both in 
chapter 5 and 6, we have shown that GP is able to learn the information 
pertaining to distortion caused by either a single or a battery of attacks. 
This information is then exploited by the GPSFs to shape the watermark 
in accordance to these attacks.  

This is only one issue that we are discussing in context of the 
potential use of intelligent techniques in watermarking. As discussed in 
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chapter 6, various machine learning-based approaches have been carried 
out in detection of watermark signals. 

     
7.2 Future Work 
We expect the use of intelligent techniques in complicated watermark 
applications to be quite prospective. Few possible extensions to our work 
that are of very interesting nature and may have strong impact, both on 
the way watermarking embedding as well as elimination problem is 
perceived.  

 
7.2.1 Selection of both embedding positions and strengths of 
alterations 

In addition to the selection of suitable strength, the selection of 
DCT coefficients for embedding may also be performed. This will require 
the whole 63 AC coefficients of a DCT block to be considered for 
embedding, instead of the middle frequency coefficients. This may further 
improve the resistance against the intended attack, as different attacks 
usually affect different frequency bands in DCT block. 

 
7.2.2 Employing intelligent techniques for developing efficient and 
application-specific decoders 

In a watermarking system, the decoder structures are mostly fixed. 
They do not account for the normal processing or intentional attacks. 
Therefore, a method of automatically modifying the decoder structure in 
accordance to the given cover image and conceivable attack is thus 
needed. This would require exploiting the search space regarding types of 
dependencies of the decoder on different factors. 
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