

Modelling Exchange Using the Prisoner’s Modelling Exchange Using the Prisoner’s Modelling Exchange Using the Prisoner’s Modelling Exchange Using the Prisoner’s
Dilemma and Genetic ProgrammingDilemma and Genetic ProgrammingDilemma and Genetic ProgrammingDilemma and Genetic Programming

Laurie Hirsch Masoud Saeedi

Sheffield Hallam University

Sheffield S1 1WB
UK

Email: l.hirsch@shu.ac.uk m.h.saeedi@shu.ac.uk

Abstract
In this paper we show how exchange, co-operation and other complex strategies found in nature can be
modelled using the prisoner’s dilemma game and genetic programming. We are able to produce and
evolve different strategies represented by computer programs that can play the prisoner’s dilemma
against a set of predefined strategies or against other programs in the population (co-evolution).
Although the game is simple the number of possible strategies for playing it is huge. Genetic
programming provides an efficient search mechanism capable of identifying and propagating strategies
that do well in a particular environment. Our implementation provides a distinct advantage over
previous investigations into the prisoner’s dilemma using genetic algorithms. In particular strategies can
be based upon the entire history of a game at any point, rather than on recent moves only. We
incorporate the use of list data structures as terminals and provide list-searching capability in the
function set so that potentially large volumes of data can be utilised by the evolved programs.

Keywords : Prisoner’s Dilemma, Genetic Programming, co-evolution, large terminal sets.

1 Introduction
Analysis of the prisoner’s dilemma game has proved
useful in many fields of study including biology,
sociology, psychology, political science and
economics.[Poundstone 1992]. It has also been
applied to the modelling of a form of animal
behaviour know as ‘reciprocal altruism’. This is
where unrelated organisms co-operate with each other
even when it would appear that such action is not
advantageous in terms of inclusive genetic fitness.

Useful research in modelling this behaviour in a
software environment using genetic algorithms to play
the prisoner’s dilemma has been developed [Alexrod
1987]. Here we build on this research using the more
recently developed genetic programming system
[Koza 1992]

2 Genetic Programming
Genetic programming (GP) is an automatic
programming technique developed by John Koza in
1992. GP is a variant of the genetic algorithm (GA)
and is similarly inspired by evolutionary processes
occurring in nature, in particular by the exchange of
strands of DNA occurring in sexually reproducing
organisms. Whereas GA’s use fixed length character
strings as the genetic material GP uses executable
LISP-like program trees. A fixed size and structure of
evolved programs in a GP system does not need to be
specified in advance. These trees serve as both the
genetic material of an individual and as the solution in
program code; there is no intermediate representation.

A population of computer programs is initially created
by randomly combining functions and terminals from
a predefined set relevant to the problem domain. A
fitness function that can take an arbitrary GP
individual from the population and return an assessed

fitness for that individual must also be provided. The
fitness value returned is used to favour the selection of
programs with higher fitness that will be used to form
the next generation.

GP’s genetic operators are customised to deal with
GPs tree structured individuals. The three most
common operators are subtree crossover, point
mutation and reproduction. The mutation operator
takes a single individual and replaces an arbitrary
subtree in this individual with a new, randomly
generated subtree. The crossover operation swaps
sub-trees between two selected fit individuals to
produced two new programs for the next generation.
The reproduction operation takes a fit individual and
copies it into the next generation.

The process of measuring and creating new
generations of programs is repeated. Differences in
measured fitness are exploited such that in general we
will see an improvement in the fitness of the
programs. Unspecified programs of variable size,
structure and complexity are likely to evolve.
Termination occurs after a predefined fitness has been
achieved by one or more programs or after a pre-set
number of generations has been completed. In this
case the best individual occurring in the entire run
represents the candidate solution to the particular
problem.

3 The Prisoner’s Dilemma
The prisoner’s dilemma is a game for 2 players where
both players are trying to achieve a maximum score
but where their interests are not necessarily opposed.

Each player has a choice of two moves usually
referred to as co-operate(C) or defect (D). This is
because the original version of the game was based
upon a hypothetical situation in which two individuals
are detained after a crime. Confessing to the crime is
seen as a defection and co-operation is equivalent to a
refusal to admit to the crime. They are kept isolated
from each other but both offered a series of more or
less appealing sentences and rewards, which are
dependent upon the actions of both individuals.

The various outcomes can be given scores as in the
table below (score for A first).

 B

Co-operates(C)
B
Defects(D)

A Co-
operates(C)

2,2 (CC) 0,3 (CD)

A
Defects(D)

3,0 (DC) 1,1 (DD)

It is the ranking of the outcomes that defines a game
as a prisoner’s dilemma. Wherever we find we have a
choice to cooperate (C) or defect (D) in a game with
another player and the outcomes are ranked such that

DC > CC > DD > CD

then we are playing the prisoner’s dilemma. The
moves are simultaneous and each player is unable to
determine the others move until after the move.

Where there is one move in a game of prisoner’s
dilemma there are only 2 possible strategies: (C, D).
There is no incentive to cooperate in this game i.e.
whatever move the other player makes it is best to
defect. When the game is iterated so that 2 players
repeat the game over many moves we find that there
are a large number of strategies and that co-operation
can be advantageous provided that it can in some way
secure co-operation from the other player.

A distinction can be made between ‘blind strategies’
such as always co-operate (ALLC), always defect
(ALLD) and play a random move (RANDOM) and
those that took some account of what had occurred in
the previous moves. For example ALLC would get a
good score when matched with itself but a 0 score
when matched with ALLD.

One of the most successful strategies is known as ‘Tit
For Tat (TFT). This specifies co-operation on the first
move and then always copy the other players last
move. TFT will do well against itself or against
strategies like ALLC but is ‘provocable’ in that it will
defect in response to defection, and thus get the best
possible score of 1 against ALLD. Tit-for-Tat
represents a simple way to gain co-operation in a
competitive situation without risking heavy loses from
other individuals who will not co-operate.

TFT will start to co-operate at any time its partner
does. TFT as a strategy based on reciprocity but does
not take advantage of the blind strategies such as
ALLC where it is always best to defect.

4 Using Genetic Algorithms
with the Iterated Prisoner’s
Dilemma(IPD)

Alexrod has used a genetic algorithm to evolve
strategies for prisoner’s dilemma. This was done by
specifying each allowable strategy as a string of genes
on a chromosome. Each game has 4 possible
outcomes giving a total of 64 possible histories for the
last 3 moves. To determine its choice of co-operate or
defect a strategy would only need to determine what to
do in each of the possible situations that could arise.

Alexrod used binary strings (chromosomes) to encode
strategies based upon the last three moves in the IPD.
[Alexrod 1987]

Strategies represented by chromosomes were then
evolved using crossover and mutation over a number
of generations. Alexrod found that most strategies
that evolved in the simulation resembled TFT having
many of the properties that make TFT successful such
as ‘continue to co-operate after mutual co-operation is
established’, ‘be provocable e.g. defect after the other
player defects’ ‘accept an ‘apology’ i.e. continue to
co-operate after co-operation has been restored’

5 Implementing the IPD using
Genetic Programming

The objective of the application was to repeat and
develop the work done by Alexrod on the iterated
prisoner’s dilemma (IPD) problem using genetic
programming. It was also hoped that this more
flexible approach would enable further investigation
of co-evolution and co-operation.

The following table represents the scoring system
used in our implementation.

 B

Co-operates
B Defects

A Co-
operates

3,3 0,5

A Defects 5,0 1,1

While the ranking is the same the values are changed
slightly. This is to meet a second requirement in IPD,
which is that, the average of co-operation and
defection is less than that of continuous co-operation.
Thus if two players are alternately co-operating while
the other is defecting their average score will be 2.5
which would be less than the average of 3 for two co-
operating players.

5.1 List Implementation
Although the search space in the genetic algorithm
implementation described above is huge we have
developed an implementation using genetic
programming that is not constrained to examining
only the last 3 moves of the game. Because we are
evolving computer programs we can include powerful
list-searching functions that allow for the development
of strategies based on the entire history of the game at
any point. This implementation also allows us to
examine the problem of large terminal sets in relation
to genetic programming.

5.2 Terminal Set
The terminal set t consists of only 2 variables.

t = {opponents-move-list, players-move-list}

The variables are lists that record the moves of each
player. After a move in a game of prisoner’s dilemma
the move of each player is added to the front of their
lists. Thus the first element of the terminal players-
move-list will be the players own last move. After
move 5 in a game of IPD the opponents-move list
variable might look like (DDDDC) which indicates
co-operation on the first move followed by defections
on the following 4 moves.

5.3 Function Set
All the functions in the implementation will return
lists and will accept lists as arguments. This will
ensure that all programs produced, either randomly in
generation 0, or via genetic operators will be valid
programs that will run and return a result, which will
be the programs next move (closure property).

NOT-LIST(a) : this function is similar to the Boolean
function NOT. It takes one argument of type list and
will return the complement of the first element of that
list and return it as a one element list containing just
that value e.g. if the argument a = (CCCDCD) then
NOT-LST(a) will return (D)

ANDC(a b) : this function is similar to the Boolean
function AND. It takes two arguments of type list and
will return the one element list (C) if both FIRST(a)
and FIRST(b) are equal to ‘C’ else will return (D)

ORC(a b) : this function is similar to the Boolean
function OR. It takes two arguments of type list and
will return the list (C) if either FIRST(a) OR
FIRST(b) are equal to ‘C’ else will return (D)

REST-LST(a) : this function is a modified version of
the LISP function REST and is used to return a list
minus its first element. If REST(a) is a list then this is
returned else a is returned. This is to ensure that an
atom, which would not be an acceptable argument for
other functions, is never returned e.g. REST(C) = (C),
REST(CDDCD) = (DDCD)

MEMBERD(a) will return the list (D) if the list a
contains a ‘D’ in any position else (C)

REVERSE(a) this is the common LISP function and
will simply return the list in reverse order.

5.4 Wrapper
At the end of evaluating a program (i.e. executing) a
list is returned. In order to find the move produced by
the program being evaluated we extract the first
element of the list produced.

5.5 Initial conditions
Because the functions must have non-empty lists as
arguments the 2 terminals were initialised to the list
‘(C). This does introduce a bias into the environment
but this is somewhat reduced by not scoring the first
10 moves of any game.

5.6 Example
For the examples we assume that:
opponents-move-list = (CCDCC)

and
players-move-list = (DCCDC)

An example program that might be produced
randomly in generation 0 or via genetic operators

(ORC opponents-move-list (REST-LST opponents-
move-list))

(REST-LST opponents-move-list) evaluates to (CDCC)

the entire program evaluates to

(ORC (CCDCC) (CDCC))

and will return (C) to the wrapper which in turn will
return ‘C’ i.e. that will be the programs move at that
point.

The program

(ORC opponents-move-list opponents-move-list)

is the strategy TIT-FOR-TAT since the initial state of
each list is (C).

An example of the strategy ALLC would be the
program

(ORC opponents-move-list (NOT-LST opponents-
move-list))

An example of ALLD would be the program

(ANDC opponents-move-list (NOT-LST opponents-
move-list))

By repeating the function REST-LST the program can
look back at previous moves e.g. the program

(REST-LST (REST-LST (REST-LST players-move-list)

will return the players own move, 4 moves previously.

6 Experiments
The genetic programming system for the iterated
prisoner’s dilemma (IPD) was used to implement a
number of experiments. These are described together
with graphs summarising the results below. Some of
the best and worst programs are listed to illustrate the
type of evolution occurring at this level. All IPD
games were 150 moves long and the fitness of a
program was the average score obtained.

6.1 Playing Blind Strategies
Blind strategies are those which take no account of the
history of the game at any point. The best strategy
against any blind strategy is simply to always defect
(i.e. ALLD) as there is no hope of changing the
opponents move by co-operating.

6.1.1 Experiment 1: playing ALLC
ALLC is the first of the ‘blind’ strategies to be used as
an opponent. ALLC will always return ‘C’ i.e. will
always ‘co-operate’. When playing ALLC the worst
possible average score is 3 and this is obtained when
ALLC plays itself. The best possible score is 5, which
is obtained by ALLD.

With a population this size it is highly likely that at
least one individual will be playing the best strategy
(ALLD) in generation 0 as is shown on this run.

Example program scoring 5 (best score):

(ANDC (REST-LST(REST-LST (NOT-LST
OPPONENTS-MOVE-LIST)))
(REST-LST (NOT-LST (REVERSE PLAYERS-
MOVE-LIST))))

This program appeared by chance alone in generation
0. The function ANDC takes 2 arguments. Where
both arguments contain ‘C’ at the front of the list then
(C) will be returned by the function else (D). In this
case the opponents move is always ‘C’. (REST-LST
(NOT-LST OPPONENTS-MOVE-LIST) will
therefore return (D) so the entire program will also
always return ‘D’ i.e. ALLD which is the best strategy
against ALLC.

6.2 Playing More Complex Strategies
based on previous moves.

The game of IPD become more interesting where
strategies are used which take into account the history
of the game. This opens the possibility of
communication via the moves and of developing co-
operation.

6.2.1 Experiment 2: Playing Tit-For-
Tat (TFT)

TFT is the simple strategy, which specifies co-
operation on move 1 and then repeating the
opponents’ previous move. Co-operation is the best
strategy when playing this opponent. Defection
against TFT will achieve the maximum score of 5 for
one move but will ‘provoke’ TFT into subsequent
defection resulting in the low score of 1 for both
players. To return to mutual co-operation after
defection a player must accept a 0 score for one move
before TFT will begin to co-operate again. Note that
the blind strategy ALLC will do as well against TFT
as TFT playing itself or some other strategy based on
similar principles.

In this run evolution to the optimum strategy occurred
very quickly so that all individuals were playing a
version of TFT or ALLC by generation 8.

Example Program:

(REST-LST OPPONENTS-MOVE-LIST)

This program is a version of the TFT strategy and will
score 3 against TFT

6.3 Playing a combination of
Strategies

Evolving strategies that produce good solutions
against a combination of other strategies is far more
demanding as a program may need to identify the
strategy of its opponent in order to play the best game.

6.3.1 Experiment 3: Playing ALLC,
ALLD and TFT

A good program must be able to identify the kind of
strategy being played (by provocation if necessary),
and to respond in the best way to the information
received about the opponent. TFT does well against
this combination but does not exploit the weakness of
ALLC i.e. TFT will co-operate with ALLC when
defecting (ALLD) is the highest scoring option.

Individuals achieved better than TFT by being able to
identify exploitable individuals such as ALLC. This
was not achieved by any human programmer or
strategist in the tournaments held by Alexrod in the
1980’s. We should note that to achieve this an
individual must be able to do three things:
• to be able to discriminate between one individual

and another based upon only the behaviour the
other player shows or is provoked into showing

• to adjust its own behaviour to exploit an
individual that is identified as exploitable

• to be able to achieve this discrimination and
exploitation without producing poor results with
other individuals

If the opponent was identified as unexploitable (e.g.
TFT) an ‘apology’ is made and mutual co-operation
was established whilst exploitable individuals (e.g.
ALL C) were effectively exploited.

Notice that there are two distinct stages of rapid
growth in average fitness the first occurring in the first
few generations and the second at about generation 35.
Analysis of the programs reveals that the first period
of evolution stabilised at a strategy of TFT or similar
which scores an average 2.3 against the three
opponents.

A new strategy was discovered which was able to
exploit ALLC while co-operating with TFT and
defecting against ALLD after 30 generations. This
then spread rapidly throughout the population. This
may be an example of what evolutionary biologists
term punctuated equilibrium.
Example Program:

(ANDC (ANDC
(NOT-LST (REST-LST (REST-LST (MEMBERD
OPPONENTS-MOVE-LIST))))
(REST-LST (REST-LST (REVERSE (REST-LST
OPPONENTS-MOVE-LIST)))))
(ORC (REVERSE (REST-LST OPPONENTS-
MOVE-LIST))
(REVERSE (ANDC (REST-LST OPPONENTS-
MOVE-LIST)
(REST-LST OPPONENTS-MOVE-LIST)))))

This program appeared in generation 34 and scored
3.0 (significantly better than TFT: score 2.3). The key
element of the program is the branch

(NOT-LST (REST-LST (REST-LST (MEMBERD
OPPONENTS-MOVE-LIST)))

The function REST-LST has no effect here.
MEMBERD will return (D) if there is a ‘D’ anywhere
in opponents previous moves else ‘(C)’ and NOT-LST
will complement the move. In pseudo English we
might specify this strategy as ‘co-operate if your
opponent has ever defected else defect’ and so
effectively identifies strategies similar to the blind
strategy ALLC that are open to exploitation.

On its own this strategy would not be successful
against strategies like ALLD since it would co-operate
with them. However the strategy conjuncts (via the
ANDC function) with other branches which
effectively implement TFT. In the above program the
branch below must also evaluate to (C) before the
move ‘C’ is played.

(REST-LST (REST-LST (OPPONENTS-MOVE-
LIST)))
To summarise the key features of this successful
strategy we might say

co-operate if your opponent has ever defected AND
has recently co-operated ELSE defect

A shorter version of the program would be:

(ANDC(NOT-LST (MEMBERD OPPONENTS-
MOVE-LIST)) OPPONENTS-MOVE-LIST))

6.4 Co-evolution
These experiments involve evaluating each programs
fitness by taking the average score when played
against a number of other opponents from the
population of programs

6.4.1 Experiment 4: Playing a sample
of the population

In this experiment each program plays a sample of 20
programs selected randomly from the population.

The average fitness reduces dramatically in the early
generations before rising to stabilise at a co-operative
strategy.

Example program:

(ANDC (REST-LST (REST-LST (ORC PLAYERS-
MOVE-LIST PLAYERS-MOVE-LIST)))
(REST-LST (NOT-LST (REVERSE PLAYERS-
MOVE-LIST))))

This was the best of run program occurring in
generation 0 and scoring 4.2. The program is in fact a
version of the blind strategy ALLD and did so well
because a large proportion of its random sample of
opponents were playing a strategy similar to ALLC.

7 Results
In all cases the average fitness eventually improved
over its initial value i.e. evolution occurred in the
system.

When playing fixed strategies or a combination of
fixed strategies, the average, best and worst fitness
improves from generation 0 toward some maximum
value.

In the co-evolutionary example the average, best and
worst fitness values all decrease initially before
improving and stabilising at a point where all
individuals are co-operating (score 3.0). This initial
decline occurred as co-operating individuals were
exploited by defectors who could achieve high fitness
and therefore proliferate. The point at which the
fitness of the population began to increase coincided
with the ‘discovery’ of the Tit-For-Tat strategy and its
subsequent spread through the population.

Where the environment is co-evolving co-operative
behaviour becomes the dominant strategy even though
in the early generations strategies which refuse to co-
operate achieve higher scores

Experiment 4 revealed two distinct areas of evolution.

8 CONCLUSIONS
The prisoner’s dilemma is a simple non-zero-sum
game that has proved useful in modelling many
different kinds of exchange. In many biological
settings, where two organism are regularly interacting
and can remember some aspects of the prior exchange
then the strategic situation may become an iterated
prisoner’s dilemma. Artificial models of animal
behaviour are created via the IPD application and
these may prove useful to understanding the often-
complex strategic situation occurring between
interacting animals.

Genetic programming provides a powerful and
flexible tool for the evolution of strategies for playing
the game in different environments. Using computer
programs rather than character strings to encode
strategies provides a more readable and natural media
for representing strategies. Co-operative behaviour
was easily evolved and novel strategies produced in
the experiments. Strategies were based on the entire
game at any point rather than on recent moves only as
in previous work using the genetic algorithm. Using
data structures (lists in this case) as terminals in a GP
system and providing functions that are able to search
these structures provides a way for GP systems to
incorporate memory and large sets of data.

The experiments described above show how co-
operative behaviour might evolve through a system of
communication based on previous interaction. Short-
term benefits can be gained by the exploitation of co-
operative behaviour but can lead to the loss of more
significant reward achieved by co-operating in the

longer term. This is of course only true were
individuals are able to identify ‘cheating’ behaviour
and react by withdrawing future co-operation.

Software inspired from features of biological systems
has proved powerful in problems involving search and
optimisation. It is possible to view the evolution of
organisms also as a problem of searching for or
optimising organisms reproductive success in relation
to their environment (which includes other evolving
organisms). Modelling the natural situation via
software simulation may greatly enhance our
understanding of the process of natural selection itself
and allows us to view the biological world from the
greatly advantageous standpoint of having numerous
examples both natural and artificial to investigate.

Bibliography
[Alexrod 1980] Alexrod R, 1980 Effective Choice in
the Prisoner’s Dilemma, Journal of Conflict (24)

[Alexrod 1984] Alexrod R 1984 The Evolution of Co-
operation New York: Basic Books.

[Alexrod 1987] Alexrod R. 1987 The Evolution of
Strategies in the Iterated Prisoner’s Dilemma in L.
Davies(ed.), Genetic Algorithms and Simulated
Annealing, London : Pitman

[Altenberg 1994] Altenberg L 1994 The Evolution of
Evolability in Kinnear K, Advances in Genetic
Programming [KI94]

[Badcock 89] Badcock C, 1989 The Problem of
Altruism Harper Collins

 [Haynes 1995] Haynes T, Wainwright S February
1995, A Simulation of Adaptive Agents in a Hostile
Environment, Proceedings of the 1995 ACM/SIGAPP
Symposium on Applied Computing, ACM Press

[Haynes 1995b] Haynes T, Wainwright S, Shoenefeld
D + S, July 1995 Strongly Typed Genetic
Programming in Evolving Co-operation Strategies,
Proceedings of the Sixth International Conference on
Genetic Algorithms, Morgan Kaufnann

[Holland 1992] Holland J. 1992, Adaptation in Natural
and Artificial Systems, second edition, MIT Press

[Kinnear 1994] Kinnear K E 1994 editor Advances in
Genetic Programming, MIT

[Koza 1992] Koza J Genetic Evolution and Co-
Evolution of Computer Programs in Langton G.,
Taylor C., Farmer J., Rasmussen S 1992 Artificial
Life II, Addison-Wesley[LA92]

[Koza 1992] Koza John R.1992 Genetic
Programming: On the Programming of Computers by
means of Natural Selection, MIT

[Koza 1994] Koza J 1994 Introduction to Genetic
Programming in Kinnear K, Advances in Genetic
Programming [KI94]

[Lindgren 1992] Lindgren Evolutionary Phenomena in
Simple Dynamics in Langton G., Taylor C., Farmer J.,
Rasmussen S 1992 Artificial Life II, Addison-Wesley

[Luke 1996] Sean Luke and Lee Spector, Evolving
teamwork and coordination with genetic
programming. In http://www-cs-

faculty.stanford.edu/~koza/J Koza, D Goldberg, D
Fogel, R Riolo , Genetic Programming 1996:
Proceedings of the First Annual Conference , pages
150-156, Stanford University, CA, USA, 28-31 July
1996. MIT Press

[Luke 1997] Luke, S. et al. 1997. Co-evolving Soccer
Softbot Team Coordination with Genetic
Programming. In Proceedings of the RoboCup-97
Workshop at the 15th International Joint Conference
on Artificial Intelligence (IJCAI97). H. Kitano, ed.
115--118. IJCAI.

[Poundstone 1992] Poundstone W 1992 Prisoner’s
Dilemma, Oxford University Press

