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Abstract 
In this paper we show how exchange, co-operation and other complex strategies found in nature can be 
modelled using the prisoner’s dilemma game and genetic programming. We are able to produce and 
evolve different strategies represented by computer programs that can play the prisoner’s dilemma 
against a set of predefined strategies or against other programs in the population (co-evolution).  
Although the game is simple the number of possible strategies for playing it is huge.  Genetic 
programming provides an efficient search mechanism capable of identifying and propagating strategies 
that do well in a particular environment.  Our implementation provides a distinct advantage over 
previous investigations into the prisoner’s dilemma using genetic algorithms.  In particular strategies can 
be based upon the entire history of a game at any point, rather than on recent moves only. We 
incorporate the use of list data structures as terminals and provide list-searching capability in the 
function set so that potentially large volumes of data can be utilised by the evolved programs. 
 
Keywords : Prisoner’s Dilemma, Genetic Programming, co-evolution, large terminal sets. 
 

 

1 Introduction 
Analysis of the prisoner’s dilemma game has proved 
useful in many fields of study including biology, 
sociology, psychology, political science and 
economics.[Poundstone 1992].  It has also been 
applied to the modelling of a form of animal 
behaviour know as ‘reciprocal altruism’.  This is 
where unrelated organisms co-operate with each other 
even when it would appear that such action is not 
advantageous in terms of inclusive genetic fitness.   
 
Useful research in modelling this behaviour in a 
software environment using genetic algorithms to play 
the prisoner’s dilemma has been developed [Alexrod 
1987].  Here we build on this research using the more 
recently developed genetic programming system 
[Koza 1992] 
 

2 Genetic Programming 
Genetic programming (GP) is an automatic 
programming technique developed by John Koza in 
1992.  GP is a variant of the genetic algorithm (GA) 
and is similarly inspired by evolutionary processes 
occurring in nature, in particular by the exchange of 
strands of DNA occurring in sexually reproducing 
organisms.  Whereas GA’s use fixed length character 
strings as the genetic material GP uses executable 
LISP-like program trees. A fixed size and structure of 
evolved programs in a GP system does not need to be 
specified in advance. These trees serve as both the 
genetic material of an individual and as the solution in 
program code; there is no intermediate representation.  
 
A population of computer programs is initially created 
by randomly combining functions and terminals from 
a predefined set relevant to the problem domain.  A 
fitness function that can take an arbitrary GP 
individual from the population and return an assessed 



 

fitness for that individual must also be provided.  The 
fitness value returned is used to favour the selection of 
programs with higher fitness that will be used to form 
the next generation. 
 
GP’s genetic operators are customised to deal with 
GPs tree structured individuals.  The three most 
common operators are subtree crossover, point 
mutation and reproduction.  The mutation operator 
takes a single individual and replaces an arbitrary 
subtree in this individual with a new, randomly 
generated subtree.  The crossover operation swaps 
sub-trees between two selected fit individuals to 
produced two new programs for the next generation. 
The reproduction operation takes a fit individual and 
copies it into the next generation. 
 
The process of measuring and creating new 
generations of programs is repeated.  Differences in 
measured fitness are exploited such that in general we 
will see an improvement in the fitness of the 
programs.  Unspecified programs of variable size, 
structure and complexity are likely to evolve.  
Termination occurs after a predefined fitness has been 
achieved by one or more programs or after a pre-set 
number of generations has been completed.  In this 
case the best individual occurring in the entire run 
represents the candidate solution to the particular 
problem.  

3 The Prisoner’s Dilemma 
The prisoner’s dilemma is a game for 2 players where 
both players are trying to achieve a maximum score 
but where their interests are not necessarily opposed.   
 
Each player has a choice of two moves usually 
referred to as co-operate(C) or defect (D).  This is 
because the original version of the game was based 
upon a hypothetical situation in which two individuals 
are detained after a crime.  Confessing to the crime is 
seen as a defection and co-operation is equivalent to a 
refusal to admit to the crime.  They are kept isolated 
from each other but both offered a series of more or 
less appealing sentences and rewards, which are 
dependent upon the actions of both individuals. 
 
The various outcomes can be given scores as in the 
table below (score for A first).  
 
 B  

Co-operates(C) 
B 
Defects(D) 

A Co-
operates(C) 

2,2  (CC) 0,3  (CD) 

A 
Defects(D) 

3,0  (DC) 1,1  (DD) 

 

It is the ranking of the outcomes that defines a game 
as a prisoner’s dilemma.  Wherever we find we have a 
choice to cooperate (C) or defect (D) in a game with 
another player and the outcomes are ranked such that  
 
DC   >  CC  > DD  > CD 
 
then we are playing the prisoner’s dilemma.  The 
moves are simultaneous and each player is unable to 
determine the others move until after the move. 
 
Where there is one move in a game of prisoner’s 
dilemma there are only 2 possible strategies: (C, D).  
There is no incentive to cooperate in this game i.e. 
whatever move the other player makes it is best to 
defect.  When the game is iterated so that 2 players 
repeat the game over many moves we find that there 
are a large number of strategies and that co-operation 
can be advantageous provided that it can in some way 
secure co-operation from the other player. 
 
A distinction can be made between ‘blind strategies’ 
such as always co-operate (ALLC), always defect 
(ALLD) and play a random move (RANDOM) and 
those that took some account of what had occurred in 
the previous moves.  For example ALLC would get a 
good score when matched with itself but a 0 score 
when matched with ALLD. 
 
One of the most successful strategies is known as ‘Tit 
For Tat (TFT).  This specifies co-operation on the first 
move and then always copy the other players last 
move.  TFT will do well against itself or against 
strategies like ALLC but is ‘provocable’ in that it will 
defect in response to defection, and thus get the best 
possible score of 1 against ALLD.  Tit-for-Tat 
represents a simple way to gain co-operation in a 
competitive situation without risking heavy loses from 
other individuals who will not co-operate. 
 
TFT will start to co-operate at any time its partner 
does.  TFT as a strategy based on reciprocity but does 
not take advantage of the blind strategies such as 
ALLC where it is always best to defect. 

4 Using Genetic Algorithms 
with the Iterated Prisoner’s 
Dilemma(IPD) 

Alexrod has used a genetic algorithm to evolve 
strategies for prisoner’s dilemma.  This was done by 
specifying each allowable strategy as a string of genes 
on a chromosome.  Each game has 4 possible 
outcomes giving a total of 64 possible histories for the 
last 3 moves.  To determine its choice of co-operate or 
defect a strategy would only need to determine what to 
do in each of the possible situations that could arise.  



 

Alexrod used binary strings (chromosomes) to encode 
strategies based upon the last three moves in the IPD. 
[Alexrod 1987] 
 
Strategies represented by chromosomes were then 
evolved using crossover and mutation over a number 
of generations.  Alexrod found that most strategies 
that evolved in the simulation resembled TFT having 
many of the properties that make TFT successful such 
as ‘continue to co-operate after mutual co-operation is 
established’, ‘be provocable e.g. defect after the other 
player defects’ ‘accept an ‘apology’ i.e. continue to 
co-operate after co-operation has been restored’ 
 

5 Implementing the IPD using 
Genetic Programming 

The objective of the application was to repeat and 
develop the work done by Alexrod on the iterated 
prisoner’s dilemma (IPD) problem using genetic 
programming.  It was also hoped that this more 
flexible approach would enable further investigation 
of co-evolution and co-operation. 
 
The following table represents the scoring system 
used in our implementation. 
 
 B  

Co-operates 
B Defects 

A Co-
operates 

3,3 0,5 

A Defects 5,0 1,1 
 
While the ranking is the same the values are changed 
slightly.  This is to meet a second requirement in IPD, 
which is that, the average of co-operation and 
defection is less than that of continuous co-operation.  
Thus if two players are alternately co-operating while 
the other is defecting their average score will be 2.5 
which would be less than the average of 3 for two co-
operating players. 
 

5.1 List Implementation 
Although the search space in the genetic algorithm 
implementation described above is huge we have 
developed an implementation using genetic 
programming that is not constrained to examining 
only the last 3 moves of the game. Because we are 
evolving computer programs we can include powerful 
list-searching functions that allow for the development 
of strategies based on the entire history of the game at 
any point.  This implementation also allows us to 
examine the problem of large terminal sets in relation 
to genetic programming. 
 

5.2 Terminal Set 
The terminal set t consists of only 2 variables. 
 
t = {opponents-move-list, players-move-list} 
 
The variables are lists that record the moves of each 
player. After a move in a game of prisoner’s dilemma 
the move of each player is added to the front of their 
lists.  Thus the first element of the terminal players-
move-list will be the players own last move.  After 
move 5 in a game of IPD the opponents-move list 
variable might look like (DDDDC) which indicates 
co-operation on the first move followed by defections 
on the following 4 moves. 
 

5.3 Function Set 
All the functions in the implementation will return 
lists and will accept lists as arguments.  This will 
ensure that all programs produced, either randomly in 
generation 0, or via genetic operators will be valid 
programs that will run and return a result, which will 
be the programs next move (closure property). 
 
NOT-LIST(a) : this function is similar to the Boolean 
function NOT.  It takes one argument of type list and 
will return the complement of the first element of that 
list and return it as a one element list containing just 
that value e.g. if the argument a = (CCCDCD) then 
NOT-LST(a) will return (D) 
 
ANDC(a b) : this function is similar to the Boolean 
function AND.  It takes two arguments of type list and 
will return the one element list (C) if both FIRST(a) 
and FIRST(b) are equal to ‘C’ else will return (D) 
 
ORC(a b) : this function is similar to the Boolean 
function OR.  It takes two arguments of type list and 
will return the list (C) if either FIRST(a) OR 
FIRST(b) are equal to ‘C’ else will return (D) 
 
REST-LST(a) : this function is a modified version of 
the LISP function REST and is used to return a list 
minus its first element.  If REST(a) is a list then this is 
returned else a is returned.  This is to ensure that an 
atom, which would not be an acceptable argument for 
other functions, is never returned e.g. REST(C) = (C), 
REST(CDDCD) = (DDCD) 
 
MEMBERD(a) will return the list (D) if the list a 
contains a ‘D’ in any position else (C) 
 
REVERSE(a) this is the common LISP function and 
will simply return the list in reverse order. 



 

5.4 Wrapper 
At the end of evaluating a program (i.e. executing) a 
list is returned.  In order to find the move produced by 
the program being evaluated we extract the first 
element of the list produced. 

5.5 Initial conditions 
Because the functions must have non-empty lists as 
arguments the 2 terminals were initialised to the list 
‘(C).  This does introduce a bias into the environment 
but this is somewhat reduced by not scoring the first 
10 moves of any game.  
 

5.6 Example 
For the examples we assume that:  
opponents-move-list  = (CCDCC)  
 
and 
players-move-list   = (DCCDC) 
 
An example program that might be produced 
randomly in generation 0 or via genetic operators 
 
(ORC opponents-move-list (REST-LST opponents-
move-list))   
 
(REST-LST opponents-move-list) evaluates to (CDCC)  
 
the entire program evaluates to 
 
(ORC (CCDCC) (CDCC)) 
 
and will return (C) to the wrapper which in turn will 
return ‘C’ i.e. that will be the programs move at that 
point. 
 
The program 
 
(ORC opponents-move-list opponents-move-list) 
 
is the strategy TIT-FOR-TAT since the initial state of 
each list is (C). 
 
An example of the strategy ALLC would be the 
program 
 
(ORC opponents-move-list (NOT-LST opponents-
move-list)) 
 
An example of ALLD would be the program 
 
(ANDC opponents-move-list (NOT-LST opponents-
move-list)) 
 
By repeating the function REST-LST the program can 
look back at previous moves e.g. the program 

 
(REST-LST (REST-LST (REST-LST players-move-list) 
 
will return the players own move, 4 moves previously.  
 

6 Experiments 
The genetic programming system for the iterated 
prisoner’s dilemma (IPD) was used to implement a 
number of experiments.  These are described together 
with graphs summarising the results below.  Some of 
the best and worst programs are listed to illustrate the 
type of evolution occurring at this level.  All IPD 
games were 150 moves long and the fitness of a 
program was the average score obtained.  
 

6.1 Playing Blind Strategies 
Blind strategies are those which take no account of the 
history of the game at any point.  The best strategy 
against any blind strategy is simply to always defect 
(i.e. ALLD) as there is no hope of changing the 
opponents move by co-operating. 
 

6.1.1 Experiment 1: playing ALLC 
ALLC is the first of the ‘blind’ strategies to be used as 
an opponent.  ALLC will always return ‘C’ i.e. will 
always ‘co-operate’.  When playing ALLC the worst 
possible average score is 3 and this is obtained when 
ALLC plays itself.  The best possible score is 5, which 
is obtained by ALLD. 
 

 
With a population this size it is highly likely that at 
least one individual will be playing the best strategy 
(ALLD) in generation 0 as is shown on this run.  
 
Example program scoring 5 (best score): 
 
(ANDC (REST-LST(REST-LST (NOT-LST 
OPPONENTS-MOVE-LIST)))  
(REST-LST (NOT-LST (REVERSE PLAYERS-
MOVE-LIST)))) 
 



 

This program appeared by chance alone in generation 
0.  The function ANDC takes 2 arguments.  Where 
both arguments contain ‘C’ at the front of the list then 
(C) will be returned by the function else (D).  In this 
case the opponents move is always ‘C’. (REST-LST 
(NOT-LST OPPONENTS-MOVE-LIST) will 
therefore return (D) so the entire program will also 
always return ‘D’ i.e. ALLD which is the best strategy 
against ALLC. 
 

6.2 Playing More Complex Strategies 
based on previous moves. 

The game of IPD become more interesting where 
strategies are used which take into account the history 
of the game.  This opens the possibility of 
communication via the moves and of developing co-
operation. 
 

6.2.1 Experiment 2: Playing Tit-For-
Tat (TFT) 

TFT is the simple strategy, which specifies co-
operation on move 1 and then repeating the 
opponents’ previous move.  Co-operation is the best 
strategy when playing this opponent.  Defection 
against TFT will achieve the maximum score of 5 for 
one move but will ‘provoke’ TFT into subsequent 
defection resulting in the low score of 1 for both 
players.  To return to mutual co-operation after 
defection a player must accept a 0 score for one move 
before TFT will begin to co-operate again. Note that 
the blind strategy ALLC will do as well against TFT 
as TFT playing itself or some other strategy based on 
similar principles. 
 
In this run evolution to the optimum strategy occurred 
very quickly so that all individuals were playing a 
version of TFT or ALLC by generation 8. 

 
 
Example Program: 
 
(REST-LST OPPONENTS-MOVE-LIST) 
 

This program is a version of the TFT strategy and will 
score 3 against TFT 
 

6.3 Playing a combination of 
Strategies 

Evolving strategies that produce good solutions 
against a combination of other strategies is far more 
demanding as a program may need to identify the 
strategy of its opponent in order to play the best game. 
 

6.3.1 Experiment 3: Playing ALLC, 
ALLD and TFT 

A good program must be able to identify the kind of 
strategy being played (by provocation if necessary), 
and to respond in the best way to the information 
received about the opponent.  TFT does well against 
this combination but does not exploit the weakness of 
ALLC i.e. TFT will co-operate with ALLC when 
defecting (ALLD) is the highest scoring option. 
 

 
Individuals achieved better than TFT by being able to 
identify exploitable individuals such as ALLC.  This 
was not achieved by any human programmer or 
strategist in the tournaments held by Alexrod in the 
1980’s.  We should note that to achieve this an 
individual must be able to do three things: 
• to be able to discriminate between one individual 

and another based upon only the behaviour the 
other player shows or is provoked into showing 

• to adjust its own behaviour to exploit an 
individual that is identified as exploitable 

• to be able to achieve this discrimination and 
exploitation without producing poor results with 
other individuals 

 
If the opponent was identified as unexploitable (e.g. 
TFT) an ‘apology’ is made and mutual co-operation 
was established whilst exploitable individuals (e.g. 
ALL C) were effectively exploited. 



 

 
Notice that there are two distinct stages of rapid 
growth in average fitness the first occurring in the first 
few generations and the second at about generation 35.  
Analysis of the programs reveals that the first period 
of evolution stabilised at a strategy of TFT or similar 
which scores an average 2.3 against the three 
opponents. 
 
A new strategy was discovered which was able to 
exploit ALLC while co-operating with TFT and 
defecting against ALLD after 30 generations.  This 
then spread rapidly throughout the population.  This 
may be an example of what evolutionary biologists 
term punctuated equilibrium. 
Example Program: 
 
(ANDC (ANDC  
(NOT-LST (REST-LST (REST-LST (MEMBERD 
OPPONENTS-MOVE-LIST))))  
(REST-LST (REST-LST (REVERSE (REST-LST 
OPPONENTS-MOVE-LIST))))) 
(ORC (REVERSE (REST-LST OPPONENTS-
MOVE-LIST))  
(REVERSE (ANDC (REST-LST OPPONENTS-
MOVE-LIST)  
(REST-LST OPPONENTS-MOVE-LIST))))) 
 
This program appeared in generation 34 and scored 
3.0 (significantly better than TFT: score 2.3).  The key 
element of the program is the branch  
 
(NOT-LST (REST-LST (REST-LST (MEMBERD 
OPPONENTS-MOVE-LIST))) 
 
The function REST-LST has no effect here.  
MEMBERD will return (D) if there is a ‘D’ anywhere 
in opponents previous moves else ‘(C)’ and NOT-LST 
will complement the move.  In pseudo English we 
might specify this strategy as ‘co-operate if your 
opponent has ever defected else defect’ and so 
effectively identifies strategies similar to the blind 
strategy ALLC that are open to exploitation. 
 
On its own this strategy would not be successful 
against strategies like ALLD since it would co-operate 
with them.  However the strategy conjuncts (via the 
ANDC function) with other branches which 
effectively implement TFT.  In the above program the 
branch below must also evaluate to (C) before the 
move ‘C’ is played. 
 
(REST-LST (REST-LST (OPPONENTS-MOVE-
LIST))) 
To summarise the key features of this successful 
strategy we might say 
 

co-operate if your opponent has ever defected AND 
has recently co-operated ELSE defect 
 
A shorter version of the program would be: 
 
(ANDC(NOT-LST (MEMBERD OPPONENTS-
MOVE-LIST)) OPPONENTS-MOVE-LIST)) 
 

6.4 Co-evolution 
These experiments involve evaluating each programs 
fitness by taking the average score when played 
against a number of other opponents from the 
population of programs 
 

6.4.1 Experiment 4: Playing a sample 
of the population 

In this experiment each program plays a sample of 20 
programs selected randomly from the population. 
 

 
The average fitness reduces dramatically in the early 
generations before rising to stabilise at a co-operative 
strategy. 
 
Example program: 
 
(ANDC (REST-LST (REST-LST (ORC PLAYERS-
MOVE-LIST PLAYERS-MOVE-LIST)))  
(REST-LST (NOT-LST (REVERSE PLAYERS-
MOVE-LIST)))) 
 
This was the best of run program occurring in 
generation 0 and scoring 4.2.  The program is in fact a 
version of the blind strategy ALLD and did so well 
because a large proportion of its random sample of 
opponents were playing a strategy similar to ALLC. 

7 Results 
In all cases the average fitness eventually improved 
over its initial value i.e. evolution occurred in the 
system. 
 



 

When playing fixed strategies or a combination of 
fixed strategies, the average, best and worst fitness 
improves from generation 0 toward some maximum 
value. 
 
In the co-evolutionary example the average, best and 
worst fitness values all decrease initially before 
improving and stabilising at a point where all 
individuals are co-operating (score 3.0). This initial 
decline occurred as co-operating individuals were 
exploited by defectors who could achieve high fitness 
and therefore proliferate.  The point at which the 
fitness of the population began to increase coincided 
with the ‘discovery’ of the Tit-For-Tat strategy and its 
subsequent spread through the population. 
 
Where the environment is co-evolving co-operative 
behaviour becomes the dominant strategy even though 
in the early generations strategies which refuse to co-
operate achieve higher scores 
 
Experiment 4 revealed two distinct areas of evolution. 

8 CONCLUSIONS 
The prisoner’s dilemma is a simple non-zero-sum 
game that has proved useful in modelling many 
different kinds of exchange. In many biological 
settings, where two organism are regularly interacting 
and can remember some aspects of the prior exchange 
then the strategic situation may become an iterated 
prisoner’s dilemma. Artificial models of animal 
behaviour are created via the IPD application and 
these may prove useful to understanding the often-
complex strategic situation occurring between 
interacting animals. 
 
Genetic programming provides a powerful and 
flexible tool for the evolution of strategies for playing 
the game in different environments.  Using computer 
programs rather than character strings to encode 
strategies provides a more readable and natural media 
for representing strategies.  Co-operative behaviour 
was easily evolved and novel strategies produced in 
the experiments.  Strategies were based on the entire 
game at any point rather than on recent moves only as 
in previous work using the genetic algorithm.  Using 
data structures (lists in this case) as terminals in a GP 
system and providing functions that are able to search 
these structures provides a way for GP systems to 
incorporate memory and large sets of data. 
 
The experiments described above show how co-
operative behaviour might evolve through a system of 
communication based on previous interaction.  Short-
term benefits can be gained by the exploitation of co-
operative behaviour but can lead to the loss of more 
significant reward achieved by co-operating in the 

longer term.  This is of course only true were 
individuals are able to identify ‘cheating’ behaviour 
and react by withdrawing future co-operation. 
 
Software inspired from features of biological systems 
has proved powerful in problems involving search and 
optimisation.  It is possible to view the evolution of 
organisms also as a problem of searching for or 
optimising organisms reproductive success in relation 
to their environment (which includes other evolving 
organisms).  Modelling the natural situation via 
software simulation may greatly enhance our 
understanding of the process of natural selection itself 
and allows us to view the biological world from the 
greatly advantageous standpoint of having numerous 
examples both natural and artificial to investigate. 
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