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Abstract

The aim of this thesis is to investigate how somal engineering design problems, in
particular structures, can be represented usinlygeoary algorithms (EA) and contains two,
independent experimental chapters on building lagasign and geometric dome design (an
introduction to EAs and design is also provided).

Civil engineering design problems are typicallygached using traditional techniques
i.e. deterministic algorithms, rather than via bestic search such as EAs. However EAs are
adept at exploring fragmented and complex searabesp such as those found in design, but
do require potential solutions to have a ‘represtaot’ amenable to evolutionary operators.
Four canonical representations have been propossdding: strings (generally used for

parameter based problems), voxels (shape discoussg¥y and graphs (skeletal structures).

Several authors have proposed design algorithmsht conceptual layout design of
commercial office buildings but all are limited baildings with rectangular floor plans. This
thesis presents an evolutionary algorithm basedhodelogy capable of representing
buildings with orthogonal boundaries and atria bing a 3-section string with real encoding,
which ensures the initialisation and evolutionapgmtions are not too disruptive on column
alignments encoded via the genome. In order to leawdthogonal layouts polygon-
partitioning techniques are used to decompose themrectangular sections, which can be
solved individually. However to prevent the layobecoming too discontinuous, an

‘adjacency graph’ is proposed which ensures collinencontinuity throughout the building.

Dome geometric layout design is difficult, becawsery joint and member must be
located on the external surface and not impingéheninternal void. This thesis describes a
string-based representation capable of designimgctty in 3D using surface area and
enclosed volume as the major search parametersrefiresentation encodes support and
joint positions, which are converted into a domedoystructing its corresponding convex
hull. Once constructed the hull’'s edges becomesthectural members and its vertices the
joints. This avoids many of the problems experiénegthe previous approach, which suffers

when restrictive constraints such as the requirénoemaintain 1/8 symmetry are removed.
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1 Introduction

1.1Ai

The aim of this work is to investigate how someilcangineering design problems, in

particular structures, can be represented in ewolaty algorithms. To achieve this aim, the
thesis will consider two types of structural despyoblem: buildings and domes, both will be
investigated by reviewing existing work, proposagew solution (including a representation
with associated evolutionary operators) and progidan illustrative example to assess
performance. However it should be noted that edapter is self contained and should be
considered as such. The only link between thernasthe same methodology was applied to
both.

Conceptual design is a particularly pertinent dcops an efficient representation is
essential in effectively harnessing the search appaf evolutionary algorithms in decision
support systems for conceptual design. At the piteisae, conceptual design is considered to
be one of the most difficult challenges facing piseg engineers. This is because the lack of
information limits the effectiveness of proceduiethniques to assist more junior designers.

Therefore only senior engineers undertake this vagrihey have the necessary experience.
1.2 Objectives

This work has two main objectives:

e Investigate existing and develop new knowledgeoftitogonal building layout design.

* Investigate existing and develop new knowledgegaymetric dome design.

1.3 Arrangement of Thesis

The remaining chapters of this thesis are arraagddllows:
1.3.1 Chapter 2: An overview of evolutionary algorithms

This chapter provides an overview of evolutionalyoathms, a family of algorithms that
search problem domains using biologically inspissgarch operators, and is the type of
algorithm used in this thesis. It starts with tlopit of search and solution spaces before

reviewing several categories of search technigext, biological evolution is discussed
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because evolutionary algorithms are inspired byineatbefore the chapter focuses on the
components of a basic evolutionary algorithm ingigd initialisation, evaluation, evolution
and termination. Finally, the chapter concludeshwé description of the canonical
implementations: evolutionary programming; evolaotioy strategies; genetic algorithms and

genetic programming.

1.3.2 Chapter 3: Representing civil engineering design pmblems in evolutionary

algorithms

Civil engineering design problems are typically eggzhed using traditional techniques i.e.
deterministic algorithms, rather than via stocltaséarch. Evolutionary algorithms are a type
of stochastic search algorithm inspired by natsedection and a number of authors have
proposed them as a design tool. This chapter dissusow solutions to civil engineering
design problems, in particular structures, havenbepresented in evolutionary algorithms
without considering implementation specific issu€se aim of this chapter is to consider

representations used by other researchers.
1.3.3 Chapter 4: Conceptual layout design of orthogonal@mmercial buildings

The aim of this chapter is to investigate exisexg@mples and develop new representation for

orthogonal building layout design.

Conceptual layout design of commercial office Buigs is a non-trivial task because the
numerous variables create a large solution spdceaid designers, several decision support
systems have been developed. However, all thestersy are limited to buildings with

rectangular floor plans.

This chapter presents an evolutionary algorithm leyout design of buildings with
orthogonal boundaries and atria. To achieve tlogigon partitioning techniques are used to
decompose a floor plan into rectangular sectiorlso An order to prevent illegal solutions
being generated, the representation ensures ti@igation and evolutionary operations are
not too disruptive. The number of initial inputssha@lso been reduced, because this work is
aimed at the conceptual design stage. Thereforag@eonly needs to dimension the external
boundary and specify the location of any atria.
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1.3.4 Chapter 5: Conceptual geometric design of ‘geodesiike’ domes

The aim of this chapter is to investigate existamgyl develop new knowledge for geometric

dome design.

Geometric dome design is a non-trivial task begaggery joint and member must be
located on the dome’s external surface and notng®ion the internal void. The only
previous stochastic methodology (Shea and Cagd¥,)tickles this by creating a 2D truss
that is subsequently projected onto a predefinedeclisurface. Therefore the solution is a 3D
object, but the search is conducted in 2D. Whils grojection’ or 2.5D technique reduces
the number of problem variables, by constrainirgttiird dimension to be dependent on the
planar layout, it also excludes a dome’s two magtdrtant variables from the search: surface
area and enclosed volume. Thus the results, whegialy innovative, are typically sub-
optimal.

This chapter describes a new methodology, usingvatutionary algorithm with string
representation that is capable of designing a ddirextly in 3D using surface area and
enclosed volume as the major search parametersephesentation contains Point3D objects
that encapsulate support and joint positions, whrehsubsequently converted into a dome by
constructing its convex hull. Once constructed, thdl's edges become the structural
members and its vertices the joints. Finally, dtrcad analysis is used to determine
performance within the context of user-defined ¢@nsts. This technique avoids many of the
problems experienced by the previous approachstiféers when restrictive constraints such

as the requirement to maintain #/8ymmetry are removed.
1.3.5 Chapter 6: Summary and future work

This chapter will consider the key findings, ofstihesis, in relation to its original objectives
and discuss possible directions for future work.
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2 An Overview of Evolutionary Algorithms

2.1 Abstract

This chapter provides an overview of evolutiondgoathms. Evolutionary algorithms are a
family of algorithms that search problem domainsgbiologically inspired search operators
and are the type of algorithm used in this theBige chapter starts with the topic of search
and solution spaces before reviewing several catsyof search techniques. Next, biological
evolution is discussed, because evolutionary algos are inspired by nature, before the
chapter focuses on the components of a basic éwmaduy algorithm including: initialisation,
evaluation, evolution and termination. Finally, dtepter concludes with a description of the
canonical implementations: evolutionary programmirgyolutionary strategies; genetic
algorithms and genetic programming.

Keywords: search, evolutionary algorithms, evolutionary pamgming, evolutionary

strategies, genetic algorithms, genetic programming
2.2 Introduction

For every problem, a range of possible solutionstrexist: with some solutions being more
feasible than others. The problem’s ‘solution spéace Figure2-1a) is constructed

by incorporating a notional distance between soh#ti To solve the problem, the solution
space is ‘searched’ to locate the optimal valué®noequivalent to finding a maxima or

minima.

_,.._'__"; . **:“‘;ﬁ"‘ii{{iu- "
et Loy
S R :
iwthg\t\\m%_“

T

o1 ey
(a) Sunple solution space {b) Complex solution space

Figure 2-1 Example simple and complex solution spaces

Unfortunately, solution spaces are seldom sinfpde.most non-trivial problems they are

ill defined (with the search process often genegahew points) and contain many local or
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false optima ( Figur@-1b). These complications are additional to tisees of where
to start the search, how to conduct it and strafegyimiting the potential for pre-mature

convergence. Consequently, search is generallydrivial task.

Primarily two types of search have been developgdchastic and deterministic,
although a third type ‘hybrid’ incorporating stostia and deterministic elements (Fig@)

has also been developed.

Stochastic

| Caleulus Based | | Enuerative | [ Meretic Algorithes | | Blind | Chuided

(G | [ndner]  [moa]  [Goaa]
[

Dieterrnimnistic

; Tabu || Evolutio Simulated
Back Branch Diymarnic Jnnary .
Tracking And Pro wing Search ‘ bleorithems || Annealing
Bound L
Creedy || Hewton | Fionacei Evolutionary || Evolutionary Genetic (Genetic
Rhaphson Programming Strategies blgorithons || Progrararming

Figure 2-2 Indicative hierarchy of search (adapted from Gldberg, 1989)

Deterministic techniques are either calculus basegdiring the problem to be modelled
using derivatives (which may or may not be pos$jlde enumerative, which can suffer from
the ‘curse of dimensionality’ if the solution spasdarge. However, if the solution space is a
continuous smooth surface or well understood, ardenistic technique is often the most
appropriate approach. Another disadvantage of métestic algorithms is that they are often
not robust enough to cope with ‘noisy’ data (asnfibin ‘real world’ problems) and domain
knowledge maybe required to formulate and solveptibblem, so this approach is less useful
for conceptual design.

Stochastic algorithms, unlike deterministic tecju@s, are built on randomness, which
improves the search for global optima by sampliamgdom locations in the solution space.
However, while this creates a more ‘robust’ aldonitcapable of handling noisy data, it does
mean that stochastic search cannot guaranteedt¢hienglobal optimum solution.

All search techniques must distinguish betweemll@nd global optima. This issue is
particularly pertinent if some variables are disgreas discrete variables create a

discontinuous and disjointed solution space. A #memedy for coping with local optima is
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to re-run the algorithm from another location amumpare results, this is particularly

important when using deterministic algorithms.

This work uses stochastic search algorithms becstngctural design uses a combination
of related, discrete and continuous variables ¢hatcreate extremely large, disjointed search

spaces.

2.3Why have so many search algorithms been developed?

Numerous search algorithms have been developedusedheir performance is problem
dependant. This is because the algorithm’s assongtimaybe incorrect or utilise a
methodology that is inefficient for the given sabmt domain. Consequently, there is no
search panacea. This is emphasised by the ‘ndured theorems (NFL)’, which consider
the utility of search algorithms a priori, withoatssumptions and from mathematical
principles alone. The NFL theorems concliideany elevated performance over one class of
problems is exactly paid for in performance oveother class.”. (Wolpert and Macready,
1997). However, in practise, search maybe impravedncorporating additional domain
specific information called ‘heuristics’. For exalmpconsider the ‘travelling salesman
problem™. The solution space is well known therefore amheirgistic technique incorporating
heuristics may out perform another more generalchststic technique. However if the
problem’s parameters are changed, the algorithntacong heuristics may perform worse
because the heuristics are invalid.

2.4 Biological inspiration for algorithms

Mankind has always been fascinated by nature’sitghib create solutions to complex
problem and this led to the development of a fanoifyalgorithms based on evolution,
evolutionary algorithms. However, it is importaot mote that evolutionary algorithms are
only inspired by nature, not a duplicate. For exi@mp nature, alleles can be dominant or
recessive. However this feature is not often inetldn EAs. For a more comprehensive

description of EAs se2.5 Evolutionary Algorithms.

! The ‘travelling salesman problem’ is a deceptivgityple combinatorial problem: “A salesman speridgime
visiting a number of cities. During one trip, hesitg each city only once and finishes where hdestatn what

order should he visit the cities to minimise thekalistance travelled?”
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The following sub-sections contain a brief disemssof two important issues in
biological evolution, from the perspective of sémrarwin’s theory of natural selection and

phenotype-genotype duality.
2.4.1 Darwin’s theory of natural selection

Darwin’s theory of natural selection (Darwin, 185®pposes that organisms evolve over time
due to environmental factors that favour certaaitdr Roberts et al. (1993) summarised it into

four propositions and two conclusions:

» Proposition 1 individuals are different.

* Proposition 2 offspring generally resemble their parents.

» Proposition 3 not every offspring can survive to reproduce.

* Proposition 4 fitter individuals are more likely to survive.

e Conclusion 1 individuals that survive and reproduce, pass ontheir offspring
characteristics that have enabled them to succeed.

* Conclusion 2 in time, a group of individuals that once belotige the same species may
give rise to two different groups that are suffintlg distinct to belong to separate

species.

Unfortunately ‘The Origin of the Species’ is ofteeduced to a single phrase ‘survival of
the fittest’ but this is misleading, as an indivédla mortality is a relatively trivial issue in
evolutionary terms. Fitness, in evolutionary ternegers to the degree of adaptation shown by
an individual to its environment. The most adaptetividuals will have the best fithess and
therefore pass on these beneficial characteristi¢geir offspring. The best individuals will
often have many adaptations so it not necessdrdystrongest, fastest or biggest that will

prevail.
Ultimately, if a species is to be successful apydation must balance two issues:

» Selection:which reduces diversity (propositions 3,4 and dasion 1).

* Reproduction:which introduces variation (propositions 1,2 andausion 2).
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Managing this conflict via populations represemt® of biological evolution’s greatest
strengths, as it encourages trial and error byudaxg advantageous characteristics within a

species.
2.4.2 Phenotype-genotype duality

Every cell in a living organism incorporates helisaands of deoxyribonucleic acid (DNA)
that encodes its phenotype (features and functidnjene is a short section of DNA that
contains the instructions for a single feature eyg colour. However, each gene may have
several values e.g. eye colour = blue/ green/ byamd these values are called alleles. An
organism’s physical characteristics (its phenotygre) determined by the DNA sequence of
its genes: its genotype. Therefore, every orgammambe viewed from either a genotypic or

phenotypic perspective: with the genotype encothegohenotype.

2.5 Evolutionary Algorithms

Although there are many different types of evolntiy algorithm (EA), ‘..the common
idea...is to evolve a population of candidate sohdito a given problem, by using search
operations inspired by biology’.(Dumitrescu et al, 2000). This section introdudes lbasic

EA by considering every major component.
2.5.1 Why use evolutionary algorithms?

Evolutionary algorithms are very good at discovgrdiverse solutions to problems but are
not pure optimisation algorithms (De Jong, 1998)spite of this they have made important
contributions to this field especially with regaadproblems involving mixed solution spaces
(containing discrete and continuous variables) ianghulti-objective optimisation. However,

they tend to be out-performed in combinatorial @edtinuous parametric optimisation by
more traditional techniques (Eiben and Schoena2é)2). Nevertheless, EAs were
considered the most appropriate technique for thk because of the following

characteristics:

* EAs can investigate large numbers of inter-relgi@@émeters.

* EAs are adept at locating global optima even ioahtinuous solution spaces.
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« EAs are robuét

It should also be noted that this work is focusedusing EAs for design rather than
optimisation and :..one should distinguish design problems where tia ig to find at least
one very good solution once, from day-to-day opttndn where the goal is to consistently
find a good solution for different inputs. In thesthn context, a high standard deviation is
desirable provided the average result is not tod fExploration). In the optimisation context,
a good average and a small deviation are mandat@yploitation)..” (Eiben and
Schoenauer, 2002).

2.5.2 Representation

Evolutionary algorithms are problem solvers thatate solutions by applying search
operators based on biological evolution. Unfortehat most problems are not instantly
amenable to biological search operators. Theretbeepotential solutions must be converted
to a form that can be used by the EA. This involdegeloping a ‘representation’. Although
there is some ambiguity in literature about whatstibutes a representation, in this thesis
‘representation’ refers to the structure and enupdof a solution so that it can be

incorporated into an EA.

The primary purpose of a representation is to ednevery possible solution to a form
that allows it to be included in the search. It WHoalso be a compromise between
computational effort and problem abstraction e.gcinme code is computationally efficient

but how can it be used to represent a house?

Many standard representations exist e.g. striags, this determines how the EA is
applied to the problem, as some components of gark representation dependent. Back et
al. (1997) describe two approaches to developingpaesentation: . .the first is to choose
one of the standard algorithms and to design a dexp function according to the
requirements of the algorithm. The second suggkestgyning the representation as close as
possible to the characteristics of the phenotypeoat avoiding the need for a decoding
function..”. Many researchers use the first method but tloersd generates a more efficient

representation.

2 The balance between efficiency and efficacy ite more robust the algorithm, the greater the rasfge

problems it can be applied to (Coley, 2003).
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2.5.3 Representation space

Living organisms exhibit a phenotype-genotype dydlecause an organism’s characteristics
are encoded in its DNA. In the same way, individtialithin an EA also exhibit duality
because they can be viewed from the perspectiibeadt representation or ‘natural’ form.
Therefore when a problem is solved by an EA, ittaasproblem domains, the solution space
and the representation space (Figdr8). The solution space contains solutions inrthei

natural form while the representation space costaatutions encoded via the representation.

/—Enccude ﬂ\

Fepresentation
Bpace

mAolution
Space

I\— Decode —/

Figure 2-3 Solution and representation spaces

When solving most non-trivial problems, constramandling is required because not
every combination of variables is valid. For exammmh structural engineering constraints are
often applied to structural members, indicating pleemissible maximum stress. Therefore,
constraints define the boundaries of the feasibfgon. Conceptually this is equivalent to
dividing the representation space into islandseaifsible representations, surrounded by an

infeasible region (Figurg-4).

% EAs terminology has borrowed heavily from biolody potential solution in an EA can be referred soam

individual.
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Infeasible Region

Feasible
Region

Feasible
Fegion

Figure 2-4 Representation space with feasible and infeasghregions

A fundamental feature of all EAs is that they @peron solutions encoded via the
representation rather than directly on the solutigw first glance this may seem a
disadvantage as it adds additional complexity.dality, by converting solutions to a more
abstract form, via the representation, the EA pexrtiie use of standardised evolutionary

operators.

It should be noted that while designing a represgem is a vital stage in the development
of an EA once complete, the representation (ancitged operators) is hidden from the user

allowing them to concentrate on analysis of theltegBorkowski and Grabska, 1995 ).

To convert between the two problem domains, a magpmust be applied. However,

pleiotrophy and polygenymean there are potentially five types of mappigre2-5):

» lllegal: a representation decodes to form a nonsensitasicgn For example, if solutions
are mathematical equations, =y x +/ 3 would legadl.

* Infeasible in constrained problems, or those with discretariables, not every
combination of variables results in a feasible sotu Therefore the representation space is

larger than the solution space, as it containsasifde individuals. It should be noted that

* The effect that a single gene may simultaneouségiseveral phenotypic traits (Fogel, 1995).
® The effect that a single phenotypic characteri@tican individual) maybe determined by the simmétaus

interaction of many genes (Fogel, 1995).
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infeasible solutions are different from illegal wtbns: as infeasible solutions are invalid
due to the constraints rather than being nonsdrmigaain wrong.

» 1-to-n: one representation decodes to farreolutions. Obviously this is undesirable as a
single representation can have multiple fithessesl

* n-to-1. n solutions decode to form a single solution, whiles scenario is applicable in
practice it does enlarge the representation spateasing search difficulty.

* 1-to-1 one representation decodes to form a singleisaluThis is the ideal scenario as

the solution and representation spaces are idéntis&e.

[legzal

"% Solution Infeasible Representation

Space

Figure 2-5 Mappings from representation to solution space

2.6 The basic evolutionary algorithm

This section describes the main components of afugenary algorithm, although please
note this is a high-level summary avoiding impletaéion specific issues. The following

sections contain more detailed descriptions otHrnical implementations.

The evolutionary search process commences oncebtem is identified and a suitable
representation is developed. For optimisation @naisl, the EA attempts to locate and return a
single optimum solution while for design problente tEA returns a range of possible
solutions that are likely to be sub-optimal. Thightights the need to determine the EA’s
aims and objectives from the outset so it can Ipeagguiately implemented. In this thesis, the
onus was on design and thus every EA tried to meturange of potentially sub-optimal

solutions (an exploration process).

-12 -
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2.6.1 Overview

The basic EA (Figur@-6) starts by initialising the first populatidof solutions. Initialisation
creates individuals from a random set of variabbesed on the representation (although the
initial population can be ‘seeded’ with known sadus but this biases the search). The
population is then evaluated and assigned a ‘&ressed on how suitable it is, in the context
of the problem. The algorithm then checks whether termination criterion has been met
(this usually considers whether a solution of appete fithess has been evolved or if a
predetermined number of generations has been dedgr# the algorithm terminates, it will

return the best individual(s) evolved so far andaf, perform the evolutionary routine.

The next generation is evolved from the currengytation via selection. Selection picks
individuals from the current population (based entain criteria) and allows them to breed
and pass on their genetic material (to the nexéggion). However because selection favours

fitter individuals, those with more advantageouarebteristics are more likely to be picked.

Fuitialisati

. .

Estm Best
Sobation

(s

Figure 2-6 Schematic of a basic evolutionary algorithm

The following description of the basic evolutiopalgorithm will indicate an advantage
of this search technique, most but not all of thethudology is problem independent.

Therefore, search can be conducted before a fulénstanding of the problem is obtained.

® A group of potential solutions maintained by the E

-13 -



David Shaw Geometric Representations forc€ptual Design using Evolutionary Algorithms

This can be important for complex problems: in f&sults generated by the EA may actually

provide some insight.
2.6.2 Population- Representation independent component

EAs maintain at least one population of candidalat®ns (this is one of the features that
separates them from other search techniques) aith mdividual denoting a location in the
representation space. However as in nature, eggblgimon must strike a balance between
specialisation and variation. Population size isuadamental variable in EA’s as large
populations accomplish a more exhaustive searclicfwiaybe unnecessary) but at greater
computational expense than a smaller populationcfwimay not cover a sufficient set of the

solution space).
2.6.3 Fitness function- Representation independent comp@mt

Evolutionary algorithms are domain independent |gnobsolvers i.e. the same algorithm can
design buildings and solve scheduling problems, déath problem requires a different

solution. Therefore, how does the EA search foibeast?

As with biological evolution, individuals withimaEA are required to exhibit measurable
phenotypic differences. In EAs, individuals thee assigned a single, numerical value that
reflects how ‘fit" or good it is (as a solution).ntbrtunately, assigning a single numerical
fitness to an individual can be problematical egdlcin multi-objective optimisation. In this
instance, a multi-objective or multi-criteria aldbm incorporating Pareto based techniques
(Pareto, 1896) can be used.

Fitness values are determined by the ‘objectivection’, which contains user-defined
information about the solution space. However,gbarch for the solution to all but the most
non-trivial problems must consider constraints. €@int handling may be required due to
problem related issues or simply because as theiteumary operators only manipulate the
genotype while the objective function only consgdéie phenotype, an evolved solution
maybe invalid and occupy a point in the infeasibdgion. Several constraint-handling

techniques exist (Michaelewicz, 1999):
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Rejection individuals that violate constraints are deletéatbusing the search on the
feasible region. However, the loss of potentiauable information can hamper search
especially in disjointed solution spaces and léaggemature convergence.

Reparation individuals that violate the constraints are nfiedi to meet the constraints.
Unfortunately repairing individuals can be excepélly complex (or impossible) and thus
hinder the search. Reparation also forces solutiorconform to a preconceived notion,
which might not be appropriate.

Prevention evolutionary operators are designed to prevest firmation of illegal
solutions. This can be a practical method for agalith constraints but can also produce
conservative evolutionary operators that may slwsvsearch process.

Penalisation individuals that violate the constraints haveirtligness reduced. Penalty
functions are especially suited to disjointed solutspaces or scenarios where the best
solutions lie close to the feasible-infeasible laany. This is often the case in design,

where the optimum is located on the limit of wisatdasible.

Once an individual has been assessed by the bgefltinction and any constraint

violations considered, its fithess can be deterthifeveral types of fitness measure may be
used (Goldberg, 1989):

Raw fitness objective function adjusted for constraint viadats (if appropriate).

Adjusted fitness an amended raw fitness, where a lower fithesadigantageous. The
fittest individual has a fitness of O.

Standardised fithessan amended adjusted fitness, limited to the réngel.

Scaling although not strictly a fithess measure, scaitngsed to mitigate the effect of a
few highly fit individuals (in early generationsy Iscaling down the extraordinary and
scaling up the rest, or in later generations whea fithess variance tends to fall,

exaggerating phenotypic differences between indiisl

2.6.4 Selection- Representation independent component

Selection is used to choose which individuals dimved to breed and pass on their genetic

material to the next generation. Competition baseléction is key to EAs as it drives the

search and is solely based upon an individualrefis. However as in nature, selection does
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not push the population towards a predeterminetilggamerely favours phenotypic changes

that have occurred randomly.

Many selection techniques have been developedhentbliowing list indicates some of

the most widely used (this list is not exhaustive):

Fitness proportionate Compares the raw fitness of the individual agaihe mean, raw
fithess of the population (Holland, 1975). Therefaan individual that is three times fitter
than average, will be selected three times morenofUnfortunately this has two
problems:

- Premature convergencea few sub-optimal but highly fit individuals pesd in the
current population will dominate the next genematiy virtue of their large fitness,
dramatically reducing the population’s genetic afoin.

- Slow convergenceif the population only contains individuals ofnslar fitness,
selection pressure will be low, therefore the athar degenerates to random search.

Stochastic sampling with replacement (‘Roulette Vi A predetermined number of

individuals are randomly selected from the popalatand placed on a ‘roulette wheel’:

with each individual’'s segment proportional tofitaess (Baker, 1985). Once the wheel is

‘spun’, the individual on the winning segment sielc

Stochastic tournamentA predetermined number of individuals are randoselected

from the population and ranked according to fitnesgh the fittest individual being

chosen. As the tournament size is increased, gmle@ressure is intensified as it
magnifies the chance of a fit individual being sétdd.

Ranking: The population is ranked, based on raw fitnest) the fittest at position O.

Although the actual mapping from rank position étestion probability is arbitrary, in all

cases individuals are selected by their rank (a®t fitness). This preserves selection

pressure but reduces the effect of dominant indadsl

Elitism: Ensures that the best member(s) from the lastrgéion are copied into the next.

This can be useful because fitness proportiondéetsan does not guarantee the survival

of any individual (Coley, 2003). Elitism is not alsction technique in its own right but

can be used in conjunction with others and whilmdintains the best solutions, it does

increase the likelihood of premature convergence.
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2.7 Termination Criterion- Representation independent ©®mponent

An EA should terminate once the desired solutioa been obtained. However stochastic
algorithms are not guaranteed to locate the glop&mum solution and in many problems,
including design, the form of the optimum solutismot known. Therefore problem specific
criteria cannot be specified. In this instance,tdrenination criterion stops the algorithm after
a fixed effort has been expended e.g. a predetednmumber of generations have been

evolved or a maximum number of CPU cycles.

2.8 Initialisation- Representation dependent component

Ideally, initialisation should create a well-distnted spread of individuals in the solution
space. Unfortunately in practise this is hard tbiee, especially if the solution space is ill

defined. Therefore, individuals are usually randpodnstructed from a set of variables.

The initial population often has a low fitnesst lim most important feature is diversity.
‘Doping’ can be used to include good solutions itite population, based on the user’s
experience, but this can create bias (Dumitreseil,e2000).

2.9 Evolutionary operators- Representation dependent goponent

Search operators, inspired by biology, are a furedaah feature of all EAs. Evolutionary
operators alter an individual's genotype (as inldgyg) and enable EAs to be problem
independent. EAs use a mixture of the followingeéhoperators (some implementations may

even omit an operator altogether):

* Reproduction copies an individual unaltered into the next gatien.

* Recombination two individuals (parents) are selected and exgbagenetic information
to produce two new individuals (offspring). Deperglion the operator, offspring are
either inserted directly into the next generatiorngerted after some additional selection.
Recombination is referred to as a conservationatjger as it “..is used to exploit and
consolidate what has already been obtained by titBviduals in the population?..
(Dumitrescu et al., 2000).

* Mutation: a single individual is selected and altered bigtiiey and randomly rebuilding

a section of its genetic information. Mutation &erred to as an ‘innovation’ operation
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because it “.ensures that new aspects of the problem are takém account.’.
(Dumitrescu et al., 2000).

2.10Exploration vs. Exploitation

By employing a competition based selection pro&ss encourage fitter individuals to pass
on their genetic material, which focuses the seégploitation). However, these individuals
may not lie in the most productive region. By castr evolution injects new genetic material
into the population, which encourages variation #ng the algorithm to consider another
area of the solution space (exploration). EAs martag conflict by allowing the user to set

the probability of reproduction, recombination andtation during a run.

2.11 Implementing Evolutionary Algorithms

The previous section introduced the basic EA witlrcmnsidering specifics. This will discuss
the canonical forms of the principle implementasioin more detail: Evolutionary
Programming; Evolutionary Strategies; Genetic Althons; Genetic Programming (for a
more comprehensive history of EA development s$emel (1998)). However, these
implementations should not be considered as desdret rather as the most commonly used
forms of evolutionary algorithm (each focusing offedent aspects of the evolutionary based
search). In fact the experimental chapters wilyaefer to evolutionary algorithms, as using
more explicit descriptions encourages the readapfby their preconceived ideas rather than
focusing on what is being described.

Evolutionary search can be considered from twepgestives, top-down and bottom-up
(Fogel, 1995):

* Top-down emphasises the phenotypic behaviour of indivsl{golutionary Strategies)
or populations (Evolutionary Programming).
* Bottom-up emphasises the genotypic mechanisms (Geneticrifigts and Genetic

Programming) of evolution.

2.11.1 Evolutionary Programming

Developed by Fogel (1962) as an attempt to credificial intelligence that can predict

future events based on historical information, Htiohary Programming (EP) is used in
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continuous parameter optimisation problems. As @resentation, EP uses ‘Finite State
Machines (FSM)' (Figure2-7) that transforms an input sequence into anutuspquence.

FSM are composed of at least one state, one or staie transitions (these specify the FSM
response to an input, based on its current stat)have a predetermined input and output

alphabet.

During a run, a population of FSM receive an idaitinput sequence and process it.
Fitness is assigned based on the accuracy of #8p®mmee, with a more accurate response
receiving a higher fitness. Individuals are thentated (EP only incorporates mutation) to
produce a single offspring. There are five mutatbperators: mutate an output; mutate a state
transition; insert a new state; delete an exissiiage; change the initial state. After mutation,
the new offspring are evaluated against the inmijplit sequence. If the offspring is fitter than
its parent, it survives, otherwise it is deleted &#me parent survives. This process continues

until the termination criterion is met.

A classic EP task is to predict the next charaicter sequence, when given the last one.
For example, consider the response of the three-stachine shown in (Figu27) to the

following series of inputs: 01110.
Inpntt &kphabet: {0, 1}

Cmtpat Alphabet: {o, B, v}
0

;
| —]
(2

Inpat Sywbol (0 )1 |1 |1 (0
Present State C|B|C A A
0 Hext State B|C|& | AR
P L Outpit Syrbal | B | @ | v | B | B
¥
Exarnple EP Finite State iachine Exarnple Folv resporse

Figure 2-7 Example EP representation (adapted from Foge2000)
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2.11.2 Evolutionary Strategies

Developed by Rechenberg and Schwefel in 1964 ([Beyed Schwefel 2002),
Evolutionary Strategies (ES) are a continuous patamoptimisation tool. To encode
potential solutions, ES use a representation basea pair of real-valued vectovs(Figure
2-8): the first vectox encodes a point in the search space while thendecds a vector of

standard deviations.

v={xa) = ((109,87),(1.0,1.07)

Figure 2-8 Example ES representation

Although created independently, ES shares manylasities with EP including only
using mutation as an evolutionary operator. In Hfaton, a vector randomly selected from
a Gaussian or Normal distribution with a mean o&r@l variance ot can mutate each
component of the representation. Therefore, theevafcs controls the manner in which the
algorithm can search the solution space. Origindilg value ot was set to produce a fitter
offspring at a ratio of 1:5 (Rechenberg, 1973). §this is often called the ‘1/5 success rule’.
However, Schwefel (1975) proposed ‘self adaptasimategies’ that vary mutation parameters

(includingo) during a run.

Several mutation-selection techniques have beevisete (all ES use the same
representation and mutation methodology) that deetified by a notation system unique to

ES literature:

e (1+1). a single individual is present in the populatiaich mutates to produce a single
offspring with only the fittest solution survivirig form the next generation.

e (ut+2): n individuals mutate to produceoffspring (this produces a population larger than
the original). If the offspring is fitter than ifsarent it survives, else it is deleted and the
parent survives.

* (u, 7). a population containing individuals evolves to produceoffspring. But because
an individual may evolve more than one offspring>(u), the next generation is only
selected from the offspring. Therefore, an indiadoan only survive for a maximum of

one generation (irrespective of fithess).
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Although these mutation-selection strategies héeen extensively studied using
empirical experiments, ES retains a tendency toveae on local optima: this is confirmed
by the only theoretical model of ES mutation (Rydhgl2001) which suggests that the ‘1/5

success rule’ cannot guarantee convergence dunmgimical optimisation.
2.11.3 Genetic Algorithms

Holland (1975) is considered to have developed Gewdgorithms (GA) in 1975 with the
publication of his seminal work. However, it is ackledged that research had been
conducted prior to this. Since then GAs have bectmemost widely known EA and are
generally used as combinatorial optimisers althahghissue is contentious (De Jong, 1993)

because for design problems (as in this thesig)dhe often used as search algorithms.

(Ot t]e] - 20 1 ]0]

Figure 2-9 Example GA string representation

As a representation, the canonical GA uses a {ieegth, binary string (Figur@-9)
although other encoding are permitted includinggets and real numbers. More advanced
implementations even allow variable gene lengthheDtrepresentations including voxels
(Griffiths and Miles, 2004) and graphs (Borkowskiat, 2002) have also been developed.
Another characteristic of the GA is their stochaselection techniques and extensive use of
recombination and mutation operators inspired heges.

2.11.4 Genetic Programming

Developed by Koza (1992), the Genetic Programmi@®)( differs from the other EA
implementations because it is pre-dominantly usedrfachine learning. GP is highly suited
to this because its canonical tree representatiarbe constructed from ‘LISP S-Expressions’
(Figure2-10), which are computer programmes. Thereforé3Rdrees can be used to evolve
computer programmes and thus solve one of the foadtals of computing: how can you
make computers code themselves? Other represerstdtased on graphs or linear structures
have also been developed.
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Figure 2-10 Example GP tree representation

The mechanics of the GP closely related to thea@d is even considered by some to be
‘a genetic algorithm using a tree based repredgentaHowever unlike the GA, the GP tends
to either ignore the mutation operator or usefreguently. Evolved solutions are also ‘active
structures’ that can be executed without post-siog, while GA’s typically operate on

coded strings that require post-processing i.esipastructures.

Within civil engineering the GP is a relativelywedechnique. Table2-1 lists most
published applications of the genetic programmimgivil engineering. In general the GP is
used for modelling purposes.

Table 2-1 Applications of genetic programming in civil egineering

Application Author Year | Details

Shear strength Ashour et al 2003 | Estimation of the shear strengthdeep RC
prediction of deep RC beams, subjected to two point loads, from 141
beams published experimental results.

Modelling of Hong and 2003 | Modelling the dynamic performance of municipal
wastewater treatment | Bhamidimarri activated sludge wastewater treatment plants.
plants

Detection of traffic Roberts and Howard| 2002  Detection of accidents otorways in low flow,
accidents high-speed conditions i.e. late at night based on

three years of traffic data whilst producing a near
zero false alarm rate.

Flow through a urban | Dorado et al 2002| Construction of sewage networkeho order to

basin calculate the risk posed by rain to the basin and
thus providing prior warning of flooding ar
subsidence.

Journey time prediction Howard and Roberts 2002 eé&asting motorway journey times.

Estimation of design Ishino and Jin 2002| Using the GP to automaticallyingate design

intent intent based on operational and product-specific
information monitored throughout the design
process.

Modelling of water Babovic et al 2002 | In order to determine the riéla pipe burst, a GFP

supply assets is evolved to ‘data mine’ a database containing

information about historic pipe bursts.
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Identification of crack | Kojima et al. 2001 | Detection of cracks inside hwutdr of heat
profiles exchanger tubes in a nuclear power plant’s steam
generator via analysis of data measured |via
guantitative non-destructive testing.

Modelling rainfall Whigham and 2001 | Discovery of rainfall-runoff relationships two
runoff Crapper vastly different catchments.

Improving engineering | Watson and Parmee 1998 Symbolic regression and eBooinduction tg
design models model engineering fluid dynamics systems.
Prediction of long-term| Lee et al 1997 | Symbolic regression via genetic @nmgning to
electric power demand predict the long-term electric demand of Korea

(based on training data from 1961 to 1980).

Systems identification Watson and Parmee 1996  Slhimbegression to calibrate Rolls Royce
preliminary design gas turbine cooling systems

software.
Traffic light control Montana and 1996 | Develop an adaptive control system for a nekwo
laws Czerwinski of traffic signals depending on variations in tiaff
flow.
Identification of crack | Kdppen and 1996 | Agent generation to detect and track darkoregji
profiles Nickolay that could be cracks in greyscale images| of

textured surfaces.

2.12Disadvantages of Evolutionary Algorithms

This chapter has, thus far, focused on the posisispects of evolutionary algorithms.
However as previously stated, there is no searctagem and algorithm performance is

problem dependent. This section discusses someajelmadvantages associated with EAs.

A major disadvantage of evolutionary algorithmghe amount of computational effort
expended when solving a problem because rather shbsing the problem just once, it
evaluates every individual (in every population)ledst once per generation. In addition,
while the evolutionary operators are computatignatlvial e.g. swapping elements, the
fitness function tends to be more complex and tarerates a large overhead. For example,
Grierson (1993) estimates that 95% of a GA’s comfpatal effort is devoted to calculating
fitness. However, this figure should be considemedicative, as the actual value (of
computational effort) is problem dependent. To ¢euthis, one solution is to use a simple

fitness function in early generations, when ovdraikess is low.

Humans prefer to organise their conscious thinking parsimonious way for example in
mathematics it is common practice to simplify equad. However fitness, not parsimony is
the dominant factor in evolutionary algorithms. Tdfere if a solution performs adequately,
there is no fitness advantage and thus no seleptiessure to improve it. This problem is
particularly prevalent in the GP, as its represema have no fixed shape or size.
Unfortunately, this means that solutions genernatyease in size during a run: this is called
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‘programme bloat’. For example, (Jefferson et 8DA) suggest that on average a GP tree will
grow at one level per generation. A bloated sotutiall contain large sections of inactive
code (Bhattacharya and Nath, 2001), which can stmmvergence and increase the
computational load. Bloat can also result in thelavon of solutions that while accurate,
provide no new insight into the problem becauséhefr complexity (Keijzer and Babovic,
1999).

2.13Conclusions

Evolutionary algorithms are domain independent j@obsolvers that utilise search operators
inspired by biological evolution. Historically foumplementations have been developed,
which incorporate different representations and wsed for different tasks, evolutionary
programming is typically used to predict future aarhes based on historical information,
evolutionary strategies are used as continuous npest optimisation tools, genetic
algorithms can either be used for discrete paranmgiBmisation or as a search tool while

genetic programming is often used in machine legrni

This thesis will use EAs because they are robagtigh to handle issues related to civil
engineering design including large numbers of inédmted parameters, discrete and

continuous variables creating discontinuous sesjpelces.
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3 Representing Civil Engineering Design Problems in ¥olutionary
Algorithms

3.1 Abstract

Civil engineering design problems are typically eggzhed using traditional techniques i.e.
deterministic algorithms, rather than via stocltaséarch. Evolutionary algorithms are a type
of stochastic search algorithm inspired by natsedection and a number of authors have
proposed them as a design tool. This chapter dissusow solutions to civil engineering
design problems, in particular structures, can d&grasented in evolutionary algorithms

without considering implementation specific issues.

Keywords: evolutionary algorithms, civil engineering, design

3.2 Introduction

This section considers the topic of engineeringgieslhe following section discusses how

computers can be utilized to aid the design prospssifically via decision support systems.

Design is a highly complex process that has beeestigated via numerous theoretical
and empiricabktudies e.g. Lawson, 1997: Dym, 1994: Pahl andzB&R96. In spite of this, a
definitive design methodology remains elusive. Tisidoecause “.design is not a simple
hierarchical process where the designer is presemtéh a set of requirements and works
steadily through a decomposition strategy, movirgmf abstract concepts to the final
concrete product. The design problem is ill-defimedl changes as the designer explores it
through solutions and partial solutions..(Hudson and Parmee, 1995). However design
problems, regardless of discipline, are generallyesl iteratively: by constantly proposing
and refining solutions rather than by a purely segial methodology, but it should be noted
that design does not iterate around a single soluiut rather around a range of acceptable
solutions (particularly in multi-disciplinary prajes). Finally, it must be acknowledged that as
the design progresses every partial solution wiluence the final solution. Therefore, each
partial solution generatesvaves of consequenégdloran and Carroll, 1996), so decisions
made during the early stages influence the lategest (of the design). Even without a
definitive model of the design process, it is gafigraccepted that any design involves the
following stages, whether a prescriptive (Finged &mxon, 1989) or descriptive (Dym, 1994)

methodology is used:
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e Conceptual designhaving determined a statement of need, the mgsbriiant factor in
conceptual design is the consideration of alteveatiwhile developing a working
solution (phrased at a high level).

Embodiment design:“...the part of the design process in which, startingnf the
working structure or concept of a technical projetie design is developed...to the point
where subsequent detail design can lead directhprmduction..” (Pahl and Bietz,
1996).

» Detailed design:the final stage where the embodied design is deeel. This stage is
almost procedural in nature and many algorithm®hmeen created to aid designers.

This thesis will only consider the conceptual dasstage because embodiment and
detailed design have been extensively studied awd saited to classical/ procedural
approaches. Conceptual design is characterisethéoyatk of information available to the

designer however evolutionary algorithms are adépearching such solution spaces.
3.2.1 Characteristics of civil engineering design

Civil engineering design problems generally invollke construction of bespoke artefacts, as
conditions are rarely identical on different prageddowever, traditionally designers typically

start by looking at existing solutions of similarofects and adapting them to the current
specification. So, while the solution is generaliyque it is often based on a previous design

and so exhibits common characteristics.

It should be noted that design is different taroation: optimisation generally involves
manipulating defined variables to achieve an ogtiseéution; however in design, especially
conceptual design, the problem is not fully defirrddhe outset. To solve the problem the
designer proposes and refines solutions that at$med the problem. To highlight these
issues, Hudson and Parmee (1995) suggest thandasiglems contain three issues that are

not present in optimisation:

« Neither the structure of the final solution nor thesign space is fixed.
« The evaluation of concepts is not a simple quantéaomparison.

» Arange of feasible solutions is more importannthasingle ‘optimal’ one.
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However, it is acknowledged that the differentiatiof design and optimisation is not
clear. Rosenmann (1997) suggests a more generath®gis that ‘design’ systems should be

able to generate new solutions from random inttoedditions using minimal heuristics.
3.2.2 Decision Support Systems for Conceptual Design

This section discusses the need for computer b&sgision Support Systems (DSS)
especially for civil engineering conceptual desidgrefore the remainder of the chapter

considers how solutions can be represented udbdf§Sabased on evolutionary algorithms.

Decision Support Systems aim to expand the usedsting skills and experience by
providing a problem solving methodology, which deabthem to make better decisions
(Miles and Moore, 1994). DSS achieve this by primgdhe following functionality (Turban,
1988):

» Allowing designers to quickly and objectively assésw their chosen solution responds
if inputs or assumptions are changed.

* Providing a standardised framework for decision-imgk

* Allowing all interested parties to participate hetdesign process, enabling everyone to
develop a clearer understanding of the problempasdible solutions.

» Cost savings. Although contentious, a well-desigb&$ should focus a design team on
more viable solutions whereby reducing the charfceostly mistakes. It should also
hasten the initial design process and thus recheceverall cost.

Finally, a DSS can improve the final design bypmsing a variety of ideas early in the
design process. This is vital as Ullaman et al {398und that within 45 minutes of starting a
design, designers have settled on their propodeti@oand rather than consider alternatives
they adapt it when problems arise. Therefore, lggsesting solutions without preconceived

ideas and prejudices, a DSS should open the desimneore novel solutions (Sisk, 1999).

3.3 Representation

Evolutionary algorithms require candidate solutiemse evolved using operators based on
biological evolution. Unfortunately most problems dot have solutions that are instantly

amenable to these operators. Therefore they mustrbeerted to a form that is. This involves

developing an appropriate ‘representation’.
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In this work, ‘representation’ refers to the sture and encoding that allows potential
solutions to be included in the search: some excling encoding methodology from the
representation while others include the fitnessctiom. The primary purpose of a
representation is to convert every possible satutina form that allows it to be included in

the search.
The canonical evolutionary algorithms use a varétrepresentations:

» Evolutionary Programming (EP):Finite state machines.
» Evolutionary Strategies (ES)Real-valued vectors.
* Genetic Algorithms (GA)String representation (with binary encoding).

« Genetic Programming (GP)Representation based on tree, graph or lineastatau

The following discussion does not consider impletagon specific issues but focuses on
how structures can be represented (including therddges and disadvantages of every
approach). However it should be noted that mostesgmtations discussed are commonly
associated with either the GA or the GP. This sabbse the EP and the ES are generally used
as continuous parameter optimisation tools and thesefore not particularly suited to
conceptual design. Also this thesis considers liageévolutionary algorithms as GA or GP
etc as potentially misleading because it encouragegle to apply their preconceived ideas
rather than focusing on what is being described.

3.4 String Representation

This section considers string representations.tii®ipurpose of this thesis, ‘strings’ are one-
dimensional structures that do not allow cycles amdgeneral contain a sequence of

parameters.

String representations are often appropriate fmametric problems or when discrete
elements are required. Strings are composed ofriassef variables (in some instances
variable ordering is important). In any case, thenme three ways to encode a string: binary,

integer and real (although a single string mayudelseveral encodings).
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3.4.1 Binary-encoded string

A binary-encoded string (Figurg-1) is often the most natural representation for Baolea
variables. As binary-encoded strings formed th&ain{GA representation used by Holland
(1975), they have become synonymous with GAs. UWahately, this means that they are
often used irrespective of suitability. Howeverytdo provide the most schemfaper bit of

information of any encoding and may be extendecnoode integer and real numbered

variables.

[OJL]e]e] e 2J0 1 ]a]

Figure 3-1 Example binary encoded string representation
Within civil engineering examples of binary encod#ings include (Tabl8-1):

Table 3-1 Binary encoded strings in civil engineering dégn

Application Year Author

Optimum composite laminate design 200d Matous.et al

Reinforced concrete biaxial column design 1998 drafid Southcombe

Building layout 1999 Park and Grierson
Truss design 1995 Shrestha and Ghaboussi

3.4.2 Integer-encoded string

Integer-encoded strings are often the most ap@tpniepresentation for a finite set of
discrete variables or integer based variables (Eigt2). For example, the diameter of steel
reinforcement bars. It should be noted that argentdased variable could be converted to a
binary bit string, which will provide more schemaper bit of information. However,
retaining the integer encoding ensures that twaegenill remain close in both the solution

and representation spaces and reduce the stringralblength.

10]tifes]2 | r.1]2 [1 [30

Figure 3-2 Example integer encoded string representation

" A sub-region of the representation space creagemhdiuding an additional ‘don’t care’ character it the

representation’s encoding (Holland, 1975)
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Within civil engineering examples of integer encd@érings include (Tablg-2).

Table 3-2 Integer encoded string representation examplas civil engineering design

Application Year Author

Structural building design| 2003 Sisk et al.

3.4.3 Real-encoded string

A real-encoded string (Figu®3) is often the most appropriate representaorcdntinuous

or high precision variables e.g. the length ofracdtiral beam. It should be noted that as with
integer variables, a real-based variable coulddmeerted to a binary bit string. However, the
disadvantage of converting to a binary represemais the level of precision must be

specified in advance. Therefore the string can imecexceptionally long if a large quantity of

high precision variables is required.

[52803[I01J115] 1.1 [52.4[99.505.7]

Figure 3-3 Example real encoded string representation
Within civil engineering examples of real encodethgs include (Tabl8-3).

Table 3-3 Example applications of real encoded string repsentation in civil engineering design

Application Year Author

Design of reinforced concrete beams 1997 Coelld. et

3.5Voxel Representation

This section describes ‘voxel representations, ciwhiare often appropriate for shape
discovery problems because they decompose theimolgpace into discrete elements
(usually square or triangular in shape) called alekx (vdume pixel3. Once the solution

space is decomposed, each voxel is allocated aeBoolalue. If the value is true, then the
voxel is considered to contain some material, &rfdlse the voxel is empty. Therefore, this

representation allows two-dimensional structuresetonapped to a binary string.

Unfortunately, because adjacent voxels are notagieed to remain adjacent in the
genome, a disadvantage of this representationaisiths prone to “.the development of

-30 -



David Shaw Geometric Representations forc€ptual Design using Evolutionary Algorithms

small holes, isolated voxels and jagged edges [nd] eliminating these deficiencies without
having to apply strong guidance using heuristicsgsoa significant challengé€’. (Griffiths

and Miles, 2003). These issues can be mitigateghdsf-processing solutions or utilizing
intelligent evolutionary operators (Zhang and Mil2804). A final disadvantage of voxels is
the ‘fineness’ of the voxel grid must be determirmdhe outset, which significantly biases

the final solution. However they are very well sdito modelling structures such as | beams.

Waoxel Gnd &zzociated Strngl Genorme

Figure 3-4 Example voxel representation
Within civil engineering examples of voxel represgions include (Tabl8-4).

Table 3-4 Applications of voxel representation in civil agineering design

Application Year Author

Optimisation of | beam cross section 1999 Baroal et

Optimisation of | beam cross section (includingaststress) | 2003 Griffiths and Miles

Optimisation of | beam cross section (includingasteiress) | 2004 Zhang and Miles

3.6 Tree Representation

Trees are a non-linear, hierarchical and stricttyclcal data structures constructed from
nodes (Figure3-5). Every tree starts with a ‘root’ node, at deept The root node is unique

because it does not have a parent, but it doesdfaldzerf. Each child forms a separate sub-
branch and maybe a parent for other nodes. Any tmatedoes not have a child is called a
‘leaf’. Leaf nodes generally contain inputs. Thenaning nodes are ‘functions’. Function

nodes process leaf inputs and transfer the resthieir parent.

8 As with genealogical trees, tree representatisesfamilial terminology when referring to other esd
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Figure 3-5 Example binary tree representation

Theoretically, every node has an arbitrary nundfechildren. However trees are often
designed with a predetermined number of childrem.example, every binary tree node has a

maximum of two children (Figurg-5).

As previously stated, trees are hierarchical ammittly acyclical. Therefore, a child

cannot have a higher depth that its parent (Figusg

Figure 3-6 Invalid tree representation
3.6.1 Yang and Soh’s (2002) tree representation

Within civil engineering design, only one set otlaars has published papers incorporating a
tree representationYyang and Soh. This section discusses their repratsen while the

following section discusses some of the issuese®@léo using a tree representation (as
proposed by Yang and Soh). The representationhgyose incorporates a binary tree with

two types of node:

. Function nodes:representing cross-sectional areas of the membgis= i,j.k,l,m,n).

. Leaf nodes:representing structural joints (i 1,2,3,4).
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To decode which two nodes a member spans thestpgesed by starting at the relevant
node and progressing down the connection line$ aiméirminal node is reached. For example

member Aspans nodesNand N (Figure3-7).

(Ns) (Ne)
Ai
Aj/\Ai
A/\Ak N4 Am

(N:) N2) N/\m N/\z NN

1

Figure 3-7 Tree representation for structural design
3.6.2 Advantages of a tree representation

Tree encoding appears very simple, when comparétetequivalent binary string e.g. when
designing a truss capable of supporting six lo#us,tree representation required 29 nodes
(16 joint and 15 members) where as Shrestha anddbbkai’'s (1998) string representation
required 25,200 bits. However this comparison igh#ly unfair because tree nodes

encapsulatedata, while the string representation does not.
3.6.3 Disadvantages of a tree representation

During evolution, especially recombination, trepresentations have a tendency to develop
problems: consider the following crossover (Figld€) between two identical parents

encoding a six-member truss:

° Process by which an object ‘hides’ data and pewithethods to access it (in object-orientated progring).
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Parent 2

Figure 3-8 Example recombination operation between idental parents

There are three problems with these offspring:

* The ideal ‘1-to-1' mapping can only be assumedrdumnitialisation, as it can degenerate
during evolution (Figure3-9). Therefore, unless the evolutionary operatvesrestricted

or individuals are repaired, evolution will produee ‘n-to-1’ mapping with all its

repercussions.

m /<:/(\>\B
n n 7B I

n 4 12
Errolred cobation “lto-17 ercoding

Figure 3-9 Degeneration of ‘1-to-1' mapping

* Evolution may produce members that span betweersdh® joint (a null member) or
create several copies of the same member (Figuk8). While often not fatal to the

structure, it does add a computational overheacdcandes the solutions to ‘bloat’.
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MﬂﬂbmH

J1 4 I2 8K}

(&) Hull member (b1 Duplicates

Figure 3-10 Problems after evolution for tree representatin

3.7 Graph representation

Graphs are a non-linear data structure composetbdés connected by edges. However
unlike trees, graphs allow cycles and can incotedi@ps and recursive commands. This is
because in addition to performing a function, graygides determine which node will be

executed next.

Graphs are often a good representation for skedetactures e.g. trusses, because they
support the adaptability required for topologicasidn. For example strings are linear
structures, therefore each element has at mosttnwoections: left and right. Unfortunately,
most physical structures contain elements that ecnto an arbitrary number of elements.
Therefore, a higher dimensional representation magguired having a more appropriate

form.

Graphs are often used for modelling problems wil e@ngineering, within design only
one paper has been published: Borkowski et al (RODBe representation proposed by

Borkowski et al (2002) involves two elements:

» Composition graphs (CP-graphspA directed labelled graph (FiguB11) representing a
structure’s topological features (its genotype).-@t&phs are composed of nodes
(representing joints) and edges connecting two siqdepresenting members) both of
which are labelled and attributed.

* Realisation schemesA mapping that assigns properties to the CP-gtapyenerate the

phenotype.
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ab - abutment
o

- pylon
gbl— gg’)ble X
ch2 - cable 2

Figure 3-11 Example bridge and CP-graph representation (aapted from Borkowski and Grabska, 1995)

In addition to this, Borkowski et al (2002) suggemat a physical structure is created by a
finite number of topologically identical units thttey call ‘panels’. For each panel, a CP-

graph in evolved. This reduces the representapaness size.

3.8 Other Representations

This chapter has covered the most common reprdéger®ta however others do exist

including:

* Homogenisation:The material (from which the structure is condtedg is considered to
be ‘sponge-like’ containing an infinite number ofcno-cells and voids, which can be
assigned different densities (Bendsoe and Kikuc9s8).

« Voronoi-based:The structure is composed of a finite number abwoi sites that define a
voronoi diagram (Kane and Schoenauer, 1996).

» Shape GrammarsThis method is often used for layout design. Slggpenmars perform
computations with shapes in two steps: recognibbra particular shape and possible

replacements (Stiny and Gips, 1972).

3.9 Representation and truss design

This section provides an introduction to trussef®rgereviewing the existing approaches to
truss optimisation and design. Trusses have be&tisd because they are the most
commonly studied type of structure for civil engdneg design problems. Therefore there are

a number of approaches to compare and contrast.
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Structural trusses Figurg-12 are composed of at least two members (in tension or
compression), which when joined together createtables construction in either two
dimensions (planar truss) or three dimensions ¢éspiass). Trusses are a common

engineering structure often used to support roofsidges.

@)

(3)

10

(b) Space Truss Y

(a) Planar Truss

Figure 3-12 Example planar and space truss

Structural optimisation and design problems fredye use trusses .:.this maybe
attributed to the fact that trusses usually posseary nodes and elements that can be deleted
or retained without affecting the functional reqennents. In addition, the truss is a relatively

simple, yet non trivial structure”. (Kirsch, 1990).
3.9.1 Truss optimisation versus design

Truss optimisation involves modifying an existingsgyn so that it is more efficient. This
usually involves reducing its weight whilst ensgrih remains fit for purpose and has been a
research topic since Mitchell's seminal paper i 9Mitchell, 1904). When optimising a

truss, there are three variables to consider:

» Sizing Modifying the size of structural members.
» Geometry Modifying the position of structural nodes.

e Topology Modifying the number and connectivity of stru@umembers.
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Most existing approaches consider a truss’ siziggpmetry and topology to be
independent and solve them in turn. However, sjzgepmetry and topology are obviously
not independent because the initial modificationdi wonstrain those that come after.

Nevertheless this approach is frequently adoptetinagkes the problem more accessible.

Topological optimisation is the most difficult mess to investigate because the
representation must incorporate a mechanism byhamember connectivity can be modelled
(Deb, 2002)and this factor limits the applicability of classicprocedural approaches. As if
to highlight this, some approaches even negledltgyy and concentrate on optimising sizing
and geometry. Evolutionary algorithms, and in patdr genetic algorithms, with their
adaptive representations are more suited to this &f problem and many optimisation papers
suggest using this approach TaBI®, but all utilise a ‘ground structure’ first prased by
Dorn et al (1964).

Table 3-5 Topological optimisation via genetic algorithms

Author Year
Ruy et al. 2001
Deb and Gulati 2001
Camp et al. 1998
Rajeev and Krishnamoorthy] 1997
Hajela and Lee 1995
Rajan 1995

Ground structures contain a large number of higidgnected nodes (FiguBel13). To
optimise the topology, an algorithm removes all 4egsential members (although it is
arguable that because topology is predetermineiinigation only occurs within a limited
search space). This can be accomplished by assgciah extra ‘flag’ gene, with each
member in the genome indicating whether the mensbpresent or not. To add or remove a
member, the algorithm changes it flag status. Uafately, this produces long genomes
containing large quantities of redundant informati®herefore, the final topology is biased
by the ground structure. However, this approachs domplify the issue of representation
because each genome contains every possible memibigguration (even if the genome is
excessively long).
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Figure 3-13 Example ground structure

Truss design is a more difficult problem than wps$ation, because there is no initial
structure to adapt. Therefore, for it to be effestithe design algorithm must generate at least
one potential solution and modify its sizing, getnpend topology simultaneously without

the need to rely on a ground structure.

The major issue with topological design (of trieyge how to represent the ‘node element
diagrams’ of structural analysis and in particdteat a member spans between two joints (in
addition to its own properties). As topological igesis a difficult subject and there are only

three major representations to date, all will n@xréviewed.
3.9.2 Shrestha and Ghaboussi (1998)

Shrestha and Ghaboussi suggest a solution basadixed length, string representation, by
encoding individual joints and duplicating membeformation. Each string genome is
composed of a fixed number of sub-strings (Figg#Es), which encode joint locations using
Cartesian coordinates. In addition to this, theceparound each joint is discretised into 8
regions (Figure3-14).

CoweiLy ¢

Figure 3-14 Sectorial joint representation (adapted from Brestha and Ghaboussi 1998)

When a member is associated with a joint, thevaglejoint region encodes its properties.

However, because a member spans between two ribdas, potentially have two different
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sets of properties (one maintained by each regibm)decide which properties to use nodes

are assigned priorities with the dominant nodeniiedj the member.

AEEpINOT) F
HRIRIN0T) T
addy 1oddng
L4 gonm
AT 1070
add] mommEpy
TN

Seld FOM0
HEIPIO0T 3T

Figure 3-15 String representation (adapted from Shresthared Ghaboussi 1998)

This indicates some of the deficiencies of a lihgtrepresentation: because it lacks a
suitable structure, topology must be encoded initiatdto the geometry and sizing
information and this arbitrary representation (@bdlogy) creates redundant information in

the genome increasing its size.
3.9.3 Yang and Soh (2002)

Yang and Soh suggest a solution based upon a 2ptieeldree structure, by encoding
members and duplicating joint information. Theypmee that the tree should compose two
types of node (Figura-16):

* Leaf nodesrepresenting structural joints.

* Inner nodes representing structural members.

I: 1 I4
i L
5 n 4 14 I I I3
J1 ] I
a1 Hode -Elemerd Driagram ') Tree Eepreserd ation

Figure 3-16 Six member truss and tree representation
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They also recognise that this encoding methodolmgy provides a ‘n-to-1' mapping,
which means that the same truss can be represbptsdveral different tree configurations
(Figure3-17).

n LI L) I I I

AMervative Tepres ertation

Figure 3-17 ‘n-tol’ mapping

While valid, ‘n-to-1' mapping enlarges the solutispace reducing an algorithm’s
efficiency. Therefore Soh and Yang suggest an irgarent to produce a ‘1-to-1" mapping:
joints and members are numbered and (without Idsgeaerality) the lower numbered

element considered first. To encode a truss, th@aimg procedure is applied:

“...The lowest numbered member is selected to beadibtenode.
This member then has its start and end joints regameed by children
nodes to the left and right respectively. Thennfieft to right, the lowest
numbered member associated with each joint is reohofrom the
structure and inserted into the tree. This procedoontinues until every

member is represented in the tree...”

It is important that the left-right relationship affspring and parent be maintained as the
tree is constructed, because the nodes to itefaahd far right define every member. For
example, member spans between joint$ and J; (Figure 3-16). For more information

regarding issues with tree representations plegeet03.6.3.

The following paragraph is slightly esoteric, Imtieresting nevertheless! Soh and Yang
consider that using a tree structure indicatesue of genetic programming (Koza, 1992).
However, because the phenotype (the truss) hdéesedit structure to the genotype (the tree)
an additional decoding step must be incorporateal tiee solution procedure. Therefore, the
solutions are not ‘active structures’. It is thigreor’'s opinion that if this work is to be pigeon

holed into one of the four canonical EAs their wathould be considered to be a genetic
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algorithm (Holland, 1975). However it is only bybklling their approach as genetic
programming the authors have left themselves vabierto this sort of criticism. It is for this
reason that this thesis will refer to any experitabwork as an evolutionary algorithm using

a particular representation.
3.9.4 Azid and Kwan (1999)

Azid and Kwan published an approach that allowsetn@utionary operators, of a GA based
system, to act directly on the phenotype rathen tit& genotypic representation. However
they must use some form of representation (as elkfin this thesis), as it is impossible to
implement any computer based technique without stoma of representation. Therefore
because trusses naturally form graphs it is assuthetl they used a graph-based
representation. They also highlight the problemusing a coded string: the evolutionary
operators are highly disruptive. To mitigate thgsyeral rules are used to ensure that any

offspring mimic their parents (to prevent too mamfgasible solutions being generated):

* Any offspring formed by two structurally viable pats must be structurally viable i.e.
not a series of discontinuous joints and bars atsp

« There must be some visual architectural resemblaeteeen offspring and parent.

3.10Conclusions

Conceptual design is the first stage in a highiypplex process. To aid the designer, decision
support system based on evolutionary algorithmsb@aysed because although conceptual
design is characterised by the lack of informatwailable to the designer, EAs are adept at
exploring fragmented and complex search spaces.ekM@WEAS require candidate solutions
to be converted to a form that is amenable to éwwlary operators. Many representations
have been designed each with its own strengthsveaéinesses: strings are generally used for
parameters, voxels for shape discovery, trees auhg for skeletal structures. Within civil
engineering design, the most commonly studied &tracis the truss and three main

representations have been used, each with theiposgand cons.
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4 Conceptual Layout Design of Orthogonal Commercial Bildings
4.1 Abstract

The conceptual layout design of commercial officddings is a non-trivial task because the
numerous design variables create a large solupanes To aid designers, several decision
support systems have been developed. Howevethede systems are limited to buildings

with rectangular floor plans.

This chapter presents a evolutionary algorithm dasethodology capable of designing
buildings with orthogonal boundaries and atria.abhieve this the floor plan is partitioned
into rectangular sections using a sweep line algoriand to prevent unrealistic solutions
being generated, the representation (a 3-sectiongptensures the initialisation and
evolutionary operations are not too disruptive. Thenber of initial inputs has also been
reduced, because this work is aimed at the conakegasign stage. Therefore the user only

needs to specify the external boundaries shapéaation of any atria.

The aim of this chapter is to investigate exisexgmples and develop new representation

for orthogonal building layout design.

Keywords: commercial office buildings, conceptual layout igas evolutionary algorithm,

polygon partitioning, orthogonal boundary.
4.2 Introduction

Conceptual design commences once a problem haddmdified and a vague description of
a solution has been formulated (usually in funcaloterms) called the ‘project brief'.
Generally, the aim of conceptual design is to gateea range of solutions that will be further
developed during the subsequent design stagesefbheralthough these solutions are based
on limited information, they will determine most thie major design parameters. In fact it is
often quoted that by the end of the conceptualgtlestage 70 to 80 percent of a project's

resources are committed.

Conceptual design is also considered to be ondefriost difficult challenges facing
practising designers because of the range of dessjtions. For example, it is estimated that
for a typical commercial building of 20 stories,eevif one only considers the architectural
and structural aspects, there are approximately @ifllion possible design options
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(Khajehpour and Grierson, 2003). Therefore onlyegigmced engineers carry out conceptual

design tasks, because the lack of initial infororatiimits the effectiveness of procedural

technigues to assist more junior designers.

4.3 Related Work

In order to aid building designers, various papdrable 4-1) have proposed Decision

Support Systems (DSS) based on evolutionary algost Evolutionary algorithms are suited

to this role because they are adept at exploriagniiented and complex search spaces.

However, all these systems are limited to buildiwgh rectangular floor plans.

Table 4-1 DSS for the conceptual design of buildings

Author Year Method Details
Harty and Danaher 1994  Knowledge Basderoduces realistic designs in structural steel ramadforced
System (KBS) concrete for regularly shaped buildings

Grew 1995 | KBS Uses simple calculations and rulesthafmb (can reuse
knowledge gained from existing structures) for design of
portal framed buildings.

Fenves et al. 1995| Case Based ReasohiRgrt of the SEED system (Software Environment tppSut

(CBR) the Early Phases in Building Design) that is uséemsible.

Fuyama et al. 1997 KBS Based on behaviour condidagand first principles this
system, implemented in an object orientated progrenm
environment, designs moment resisting steel frames.

Rajeev and 1998 | GA (String) Design optimisation of reinforcemncrete plane frames

Krishnamoorthy using a genetic algorithm (taking into account destrelated
to detailing and placement of reinforcement).

Khajehpour and 1999 | GA (String) Conceptual design of medium-rigtice buildings using 4

Grierson multi-criteria genetic algorithm in conjunction Witpareto
optimisation theory.

Rafiq et al. 1999 | GA (String) Design of concreteanfied buildings using a genetic
algorithm incorporating a neural network for a flgolan
based on regular column spacings.

Soibelman et al. 2000, CBR +GA Structural designatifbuildings by proving designers with
adapted past design solutions generated by a bditgd
multi-reasoning mechanism.

Miles et al. 2001 | GA (String) Design of commerciaffice buildings using a genetic
algorithm as a search engine to determine layouth w
regular and irregular column spacings.

Grierson and 2002 | GA (String) Cost-revenue conceptual desighigh-rise buildings using

Khajehpour a multi-criteria genetic algorithm.

Eisfeld and Scherer 2003 KBS + Descriptivinteractive planning algorithm using an expresgive

Logic Reasoning description logic language to represent structknaiwledge
acquired from practitioners.

Sahab et al. 2005/ Hybrid GA (String) Two stage emtgal design of reinforced, concrete flat slab
buildings.
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4.3.1 BGRID

The work published by Miles et al. (2001) calledSRID’ will now be discussed in more
depth, because this section of the thesis is amu@tion of it. BGRID was developed in close
collaboration with practising engineers and focusesghe design of rectangular floor plans,
using a genetic algorithm (Holland, 197&) generate column layouts. To achieve this,

BGRID concentrates on a number of ‘first order’igesiecisions:

» Dimensions of the structural, constructional, sgng and planning grids.
* Environmental strategy (for both lighting and véatton).

* Floor-to-ceiling height including (spacing requirents for services).

e Structural depth and its impact on the buildingghei

* Cost

However the search within BGRID is heavily consteal, as the user is required to fix
their preferred dimensions for the modular andcstmal grids at the start. The GA is also
allowed to modify the overall building and atriarginsions to fit a potential grid. By heavily
constraining the search and modifying the outliB&RID is able to carry out a near
exhaustive search of the feasible options. Unfatiely the final solutions are often only
marginally better than the initial, random solusoihis lack of improvement could be due to
the fact that the best solutions tend to lie onkdbendary between the feasible and infeasible
regions. Thus by not allowing the search to expliw infeasible region the algorithm’s
search is restricted. It is also a reflection am hleuristics applied during initialisation, which

ensures the population is only seeded with viapteos.

After its development, BGRID was assessed by aBOupractising designers including
architects, building services engineers and strat®engineers and 68% of them suggested

that this type of tool could be useful.
4.4 0OBGRID

This section provides an introduction to the OBGR@Mthogonal Building GRID) a DSS for
the conceptual design of orthogonal buildings bysmdering some of the key issues.
OBGRID is a continuation of BGRID however it must $tressed that the aim of this work is

to develop a suitable representation (capable oéllirey non-rectangular floor plans) rather
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than a complete building design system. Therefbee fitness function and evolutionary
operators used are to demonstrate the represemsafiexibility rather than to optimise
performance. The following sections describe howGBED designs rectangular and

orthogonal floor plans.
4.4.1 Column Layout

One of the most important features of commerciddimgs is that columns should preferably
be arranged in rectangular grids. This is not §pthat other arrangements are not used, but
regular rectangular grids tend to be easier ancereoonomical to construct and provide a
flexible layout that can be readily adapted dutimg life of the structure.

4.4.2 Structural Systems

At present OBGRID contains the information for #rstructural spanning systems: short,
medium and long (however the system is user exXil)siAs stated previously, the aim of
this work is to develop a suitable representat@mrofthogonal buildings. Therefore BGRID’s

structural systems have been incorporated into OBGR

e Short Slimflor™ has an integrated steel deck (miningsime depth of the structural
zone). [Economic range = 5-8m)].
* Medium: Composite steel beam and composite slab systEconpmic range 6-12m].

* Long: Steel stub girder and composite slab system.rj&wic range 18-20m].

As larger column spacing generally produce a mitegible internal environment
OBGRID tends to favour longer spans, which is atddiy biases the search.

4.4.3 Environmental Strategy (Ventilation)

Ensuring the correct ventilation is a fundamentalbjem in building design because it is
difficult to change once built. Three environmerdtrthtegies have been considered (although

others maybe added by the user):

* Natural ventilation: Natural ventilation is provided by the glazingssgm, but usually
only available in non-urban environments.
* Mechanical ventilation If the building is too deep for natural ventitatithen mechanical

ventilation maybe suitable.
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e Air conditioning: In an urban environment this is often the onlyiap as it allows the

building to effectively maintain a self-containeadveonment.

4.4.4 Services Integration

The electrical, communication and ventilation se#gi must be coupled with the structural

system in one of three ways:

e Separate The services and structural system are accommaddatadjacent zones. This
approach is characterised by short spans and lawhadnstruction depth.

e Partial: If the structural system is deep enough, someth® services maybe
accommodated within it. However, some services nigstrouted under the primary
beams and thus out of the structural zone.

* Full: The services and structural system are accommodat the same zone. This
approach is often characterised by long spans witheep construction depth (within

cillular beams).

4.4.5 Clear floor-to-ceiling height

The clear floor-to-ceiling represents the usabféce’ space. A high floor-to-ceiling height is
required if the client requires natural daylightiaratural ventilation. It is suggested that this
should be between 2.4m => 4.0m with a recommendeoimam of 2.7m.

4.4.6 Floor-to-floor height

To calculate the floor-to-floor height, the floa-teiling height is added to the distance

required for the floor spanning system and servtable4-2).

Table 4-2 Dimensional allowances for services

Environmental Strategy
Air Conditioning Mechanical Natural
(mm) (mm) (mm)
n S Separate 900 635 350
o .2
O +=
< Partial 650 500 325
Q@
) +~
£ Full 350 350 350
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4.4.7 Initial User Input

Because this work is aimed at the conceptual destage, the number of input variables has
been reduced. The user is only required to entgedimensions of the boundary and atria in
addition to specifying the total number of store@sher GA based DSS allow the algorithm

to search for the optimum number of storeys e.qajélipour and Grierson (1999) and Rafiq

et al. (1999). However, during BGRID’s evaluatidnvas suggested that the client usually
fixes this parameter at the outset therefore thign has been omitted (if the designer wishes
they can re-run the algorithm with different nunsbef floors to investigate this variable).

4.5 0BGRID and Rectangular Buildings

This section contains a detailed description of @BGRID handles rectangular buildings.
Layout design of rectangular floor plans is fundatak in this work, because every

orthogonal floor plan will be partitioned into raogles.
4.5.1 Representation

In an efficient building layout, columns should &kgned in straight rows. Therefore, the
representation should be robust enough to reflestféature even after the disruption caused

by the evolutionary operators.

Initially an attempt was made to include individealumn locations in the genome using a
tree or graph structure (Figukela). However, this representation proved to hghty
unstable and tended to leave some columns isolateatie floor plan particularly after
evolution (Figure 4-1b). This is because by focusing on individualuoms, these
representations failed to incorporate the ideawfst So if one column’s location was altered,

the algorithm was unable to update the remainirgnaos.
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‘ # ...........
.................. ‘
(a) Betore evolution (k) After evolution

Figure 4-1 Problem using tree or graph based representatioin layout design

OBGRID uses a 3-section string representation (Eigu2) that focuses on aligning
column rows by considering a column’s x and y cowtes independently, so a gene
references a row of columns rather than an indalidwe. It should also be noted that the
number of columns included in sections 1 and 2isfimed (and can vary during the search)

thus this representation is a variable length genom

» Section 1:contains column x spacing.

» Section 2:contains column y spacing.

» Section 3:contains the remainder of the information inclgdistructural system, services
integration, environmental strategies and the ftoareiling height.

2L Coordivates W Coordivates Building bdontation
e A A

v T T T

O (10 j20 |40 (50 (0 J15 (25 (30| 1 |2 |0 [RAa5

I
Stmacharal Systerr
Servrices Fitegratiom
Brrrmoratwerdal Stratesy
Floor-to-ceiling Height

Figure 4-2 Example genome for layout design

Sections 1 and 2 of the genome contain valuesdlwatys increase from left to right.
This ordering is maintained because it ensured@llmapping between the representation
and solution spaces. Span length, the distanceekatwolumns, is calculated by finding the

difference between adjacent genes (as genes siglifynn locations).
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Each gene, in section 1 or 2, references a rostrattural columns rather than just a
single column. Therefore any change to an indiMidgene will not invalidate the layout

because the whole row will be altered (4e®3).
4.5.2 Initialising the genome for a rectangular floor plen

The following section will describe how the genofoea rectangular floor plan is initialised.
To aid understanding, an example floor plan of 530&m will be initialised. Each section of

the genome is considered in turn:

» Section 1:starting at the upper left hand corner of the flplan (it is always assumed that
the top left hand corner has the local coordiné®®)) the algorithm generates random

column spacings in the x direction until the endhaf floor plan is reached.

1— X
¥ o 10 A 41) 50)

itialiced Sectiom

itialiced Crefuorme

Figure 4-3 Rectangular floor plan (Section 1 Initialised)

» Section 2:restarting at the upper left hand corner (0,0),alywrithm generates random

column spacings in the y direction until the endhaf floor plan is reached.
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14

25
30

itialiced Sectiom

itialiced Crefuorme

Figure 4-4 Rectangular floor plan (Section 2 Initialised)

e Section 3: The final section is initialised with randomly seled genes from the
appropriate gene set. For example the basic stalctystem gene set contains three

elements: 0 = Short, 1= Medium, 2 = Long, so tleisegwill either be a 0, 1 or 2.

Stractaral Swstem: 1 = Medmm
| Services Integration: 2 = Aw Condibiomng |
Environmental Strategy: 0 = Separate

Floor-to-Ceiling Height: 2.25m

rx
¥

itialiced Sectiom

0|10 (20 (40|50 0 (1525|301 |2 |0 Roa

itialiced Crefuorme

Figure 4-5 Rectangular floor plan (Section 3 Initialised)

It should be stated that unlike BGRID no effortiade to constrain column positions to
‘realistic’ spacing i.e. within the economical ranigr the selected spanning system. This is to
encourage the algorithm to for solutions in both fimasible and infeasible regions. However,

-51 -



David Shaw Geometric Representations forc€ptual Design using Evolutionary Algorithms

the fitness function does penalise individuals t@itain a wide range of column spacing.
This is to encourage a degree of uniformity in omhuspacing, which aids ‘buildability’

without adding much bias.
4.5.3 Evolutionary Operators

Evolutionary algorithms search the solution spageusing biologically inspired operators.
However because the genome is divided into 3 distgections of variable length, the

evolutionary operators have been amended to refiext

e Mutation: used to inject new solutions into the populatiorpriaving the search by
(hopefully) preventing premature convergence (Geidb 1989). Having selected an
individual’'s genome, a new value is generated faamalom gene. If the mutation operator
selects a gene from sections 1 or 2 then it isacgul with a randomly generated value
between 0 and the limits of the floor plan. UnIB&RID that restricts the new spacing to
a value between the two adjacent genes, OBGRIDIgiggnerates a random spacing and
when it's needed sorts the genome so that the cokpacing increase from left to right

If a gene from section 3 is selected a random freme the appropriate gene set is used.

Start O (10 )20 |40 (50 [0 J15 (25 (30 )1 |2 | 0 |2.95

Select cection 0 |10 |20 |40 {ET 0 15|25 |30 }) 2 [0 295
I i

Select gene 0 (10 )20 |40 [ 50 II( 15 ;5 A1 2|0 (295

Dobatate O (10 |20 |40 (50 [0 JaF [25 (30 )1 |2 | 0 |2.95

Sort section O (10 |20 |40 (50 [0 25 [2F (301 |2 [ 0 |295

Finich O (10 |20 |40 (50 [0 2527 (301 |2 | 0 |2.95

Figure 4-6 Example mutation operation

19 The sorting algorithm is that contained in Javasive java.utils package: a modified mergesorinfiich the
merge is omitted if the highest element in the ulist is less than the lowest element in the kigliist). This

algorithm offers guaranteed n log(n) performance.
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* Recombination: used to exploit the information already in the yagon. OBGRID
employs a single point crossover operator. Singlatpcrossover is used because it is
simple to implement even with variable length geeertas in OBGRID). However rather
than applying the crossover operator on the whaeome, it performs a separate
crossover on each of the genome’s three sectidtfsough for section 3, the cut point is

always located at the same point to ensure thisoseaf the genome remains of constant

length.

o {1z len|s0fo |aslaslznl 2|01 fzes
Stari

O (235 |5 |0 (102030 )01 (2|0 (305
. o |10 :m!m solo Qs las|z0 z!n 1 {295
points 3

nl:s 0o [10fafs0] 1|20 |z0s

o |10 :;mlzj s0lo Jao]z0 zl: 0 |205
Exchange ‘/' r r

o f40 |00 1u|15153-u 1|u 1 |305

O |10 |20 |25 50 [0 | 2030 2 (2|0 295
Finish

o |40 |sofo |wlis|aslzol1 | ol |05

Figure 4-7 Example recombination operator

45.4 Selection

BGRID originally used the standard fithess methBdadshaw and Miles, 1997) to select
individuals during evolution. This technique rartke individuals by raw fitness and then
assigns a predetermined fitness to every indivicaadording to their rank. However,

OBGRID has replaced the standard fithess methold thi2 more conventional tournament

selection technique (Goldberg, 1989) to improvedeperformance.
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4 5.5 Fitness function

The fitness function assigns a single numericaleab an individual reflecting how ‘good’ it
is. A multi-objective fitness function might be neoappropriate for this work however the
goal was to develop a representation capable odlimgnorthogonal layouts rather than a

complete building system.

OBGRID is a minimisation algorithm, which meansttlthe optimum solution has a
fitness of 0. This is because floor plans are asslgan initial fithness of 0 but during
evaluation are penalised if they break the predeted criteria. Therefore a layout with 0
fitness is not penalised and thus should be a ‘\¢gryd’ solution. OBGRID uses a penalty
function because although this can be a conseevapproach, convergence delay was
considered to be less dangerous than the premiasgeof material: as the optimum will
typically be located on the boundary between tlasitde and infeasible regions and this
approach allows the EA to search from both diresticAlthough there are many types of
penalty function OBGRID uses a quadratic penaltycfion, which assigns a greater penalty

to a larger transgression.

OBGRID has three components to its fitness famcbut it is acknowledged that other
factors could be added. However the following congus are included to test the

representation’s performance using relatively ist@f criteria:

» Overall height The solution’s overall height must not exceedhkie stipulated by the
user. If the solution is larger it is penalisedthg penalty function.

* Column spacing compatibilityColumn spacing must be compatible with the ecanaim
span distance of the structural spanning systemekample, if the structural system is
‘short’ (specified by the first gene in section 8)e span distances should be between 5
and 8m ¢.4.2 Structural Systems).

* Uniformity of the gridc OBGRID attempts to evolve solutions based on leggeolumn
spacing, so the standard deviation of the spadésgsed in the fitness calculation. With a

lower standard deviation being preferable (indicagreater spacing uniformity).

4.5.6 Running the algorithm

There are potentially two ways to run this algarthwith the algorithm able to vary the

flooring system during a run or by preventing thgoathm varying the flooring system and
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re-running for each flooring system. It was decidedise the second approach because this
will typically evolve a good solution for each fidog system rather than ignoring it. This can
be important in the ‘real world’, as practising eragrs are typically sceptical of ‘black box’
solutions that ignore their criteria and might wih view a particular spanning system
(although OBGRID will indicate a solution’s suithtyi via its fitness).

4.6 lllustrative Example: Rectangular Building

This section provides an illustrative example of @D designing a rectangular building.
The parameters in the EA tableau (Tablg) should be considered indicative because the ai

of this work is to develop a new representatioheathan a complete building design system.
4.6.1 Introduction

The following test case was designed to assess UBG&Rerformance. Unfortunately,
unlike structural optimisation, there are not stddest cases. This is possibly because there
is no such thing as a standard building becauseabre multi-disciplinary structures (unlike

trusses) therefore the following test case was:used

e Building dimensions: 60m x 18 m

* Height restriction: none.

Table 4-3 EA Tableau for Rectangular Building

Obijective Evolve example layout designs for a negtdar
boundary of 60m x 18m with no height restrictions)

Representation 3-section string

Initialisation Random initialisation (no seeding)

Raw Fitness Based on: column spacing compatibgitygl column
spacing uniformity

Selection Tournament (size = 2)

Major Parameters* P=1,M=100, G =50

Evolutionary Operators:

Reproductiopon 0.1

Mutation operator Point

Mutation,rop 0.3

Recombination operator]  One point crossover
Recombinatiogon 0.6

*P = Number of populations M = Population size ®ax number of generations
Some researchers may question why the probabilityutation is so high by comparison
to a typical GA. There are two reasons for this:
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e The algorithm used in this these is described asvatfutionary algorithm rather than a
pure genetic algorithm, for example. Therefore bpsidering it as such, the researcher
has a tendency to apply preconceived ideas, whashanmay not be appropriate.

* The mutation operator is mechanistically very samito that used for recombination.
Therefore the algorithm is less sensitive to chanigethese probabilities than other
implementations. However the mutation operator thaspotential to introduce a gene
pattern not already found in the population, whiecombination simply exchanges

existing gene patterns between individuals.

4.6.2 Results

The following graphs show the best, mean and wingss recorded during an indicative run
for the medium structural spanning system. It ipantant to note that because OBGRID is a

minimisation algorithm a lower the fitness indicatebetter solution.

Fitness

Generation

Figure 4-8 Best fithess
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160

140

120

100

Fitness

20

0 5 10 15 20 25 30 35 40 45 50
Generation

Figure 4-9 Average fitness

The best and average graphs trend downwards dthiagun. This indicates that the
algorithm is converging towards the ‘optimum’ (@tlgh the algorithm is not guaranteed to
locate it). The spread also narrows between theageeand best, which suggests that the by
employing fithess-based selection, the algorithransouraging the ‘better’ characteristics to

propagate. However the same cannot be said favdingt fitness.
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Figure 4-10 Worst fitness

Although the worst fitness ‘stabilises’ in the ganof 50 —300 after generation 10, it
never reaches equilibrium and often ‘spikes’ e.gnagation 33. But again, this is to be
expected. The evolutionary operators are potentiadiry disruptive and an individual's
fitness may actually be reduced afterwards. Howéhvisris why evolutionary algorithms are
so powerful: although evolution may produce a hatmésult for an individual it may also
produce a beneficial change, which maybe be prdpdghroughout the whole population.
This is shown in Figure 4-8 and Figure 4-9. Durihg run, the average fitness trends
downwards in a fairly smooth manner, whilst thetbh@®ceeds in discrete steps. This is
because the best individuals are formed by chdrerefore they can be a huge improvement
over their ancestors (this feature is especialbnpnent at the beginning of a run). However,
as stated above, once the improvement has beed, fivaiten spreads through the population

reducing the overall fitness in a more gradual neann

There is one final feature of Figure 4-8 worthyneéntion: because the best solution is
not explicitly copied into the next generation ieditism is not used, the best fitness can rise

between generations. For example, between genesalti® and 19 the best solution actually
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decreases in fitness. But this merely demonsttad@srobust evolutionary algorithms can be.
Even though the algorithm has lost its best salutio date, it quickly recovers and by
generation 24 has found an even better solutiorarigg the best of generation can also help
to prevent premature convergence. For exampldeifalgorithm is forced include the best
solution to date, but this solution is simply adboptimum, then the algorithm would be
hindered rather than helped. So by ignoring thectsf of evolution on an individual, for
example after recombination, the algorithm is fteesearch using all the information
contained in the population and if the best sofutmdate is the global optimum, hopefully it

will return to it!

Figure4-11 shows the solutions returned when the algorith run for each structural

spanning system.

{4) Shott ¢l Ml e dium () Long
Figure 4-11 Returned solutions for rectangular building eample

The final average spacings are all within the eoain ranges and were as follows: short
X =7.5my = 6m; medium x = 12m y =9m; long x = 29m 18m. However these averages
are slightly misleading, as the column spacingsirnetd are not necessarily uniform. In
particular, as the number of columns increases, RIBGfinds it harder to retain regular
spacings. Having OBGRID search explicitly for thenber of rows per partition, rather than
for column spacings could rectify this. Howeversthwould represent a much simpler

challenge and thus was not pursued for this thesis.
4.6.3 Conclusion

Although simple, this example indicates how OBGRil@lves rectangular building layouts.
This is a fundamental process in this work becau®gonal layouts are decomposed into

rectangular sections that are solved in this manner
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4.7 OBGRID and Orthogonal Buildings

This section contains a detailed description of I@BGRID handles orthogoralbuildings:

by partitioning them into rectangles and using fhreviously described methodology to
design a layout for each partition. This process movel feature of OBGRID that has not, so
far as the author is aware, been previously usdalilding layout design systems and is an
improvement over all existing examples that aratéchto rectangular floor plans. To ensure
column row continuation throughout the building'adjacency graph’ is used.

4.7.1 Representation

OBGRID patrtitions an orthogonal floor plan into tawgles, using the sweep line algorithm
described iM4.7.3, and associates a genome with each partifibaerefore each individual

(representing an orthogonal boundary) containg afsgenomes rather than a single genome
as per a rectangular floor plan (see Figdf#2). However section 3 is considered to be
standard for all genomes, as it refers to attribajgplicable to the whole building rather than

simply one area.

D5 |10]20|25|30)0 | 5 [15)30)|35( 1|2 |0 pos

aalm

O|5|l0j20(25|30)0 | 5 |15|30|35| 1|2 |0 pos

0|5 |lo|j20(25|30|0 |5 |30] 1) 2|0 Ros sl

ols hwolzol2slz0le liolis] 1 2 u:.gs—%m

O(10(25|30 35400 J1Of15|( 1|2 |0 pos

Figure 4-12 Example orthogonal representation

To ensure column line continuity throughout theofl plan each partition is linked to its
neighbours via the adjacency graph (é&e4). For the remainder of this section, the s&nhe

shaped floor plan will be used as an example.

A layout involving right angles.
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4.7.2 Polygon Partitioning

Computational geometry (Shamos, 1978) is the staflyefficient algorithms (usually
computer based) and data structures for solvingngéac problems. The partitioning of
polygons is a major topic in this field and sevedgbrithms have been developed. However a
‘sweep line’ approach was considered the most gpiate for column layout design because
of the need to ensure column line continuation ughmut the building (this issue will be

discussed later).
4.7.3 Sweep Line Partitioning Algorithm

Sweep lines algorithms (O’Rourke, 1998) move angimary line, the ‘sweep line’, over a
polygon from top to bottom or left to right. At gletermined points the sweep line is stopped
and the polygon partitioned. These points are dalevent points’. In this work when
partitioning orthogonal layouts without atria, evepoints are any reflék vertex on the

boundary (see Figure-13).

| | Svreep Line
¥ ¥ (moving top to bottom)

i# Brert Pomt

Figure 4-13 An example sweep line

Partitioning is completed in two stages:

» First stage a line is swept from top to bottom. When the lereounters an event point it
extends the boundary edge horizontally across ldoe plan until it encounters another
edge. The encountered edge is then split at th& pbintersection, which partitions the
building into several, ‘thin’ rectangles. For exdmn Figure4-14a edges andb have

been extended to edge

12 A reflex vertex has an internal angle strictlyajes than.
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* Second stagea line is swept from left to right across the baany, further partitioning
the rectangles created by the first stage. Thiatesethe final grid pattern. For example in

Figure4-14b edge has been extended to split edgesdy.

2
lllllll a .
C
£
....... b
. ¥
(a) First stage (b) Second stage

Figure 4-14 Example partitioning of orthogonal layout

It should be noted that for each floor plan, thera unique partitioning. Therefore once it

has been partitioned, no further partitioning iguieed during the search.

In terms of originality, as far as the author vgage, this is the first time a sweep line
algorithm has been applied to building layout desigowever, sweep line algorithms are

commonly used in pure mathematics especially tapolo
4.7.4 Adjacency Graph

This section describes the ‘adjacency graph’ a statecture that is used to ensure column line

continuity throughout the building, which as farthe author is aware, is unique to this work.

With the floor plan decomposed into a grid of aagjles, via the sweep line algorithm,
each partition must now share at least one eddeamibther partition (with an upper limit of
four). The adjacency graph links partitions whitlare an adjacent edge and is used to repair
individuals during initialisation or after evolutip reducing the potential for generating

nonsensical solutions.

The adjacency graph is created from nodes, with eectangular partition having a node
associated with it (see Figufkel5a). The nodes of adjacent partitions are thewed. For
example in Figuré-16b, node is linked to node® andc but not directly tad because they
do not share an adjacent edge. However duringaliisiition and evolution, any updates are

applied recursively therefore changes genome will be reflected in partitiahtoo. Having
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linked all adjacent partitions, the adjacency graplomplete. But how does the adjacency
graph help maintain column line continuity?

a [a]
&» L
e
&
d‘ '3.

@ )

Figure 4-15Example adjacency graph of an orthogonal layout

When a partition’s genome is modified, either dgrinitialisation or evolution, it updates
the corresponding section of its neighbour’s gendroe example if any changes are made to
the x coordinates (section 1) of partitianthen section 1 of partitioo will also be updated
(partitiond will also be updated bg). However section 1 of partitidnis unaffected because
it does not share an edge in the x direction (#&ye one in the y direction). This is shown in
Figure4-16 where the column row at 10m in the x direct®deleted from partitiod and the

adjacency graph is used to ensure this gene iteddi®m the genome’s of partitioasandc.

- 63 -



David Shaw Geometric Representations forc€ptual Design using Evolutionary Algorithms

“Start

D5 (10(20]125130]0 [ 5 |15|30D)35]| 1 |2 |0 pos
D|S5|10|20125|30|0 | 5 [15|30|135] 1|2 |0 pas d
D|S5S|l0j20|25(30|0 | S(30] 1|20 [Ros 1 |
ol|s|wf2o]2s|30lofw]1s] 1]2]0 ks 1:

—— -J

—

Delete this row

Tpdate
D15 |20125130]J0 [ 5 |15|3D)35]| 1 |2 |0 pos
0|5 |20(25|30010 | 5 [15|30|35) 1 | 2|0 @gos d
OS5 120(25|3000 | 5 (30 1 | 2]0 R9s o
olsz20lzslsolofiwolisl 11210 bos L :

Figure 4-16 Example genome update using the adjacency gtap

This example also demonstrates why this sweepdigerithm was developed as it has
been, because it ensures that adjacent edgesnargsadf the same size. For example, some
sweep line algorithms are used to solve the ‘ledsproblem’ where the goal is to partition
an orthogonal polygon using the smallest numbepartitions, in terms of length. This
problem is illustrated in Figurd-17a with the least ink solution shown in Figure7b.
However the adjacent edge(between partitions andb) is smaller than the left edge of
partitionb (see Figuret-17c) and thus it would be much more complicatedrtsure column

line continuity during initialisation and evolution
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SH LN L

(e
Figure 4-17 Least ink problem

4.7.5 An Alternative Partitioning Algorithm

Dr Rafig of Plymouth University proposed the follony partitioning and representation
during a discussion about this work. The proposethodology indiscriminately extends all
edges across the floor plan (see FigtHE8), allowing it to be expressed by a single geao

rather than multiple genomes are proposed by hieisig.

Ml

Ml

Bal = Wxd = MaS
Figure 4-18 Dr Rafiq's partitioning
Unfortunately by extending edges across the wilioler plan, it has a tendency to
generate superfluous partitions (not generatedhisy thesis’ technique) and thus bias the
search towards shorter column spacings creatiegsaflexible layout. For example in Figure

4-19 Dr Rafig’'s technique generates 24 partitiosese (Figure4-19a) while this technique
generates 17 (see Figutel9b).
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Atria

(&) (k)
Figure 4-19 Comparison of partitioning techniques

4.7.6 Initialising an orthogonal genome

With the building layout partitioned and adjaceattfiions ‘monitoring’ each other (via the

adjacency graph), a genome is initialised for qzantition.

The initialisation process starts by selecting film¢hest left, upper partition. This is an
arbitrary selection as the initialisation processild theoretically start at any partition,
however to standardise the process it always stdtrtthe same place. As the overall
dimensions of this partition are known (and thaisita rectangle) the algorithm uses the
initialisation procedure described earlier (de&2). At this stage the layout has one initialise
partition (Figure4-20a) however as frequently stated, maintainingroa line continuity is
essential. So an adjacent partition is initialisezkt. If there is more than one adjacent

partition one is randomly selected. The adjacemaplyis used to achieve this.

(&) (b) (c) (d)
Figure 4-20 Example initialisation of orthogonal layout

Rather than initialising the adjacent partitionpeviously described, because the two

partitions (the initial partition and its adjacepdrtition) must share a common edge, the
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algorithm firstly copies the column spacings fastedge. For example in Figu4e20b, edge
x is shared between the two partitions so the yisgadrom section 2 of the initial partition’s
genome are copied into the adjacent partition’sogen The remaining section is initialised
as before, by generating new spacings in the redudirection (see Figurd-20c). This
process is then repeated for another adjacentipartintil the floor plan is fully initialised
(see Figurel-20d).

In complicated buildings it is possible that atp@n may have been initialised ‘by
proxy’ i.e. because all of its adjacent partititrasve been initialised, it already has a complete

genome. In this instance it skipped and the algoritonsiders the next partition.

By constantly maintaining and updating the statfisn@ighbouring sections, via the
adjacency graph, the algorithm ensures columndorinuity throughout the building. This
continuity is vital to prevent the building from dmening a series of blocks that when placed
together do not form a coherent solution. For eXamip Figure4-21 when considered in
isolation each section is valid however, when abssid as a whole, the building’s layout is

flawed because the columns do not align.

Figure 4-21 Invalid initialisation of orthogonal layout

The third section of the genome is assumed toxms fthroughout the building therefore
every genome has an identical section 3 {s@édl). It is acknowledged that because section 3
is constant, it could be removed from the genonmwéver it has been retained because it

adds transparency i.e. all information pertainm@n individual is contained in the genome.

- 67 -



David Shaw Geometric Representations forc€ptual Design using Evolutionary Algorithms

4.7.7 Evolutionary operators

The same evolutionary operators described prewoasé applied to each rectangular

partition. However to ensure column continuity, #ejacency graph is incorporated at the

end of the process to update the column line sgagmadjacent partitions:

Mutation: Having selected the individual to mutate, the matatoperator randomly
chooses (with uniform probability) one partitiontbe building and applies the mutation
procedure discussed for a rectangular partitiorvingamutated its genome, the section is
placed back into the building and all adjacentisastare updated (Figur#e22). This
final step means the mutation operator is able adify the building in only one location
but the change ripples throughout the building, venéing column alignments
degenerating. The adjacency graph used is durilg) glocess to determine which

partitions need to be updated (for more informatieed.7.4).

Pror to Select Partition Remnsert After

Mutation Partition Mutation

iindi A .
Al ﬂ ] Update
Fi -/)f

e e
C - \‘ m-—
| Mutate

H . [ L1 [] Partition L1111 1T 111

Figure 4-22 Mutation operator for layout design

Prior to mutation, partitionsg, ¢ andd had 6 genes within section 1 of their genome
(because they share an adjacent edge in the xtidivetherefore they had identical
genome section 1). However after mutation bothnilmaber and value of these genes had
been altered. This occurs because although ontitipara was selected for mutation, the
adjacency graph recursively applies the changd &dgcent partitionsg(andd in the y
direction and in the x direction) after reinsertion.

Recombination:OBGRID employs a single point crossover operataold@erg, 1989),
which exchanges part of the genomes associated aitbection of the building.
Recombination is as per a rectangular partitiorwéwer once recombination has been
accomplished, the altered sections are reinsentedtihe building and all other adjacent
partitions updated (as with the mutation operaescdbed above) (Figuke23).
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Priorto

Select Partitions Reinser Update Adter
Crossover

et Crossover
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] —

g s\ mm=s ==

Crossover
F /v(\
i i ﬂ i= -

Figure 4-23 Crossover operator for layout design

-

It is noted that by updating adjacent partitionserafreinsertion, the layout is
substantially altered but this is the point. Recoration is a disruptive operator allows
the algorithm to transfer spacings (or partial gpgg) from one individual to another.
However recombination can only transfer existinuom locations between individuals,

it cannot create new (although the column spaainggbe arranged in a new order).

4.7.8 Fitness function

OBGrid applies the same fitness function as preshodescribed (se4.5.5) to each partition
in the floor plan and aggregates the results. Toerdandividuals with more partitions will
tend to have a numerically larger fithess, but meimer, OBGRID aims to minimise this
fitness.

4 .8 lllustrative Example: Orthogonal Building

This section provides an illustrative example of GHD designing an orthogonal floor plan.
The parameters in the EA tableau (Tablé) should be considered indicative because the ai

of this work is to develop an appropriate represtm rather than a complete building design
system.

4.8.1 Introduction

The following test case was designed to assess UB&Rperformance. Unfortunately,
unlike structural optimisation, there are not staddtest cases. Therefore the ‘C’ shaped

layout shown in Figurel-24 was developed (no height restriction was imposé&dg first
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stage of the solution process involved partitionihg layout using a sweep line algorithm
described above Figure?24.

60m
¢ o @ o
35m P .
I
30m | °
30m 1'.5
40m |
15m LI I
30m
o o
{a) Example orthogonal layout (h) Adjacency graph
Figure 4-24 Orthogonal layout example
Table 4-4 EA Tableau for Orthogonal Building
Objective Evolve example layout designs for a ‘Chaped
boundary (with no atria or height restrictions)
Representation 3-Section string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibgitygl column
spacing uniformity

Selection Tournament (size = 2)
Major Parameters* P=1,M=100, G =50, 100, 48 200
Evolutionary Operators:
Reproductiopon 0.1
Mutation operator Point
Mutation,rop 0.3
Recombination operator]  One point crossover
Recombinatiogon 0.6

*P = Number of populations M = Population size ®ax number of generations

4.8.2 Results

Although this example is more complicated than phevious one, the results are actually
fairly similar. For example, the best and averajge$s trends downwards steeply at first
before flattening off. The worst fithess does sleogreater improvement that before, however
it never converges and fluctuates between 30 and@l8&efore this section will focus on how

the number of generations affects a solution.
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The following 4 performance graphs (see Figur@b44-26, 4-27, 4-28) each show the
combined average fithess after 10 runs, for thetsgpanning system, with a maximum
number of generations of 50, 100, 150 and 200.fiNa¢ graph (see Figure 4-29) overlays all

the results on one graph.
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Figure 4-25 50 Generations
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Figure 4-26 100 Generations
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Figure 4-27 150 Generations
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Fitness
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Figure 4-28 200 Generations
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Figure 4-29 Performance graph for orthogonal building test

Figure 4-29 in particular indicates how robuststhigorithm is, as all trend lines lie

within a narrow range of each other. It also sutgyéisat the most efficient number of

generations to use is 100 (although it could beedghat 110 — 120 would be better). This is
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because the algorithm has not converged, at ai@oluby 50 but soon after 100 it has.
Therefore to continue the search beyond this péamtexample to 150, is computationally
wasteful. If you were determined to expend more Girt¢ on this problem, restarting the
algorithm to repeat the earlier generations rath@&n continuing with a stable solution would

yield a greater return.

Finally Figure4-30 depicts the returned solutions for each sirattsystem after 100

generations.

.Eiiﬁ:ﬁ:ﬁ:ﬁ:ﬁ:i i ]

Figure 4-30 Returned solutions for orthogonal building layput

4.8.3 Conclusion

This example demonstrates how OBGRID solves orthalgbuilding layouts. To accomplish
this, OBGRID partitions an orthogonal floor plaamectangles and then uses the previously
described rectangular methodology to design a layéawever an additional complication is
the need to ensure column line continuation throughhe building. This constraint is
achieved by using an ‘adjacency graph’, which upslatidjacent partitions during

initialisation and after evolution.

4.9 OBGRID an Orthogonal Buildings with Atria

This section contains a detailed description of OBGRID handles orthogonal buildings
with atria. It is acknowledged that this processasy similar to that for orthogonal buildings

without atria, however this section has been inetufibr completeness.
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4.9.1 Partitioning

The floor plan is partitioned in two stages usingsweep line algorithm Figurd-31.
However, event points are any reflex vertex onldbendary or any vertex on an atrium. It

should be noted that partitions do not ‘cross atoiaexample line ‘x’ in Figure4-31.

(a) First stage (k) Second stage
Figure 4-31 Polygon partitioning for orthogonal layout with atria

It is apparent that once atria are included, thenlver of partitions is dramatically
increased. This is because atria add additionaltguaints during partitioning. However the

additional partitions are required to retain coluaignment via the adjacency graph.
4.9.2 Adjacency Graph

An adjacency graph is associated with a floor plemng the methodology previously
described. For example see Figdr82. However it should be noted that internalaasie not
associated with an adjacency node. Thus columnrgggaon one side of an atria may not be

found on the opposite side.
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-— -

Figure 4-32 Adjacency graph for orthogonal layout with atia

4 .10lllustrative Example: Orthogonal Building with Atri a

This section provides an illustrative example of GHED designing an orthogonal floor plan
with atria. The parameters in the EA tableau Tabl® should be considered indicative
because the aim of this work is to develop a repragion rather than a complete building

design system.
4.10.1 Introduction

The following test case was designed to assess QB&Rperformance. Unfortunately,
unlike structural optimisation, there are not staddest cases. Therefore the layout shown in
Figure 4-33a was developed as was partitioned using treepvine algorithm described
above to give the adjacency graph shown in Figu38b.

o 65m = ——i o
i 1 2 3
o 35m N ]
50m|.-2Hm 20m R
|
10m m E_‘E___*@____*H
100m

) {a) Orthogonal layout with atria (b) Adjacency graph

Figure 4-33 Orthogonal layout with atria example

Table 4-5 EA Tableau for orthogonal building with atria example
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Objective Evolve example building designs for thgdut shown in
Figure 4-29a

Representation 3-part string

Initialisation Random initialisation (no seeding)

Raw Fitness Based on: column spacing compatibgitgl column
spacing uniformity

Selection Tournament (size = 2)

Major Parameters* P=1,M=100, G =150

Evolutionary Operators:

Reproductiopon 0.1

Mutation operator Point

Mutationyrop 0.3

Recombination operator]  One point crossover
Recombinatiogon 0.6

*P = Number of populations M = Population size ®ax number of generations
4.10.2 Results

The following 2 performance graphs showing the bagérage and worst fithess during an
indicative run for a short spanning system andsaudision of the results. Please note that

because OBGRID is a minimisation algorithm, a lofiteiess is considered beneficial.

0 10 20 30 40 50 60 70 80 D 100 110 120 130 140 150
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Figure 4-34 Best and average fitness

Figure 4-34 shows a much smaller spread between the avenag) best fitness when
compared to the previous example without atria fanda rectangular outline. This could be
because this problem is more challenging as itaznsitll partitions, compared to 5 for the
example without atria and 1 for the rectanguladioet The partitions are also much more
varied. For example, contrast the long, thin parti4, with the almost square partition 10.
Therefore after initialisation, the ‘best’ soluti only twice as good as the average (in the
rectangular layout problem the best solution hddnass of just under 8 while the average
was approx. 160!). So on reflection a closer spisagkpected. In spite of this, the best and
average fitness have the usual characteristicsbeéise improves in steps, while the average
gradually increases. This graph also demonstraigstihe increased number of generations
150 is not excessive, as better solutions are émttyy evolved until generation 135
(compared with generation 37 out of 50 in the megtéar example) reflecting this problems
difficulty again.

It is also important to note that elitism was uséth layout i.e. the best of generation
was always copied over to the next without modifaa Although this approach can hinder
the search by potentially focusing on local optirbacause this is a significantly harder
problem it was used after some experimentatiorcatdd its value (see Figude35). Figure
4-35 highlights some of the characteristics founithvelitism (if used in an appropriate
setting): although both fitness curves have theesawerall trend, without elitism it is more

ragged and returns inferior results.
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140

0 10 20 30 40 50 60 0 80 D 100 110 120 130 140 150

—e— Without —s— With

Figure 4-35 Comparison with and without elitism

Tbhe worst fitness graph (see Figur&6) shows a greater trend of improvement when
compared to the rectangular layout problem. Thigrabably because given that the problem
is more complex they have less chance of destrayiggod layout as these are harder to find
(where as for the rectangular problem, the ‘besititeon was actually quiet easy to locate).
Also the evolutionary operators are only appliecote partition per generation. Therefore

their effect is diminished because fitness is cating therefore they have less effect.
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Fitness
g

0 10 20 30 40 50 60 70 80 0] 100 110 120 130 140 150
Generation

Figure 4-36 Worst fithess

Figure 4-37 indicates the best layouts returned for each straktspanning system, all
spans are within their economic range. Howeverrasigusly noted, OBGRID does tend to

struggle evolving regular column spacings as thabar of columns increases.

{b) Medium (c) Long

Figure 4-37 Returned solutions for orthogonal building wih atria

4.10.3 Conclusion

This example demonstrates that OBGRID is capabkobiing orthogonal layouts including
atria and indicates one deficiency of this methodgl! the inclusion of atria tends to bias the

search towards shorter spanning systems becauseithiger of partition increases and thus
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each partition becomes smaller (when comparedectjuivalent layout without atria). And
as each partition is solved independently, therffdan’s average span length is reduced. This

could limit the performance of this approach widrywcomplex layouts.
4.11 Conclusions

The EA based methodology described in this chaptable to solve conceptual layout design
problems for orthogonal, commercial buildings whishan improvement over all existing
systems that are limited to rectangular floor plaftsis work achieves this, by partitioning
orthogonal floor plans using a sweep line algoritioncreate rectangular sections that can be
solved individually. Also to ensure column line tionity, an adjacency graph that associates
adjacent partitions, is used especially duringiah#ation and evolution. However the
inclusion of atria, to a floor plan, tends to ircse the number of partitions biasing the search
towards shorter spanning systems. This is becanse atria are included, the partitions
become smaller and as each partition is solvedpemgently the spans are reduced. This
could limit the performance of this approach wietry complex layouts however OBGRID
seems to handle the examples effectively, althotnghonly true test would be to trial

OBGRID over a period of months in a design office.
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5 Conceptual Geometric Design of ‘Geodesic-like’ Donse

5.1 Abstract

Dome layout design is a non-trivial task becausaryejoint and member must be located on
the dome’s external surface and not impinge on ittternal void. The only previous
stochastic methodology (Shea and Cagan, 1997)ewdhkis by creating a 2D truss that is
subsequently projected onto a predefined curvetheeir Therefore the solution is a 3D
object, but the search is conducted in 2D. Whils grojection’ or 2.5D technique reduces
the number of problem variables, by constrainirgttiird dimension to be dependent on the
planar layout, it also excludes a dome’s two mgtdrtant variables from the search: surface
area and enclosed volume. Thus the results, whegialy innovative, are typically sub-
optimal.

This chapter describes a new approach using afutewwary algorithm with string
representation that designs directly in 3D, witHate area and enclosed volume as the major
search parameters. The string representation escag®ort and joint positions, which are
converted into a dome by constructing its corredpanconvex hull. Once constructed, the
hull's edges become the structural members andeitsces the joints. Finally, structural
analysis is used to determine performance withencibntext of user-defined constraints. This
technigue avoids many of the problems experiengethé previous approach that suffers
when restrictive constraints such as the requiréncemaintain 1/8 symmetry are removed.

The aim of this chapter is to investigate existamgl develop new knowledge for dome
design. It should be noted that there is no obviooanection between the structure
investigated in this chapter and the last. Thiseisause this thesis is focused on investigating
how civil engineering structures can be represeungaag evolutionary algorithms. Therefore
domes were deliberately chosen because they ayeduéerent to buildings and thus the

research had to start at the beginning.
Keywords: geodesic domes, evolutionary algorithm, convek imdremental algorithm.
5.2 Introduction

Domes are a common architectural structure, synongnwith many landmark buildings

including St Peter’'s Basilica (Rome) and St PaGlahedral (London). Traditionally domes
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are created by rotating an arch about its’ veriocas. However, in the 1950’s a new approach

was proposed: Geodesic domes.
5.2.1 Geodesic Domes

Invented by Buckminster Fuller in 1954 (The Buckstar Fuller Institute, 2005), geodesic
domes have homogeneity in both member length arghlnangular incidence and are
considered by some to be the strongest, lightestnaost efficient building system (Motro,
1994). Geodesic dome geometry is usually based thmoseub division of a spherical surface
into triangles (because triangles are the simphest-deformable rigid shape). However,
geodesic dome geometry may also be based uponuthalisision of any Platonid¢ or
Archimedeah® solid. Perhaps one of the most famous geodesiesldsnthe Epcot Center in
Florida (Figureb-1).

Figure 5-1 Epcot Center (Florida)

There are four types of geodesic dome (Motro, 98dme (or skeleton) single layer
domes; truss or double layer domes; stressed skiresl; formed surface domes. However,
this chapter will only consider the first type.

13 Convex polyhedra with identical faces construotédongruent, regular polygons. There are exadtly f
Platonic solids the cube, dodecahedron, isosahedobshedron and tetrahedron.

14 Convex polyhedra that have a similar arrangemenbnintersecting regular convex polygons of twarmre
different types arranged in the same way about eactex with all sides the same length. There aactty
thirteen Archimedean solids (Weisstein, 2005).
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5.2.2 Geodesic Patterns

Geodesic domes based on spheres, start by inggtgygat circles’ onto the sphere (a process
that can create no more than 120 similar but ileegmiangles on the surface or a maximum
of 20 equilateral triangles). Alternate and triadomeakdowns (Motro, 1994re then applied

to this network of triangles (Figura2). In Figure5-2 ‘frequency’ refers to the number of
subdivisions per side of the original triangle. $taufrequency 2 breakdown subdivides each

side of the original triangle into two. Once a Ik&@vn has been applied, the geodesic layout

AV -V

Frequency 1 Frequency 2 Frequency 3 Frequency 4

Is complete.

Triacon Geodesic Breakdown

AV

Frequency1 Frequency2 Frequency 3 Frequency 4

Alternate Geodesic Breakdown
Figure 5-2 Triacon and alternate geodesic breakdowns

It should also be noted that this work only createmes with geodesic characteristics not
strict geodesic domes. This is because geodesgkdiwans are not explicitly enforced
therefore there the evolved structures may not radttegeodesic patterns (as defined by the
triacon and alternate breakdowns). Thus the solstiill be described as ‘geodesic-like’.
Geodesic breakdowns cannot be enforced in this wmrkause the representation does not
consider shapes, only points. However the reprasentis capable of evolving spatially

innovative and structurally efficient designs.

5.3 Related Work

Within the field of structural design using stodi@search algorithms, very little research has
been published on dome design. Therefore thisaeetill discuss papers by Porter et al
(1995) and Shea and Cagan (1997) in detalil.
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Porter et al (1995) use a genetic algorithm to mae the length and location of
geodesicS (not geodesic domes) on complicated curved swsfathdey demonstrate a
technique capable of producing results comparabléhé theoretical optima for spherical
surfaces. However, they only calculate a lineao$geodesics (between two points), so each
geodesic links to at most two others (one at eacl). én dome design however, an arbitrary
number of members are connected at each strugaimn&l Therefore their technique is not

appropriate for dome design.

Shea and Cagan (1997) apply simulated annealingp@trick, 1973)combined with a
shape grammar representation to dome design, &gwdbey call ‘shape annealing’. Their
technique, constructs a 2D truss that is projecetb a predefined 3D curved surface
constraining the third coordinate (z) to be depehda the other two (X,y). Therefore, search
is conducted within a 2D design domain. However ilevithey demonstrate that shape
annealing is capable of generating novel solutibas are comparable to those produced by
other shape optimization techniques (Pedersen,)19#8jection hampers the search by
removing two of the most important variables: eselb volume and surface area. Therefore,
once some of the constraints are removed e.g. mésigquired to maintain 178symmetry;
most of the evolved solutions bear little resemtdato geodesic domes. For example, a few
extremely large members may dominate the dome athie evolved structure is actually

more like a pyramid or simply not resemble a doFigure5-3).

Figure 5-3 Example results from Shea and Cagan (1997)

5.4 Convex Hulls

Computational Geometry is the design and analysgsfiwient algorithms (usually computer

based) for solving geometric problems (Shamos, 1@rl convex hulls are one of its

15 A locally length-minimising curve.
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fundamental structures. The following section wghovide an overview of convex hulls
including what they are, their applications and sassues related to their construction while

the subsequent section will describe a hull corstrn algorithm in detail.

5.4.1 What are convex hulls?

The convex hull of a finite set of points is corsed to be the convex polyhedra with the
smallest volume that encloses that set (Figiud@. This work makes extensive use of convex
hulls to create dome from a set of vertices by gighre incremental algorithm, which are

described in the following sections.

(a) Jet of points & (b CHES
Figure 5-4 Convex hull CH(S) of S
5.4.2 Applications of convex hulls

Convex hulls produce convex approximations of nonvex point sets. Therefore they are
commonly used in the following applications (thist lis by no means exhaustive, merely

indicative):

» Pattern recognition: A complex shape may be approximated via its conwatk and
compared to a database of known shapes (Laszl6).199

* Motion planning: A robot may approximate its footprint via a convaxl to simplify
terrain negotiation (Laszlo, 1996).

e Computer animation:In computer games etc. collision detection maynbgroved by
approximating shapes to their convex hulls and @elyparing the actual shapes if the

hulls indicate a collision (de Berg et al. 1997).
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5.4.3 Polyhedra

This sub section contains a general discussiontgimyhedra: the shape formed by convex
hulls. Polyhedra are considered to be three-dinbeasiobjects composed of a finite number
of flat faces, edges and vertices (Figiéa). They can also be described as the 3D
generalisation of a 2D polygth Within this work, every dome will be convex andvk
triangular faces: technically a simplicial compiexHowever, domes will be referred to as

convex polyhedra.

Werlex wi

w1 I w2
COTTE (k) Tetrahedron with (c) Right hand rule
@) aee CCW ordering

Figure 5-5 Polyhedral properties

Polyhedral faces (Figurg-5a), in this work, have an important feature:ytineaintain
their vertices so that when ‘viewed’ from the eidervertices have a counter clockwise
(CCW) ordering ensuring the right hand rule alwgyslds a vector normal to the face,
pointing away from the polyhedron (O’Rourke, 1998his is not simply for aesthetic

reasons, as the right hand rule is used judiciodisting convex hull construction.
5.4.4 Signed volumes
The volumeV of a pyramid with a base arBaand height can be calculated by:

B.h
V=—o 1
3 (1)
However (Eg 1) does not allow for the direct comagion of tetrahedral volume from

vertices (as required during this work). TherefoveJumes will be calculated via the

'® The region of the plane bounded by a finite cditecof line segments, forming a simple closed eurv

" Space with a triangulation.
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determinant form of the cross product. For examplketrahedron defined by four vertides

Vi, Z) has the volume:

X Y 74
X
V - l 2 y2 ZZ (2)
A% Vs 7
Xy Yo 44

The volume calculated by (Eq 2) is described agé&l’ because it can be positive or
negative. Signed volumes form an integral part ainyn algorithms in computational
geometry because they remove the need to perfoentdmplex calculations to determine
angular relationships between points (especiallgrwbonsidering spatial relationships). For
example, whether a point is to the left or rightasfother. During this work, a negative
volume is generated when a fdderms a tetrahedron with a pointhat can ‘see’ its vertices
in a CCW manner (Figure-6).

o o volume
b
F L 1 h'\.

;\ Megative
\
\
\

Figure 5-6 Negative volume generated by CCW face f and ptip
5.4.5 Visibility

The incremental algorithm is based upon determinimgyvisibility of a face from a point.
Therefore, a simple yet robust routine is requirkdacef is considered to be visible from
point p, iff'® a line drawn fromp to some poini interior tof does not intersect with the
polyhedra at any point other than For example in (Figur®é-7), f is visible fromp’ but

invisible fromp”.

184t and only if".
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Figure 5-7 Example visibility of face f from points p’ andp”

Visibility can also be formally defined using s€E 3). It should be noted that (Eq 3)
defines a face that is ‘edge on’fdo be invisible. A face is considered to be ‘edgéwhen

only its edge is visible from i.e. the face’s vertices and pomare coplanar.
iff pxn CH ={x} (3)
The visibility of a facd from a pointp is determined by calculating the signed volume of

the tetrahedron defined hyandp. f is considered to be visible frop iff the signed volume

IS negative.

5.5Incremental Algorithm in 2D

Several algorithms have been developed to cons@ucbnvex hull (O’Rourke, 1998).
However this chapter only considers one: the inergal algorithm. The following section
discusses the incremental algorithm in detail,tisigrwith an overview and an illustrative

example in 2D. The following section describesithplementation for this work.
5.5.1 Overview

The incremental algorithm constructs the convex Gl of a finite set of point§ by taking a
subsetS;, of S and constructing its convex hiliH(Sp. Having constructe@€H (S the
algorithm adds an additional point &, and updates the hull (if required). This process
continues until all points from the original setre included in the convex hull. Figuse8

illustrates the incremental algorithm in 2D.
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Figure 5-8 lllustrative example of the incremental algoribm in 2D

5.5.2 lllustrative example

This section provides an illustrative example ofeaolutionary algorithm combined with a

2D convex hull algorithm. The aim is to evolve thegest possible circle within a square of
side length 200m. A string representation was usedaining points randomly located in the
problem domain. The EA tableau (Tabtel) details the values applied to the key
evolutionary parameters however it should be ndtet no attempt has been made to
optimise any values. For more information on thel@onary operators and fitness function,

please review the subsequent sections.

Table 5-1 EA tableau for 2D illustrative example

Objective Maximise enclosed area, minimise perimete
Representation String containing random points
Initialisation Random initialisation (no seeding)

Raw Fitness Based on: enclosed volume and surfeee a
Selection Tournament (size = 3)

Major Parameters P=1,M=200,G =60
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Evolutionary Operators:
Reproductiopon 0.1
Mutation operator(s) Mutate existing point, add npeints, delete existing
points
Mutationyon 0.4 (the actual mutation operator is selectedmdom)
Crossover operator n point crossover
Crossovefion 0.5
5.5.3 Results

Figure 5-9 shows the fitness of the best of generationnduthe run, while (Figuré&-10)

indicates the best layout found in generation B4 (ight grey circle indicates the optimum).
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Figure 5-9 Performance graph for 2D example

Figure 5-10 Best of generation 54 for 2D example
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5.5.4 Conclusion

Although simple, this example demonstrates how céffe the combination of an
evolutionary algorithm and convex hull algorithrmdae, as the best solution has an enclosed
area (31392.4 fyn within 0.1% of the optimum, while the perimet&39.99 m) is within
1.8%.

5.6 Incremental Algorithm in 3D

The previous section provided an overview of the@amental algorithm and an illustrative
example in 2D, however domes are a 3D structurerefre the following sections describe
how the incremental algorithm can be implemente8Dn The implementation described is a
O(n®) algorithm. This means that if the number of ppmtloubles, algorithm execution time
will increase four-fold. A possible improvementliscussed in the future work section of this

thesis.

In this work, the initial subs&, always contains just four points: three non-cetin’
points and a fourth non-coplafpoint. This ensures that the initial convex hslbiways a
tetrahedron: its base formed by the non-collineaints and its apex by the non-coplanar

point. If Sdoes not contain these points, it is 2D and icMalr this problem.

When an additional poirg is added td&,, the issue of whether to update the existing
convex hullCH(S.p involves considering the question: Are there aages ofCH(Sup

visible fromp;?

* No. If none of CH(Sup's faces are visible frorp;, thenp; must be internal t€H(Suy.
ThereforeCH(Sup) is still valid, as it encloses all points and r@msaunaltered.
Yes If some ofCH(Sy’s faces are visible from;, thenp must be exterior t&€H(Sup).
ThereforeCH(Syyp) is invalid, because it no longer encloses all {goamd must be updated

to includep;.

¥ Three or more points are collinear if they liethe same straight line.

20 Four or more points are coplanar if they lie om shme geometric plane.
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5.6.1 Updating the convex hull CH.;

This section describes how an existing convex tsulipdated to include a new point. The
convex hull is updated in two stages: locating fioeizon and incorporating the external
point.

Conceptually, the external poiptdivides the existing hull into two regions: thesibie
and the invisible. The horizon (de Berg, 200®)formed by the series of edges that are
adjacent to both a visible and invisible face (FFgg6-11) and can be located once the

visibility of every face fronp; has been determined.

To incorporate the external point into the exigtoonvex hull, a new set of new faces
must be appended to it. All new faces will be tgallar, constructed from a horizon edge and
have an apex g (Figure5-11). After building these new faces, the origifsales (that were
visible from p;) are now underneath the new faces and should letede(along with any
superfluous edges and vertices). At the end ofggfosess convex hull is completely updated
(Figureb5-11).

Initial Convex Hull First face appended Mew cone constructed
(a) {b) {c)

Figure 5-11 Updating an existing hull (adapted from O’Rouke 1998)

At this point, it is worth returning to the defiloin of visibility that considers ‘edge on’
faces to be invisible (se&4.5 Visibility). If ‘edge on’ faces are considdréo be invisible,
then any new faces will be simply appended to exjsiedge on’ faces. However, if ‘edge
on’ faces are considered to be visible, then tigerahm will attempt to remove them and

replace them with a single new face. Unfortunatélg, new face may not be triangular or
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result in the existing face fracturing into a seref smaller faces making the algorithm
significantly more computationally intensive (der§e2000). This is why ‘edge on’ faces are

treated as invisible (in this work).

5.7 Current Work

This work uses an evolutionary algorithm (EA) wikring representation to search for

potential solutions and following sections descitbestructure and function.
5.7.1 Representation

The representation allows potential solutions tartmduded in the EA’s search and several
canonical forms have been published including gtaind trees. This section discusses how a

representation was developed for geometric domigrles

Although domes are skeletal structures contaijongs and loads, this work considers
the members to be implicitly defined by the joiaydut. This is because members must form
the external surface and not impinge on the intero@. Therefore a member can only span
between *‘adjacent’ joints. Geodesic domes are @saposed of triangles, again limiting the
joints a particular member can span to. In lightha$, this work considers dome design to be
more of a parametric problem. Once the joint layd#s been evolved, member
configurations can be determined. Parametric problare generally best represented by
string genomes. Therefore this work uses a 3-gestiong representation (Figusel2), with
each gene encoding a potential vertex on the cohudix Genes are composed of software

objects as shown in Figukel3 (supports are considered to be vertices a0y =

It is acknowledged that section 1 and sometimetiase?2 (when user defined support
locations are used) could be removed from the genbatause they are constant for all
individuals. However they have been retained bex#usy add ‘transparency’. Transparency
is the idea that the user should have a singleeefe to for an individual (as in nature where
all cells contain the complete genome rather thest jhe sections appropriate to its own
function). For example, if the location and magdéwf loads is removed from the genome

where should it be placed and why?

» Section l:encodes the location of and magnitude of loadsrthegt be supported by the

structure (in addition to its self weight).
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» Section 2:encodes the location of the dome supports. Dompastgprepresent locations
at which the dome is attached to the ground or @uipyy structure. In this work, dome
supports are vertices in the plane z = 0. Supp@tsbe user specified or searched for
during the evolutionary process. For example if tiser has predetermined support
locations then it is pointless for the algorithmstarch for the optimum because they are
fixed. However if the user has no preference sugpoations are included in the search.

» Section 3:encodes the location of potential dome verticéugrural joints). For non-
trivial structures this is the largest section led genome. However, each gene is only a
potential vertex because they may not lie on theogee’s convex hull (as generated by

the incremental algorithm) and therefore may nonfthe dome.

User Defimed Loads DPoteritial Wertices
A . - e ..
SS00BY (100, 1000, 10007 (0.0, 0.0 (0.0, 10.0% (1000, 1000y (3.0,7.0,50m 80,230,600
e =
—\ﬂ\._.-"
Diopne Supports

Figure 5-12 Example genome for dome design

Verte:3D)
et double
+zet V) double
+zet Z0):double
+setZ{double) soid
+set¥idouble)woid

+setdidouble) soid
£

Load
+zetLoad() double
+setLoad(double) ~roid

Figure 5-13 Class diagram for dome genes
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5.7.2 Genome ordering

The incremental algorithm has an interesting featas it gradually constructs the convex
hull, the final structure is dependent on the orndewhich the vertices are added. So two
convex hulls constructed from the same set of aestibut with different orderings, could

have identical vertices but different arrangemeritdaces and edges and thus different

structural responses. Therefore, the EA must cengjenome ordering during its search.
5.7.3 Initialisation

As this work is aimed at the conceptual designestége initial number of input parameters
has been kept to a minimum: the user is only reguio input the location of any loads and
define the size of the circular base. If requireel tiser can stipulate the number and location
of the dome supports and ensure that they are amngtr all individuals but if not, the
algorithm will search for appropriate support pesis during the run.

5.7.4 Initialisation of dome supports

Dome supports represent the locations at whichdin@e is attached to the ground or
supporting structure. Some structural optimizatechniques specify support positions using
a ground structure (Dorn et al, 1964), but this b@s or inhibit the search (especially when
an asymmetric or lateral loading is applied to dieene). Therefore this work, removes the

need for a ground structure including number aedtion of supports in the search.

Support locations are a series of randomly geedrpbints on the circumference of the
circular base (the base circumference is the samallfindividuals) generated by selecting
two numbers¢; andx, from a uniform distribution between -1 and 1 (emsyithat the sum of
the square of both numbers is not greater thargoaleo 1). The corresponding Cartesian

coordinates related tq andx, are given by (Eq 4) (Weisstein, 2005).

2 —x? 2.X% X2
e VT @
XX X X

NB z coordinates are not generated as the bassusned to lie on the plane z = 0.
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5.7.5 Initialisation of dome vertices

Vertices are generated from random points withaulae that is centered on the dome’s base
and with a side length of equivalent to the diamefethe base. This procedure is used to
prevent the EA searching in completely unproductiggions (a large number of useless
points will still be generated, however these nhesincluded to allow the EA to explore the
search space). To prevent additional supports bgémgrated, vertices may not lie on the
domain boundaries. While this does improve thecteat does prevent the algorithm from

evolving domes, which has sections wider than #seb

At the outset each individual has a random nunatberertices in its genome (an upper
limit of 100 vertices and lower limit of 1 was geaky used in this work, however this was
purely arbitrary and no attempt was made to openiiz However because the dome is only
constructed from vertices that lie on the convel, itudoes not necessarily follow that all of

these will be used to construct the dome. Thisceause bloat.
5.7.6 Evolutionary operators

Within the EA’s search, the loads section of theagee is unaffected (as these loads must be
carried by every solution) while the crossover andtation operations are individually

applied to the two remaining sections.

 Recombination An ‘n-point’ crossover operator, which is a genesed version of one-
point crossover with several cut points, is empibye this working creating variable
length genomes. An example n-point crossover opersitshown in Figur®-14 although

integer genomes are used for clarity.
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Chald & Chald B

Figure 5-14 Example n-point crossover

Mutation: Several mutation operators are used in this sygpemt, shuffle, addition and
deletion. Point mutation (Figure-15) randomly selects a gene to alter and then uses the
same procedures as described during initialisabogenerate a new point depending on
whether a support or vertex is selected. Shuffl¢atman reorders a length of the genome
(Figure 5-15). This operator is included because genomeriomg is important thus a
solution maybe improved by shuffling the genes. iidd mutation adds a random
number of new points while deletion removes a ramdwmber (although there must
always be at least 4 vertex in the genome).

Parent Parent
Select Parent  [O[T[O[1O[T[O[L]0] Select Parent  WO[0[O[0[0[0[0[0]
Select Section |D|1|D|1|D|1|D|1|D| Select Point |D|D|D|$|D|D|D|D |D|
Shuffls [0t Jt [ ]ajafol o Wtate DRI ERRR ]
Fesult [t ]e]t]afa]a]t o] Resnlt (] ] ]

hald Child

(&) Shuffle (k) Point

Figure 5-15 Mutation operators for dome design
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5.7.7 Selection

This work uses a conventional tournament selectiechnique (Goldberg, 1989). In
tournament selection a predetermined number oViddals are randomly selected from the
population and ranked according to fitness, with fittest individual being chosen. As the
tournament size is increased, the selection pressuncreased as it favours the chance of a

fit individual being selected.
5.7.8 Fitness function

A fitness function is used by an EA to evaluate hgaod’ a particular solution is. This work
uses enclosed volume and surface area as its wigjectives, which are combined with a
structural parameter that seeks to ensure constrairth as allowable buckling, tensile and

compressive stresses are not violated (it alsoded a weight component).

To search for the optimum number and locationupip®rts the EA initially generates a
random number of supports and uses structural Wweiggh stress constraints to guide it. This
is because for every additional support there nhgstat least two additional structural
members which increases the overall weight: whike temoval of a support increases the
loads carried by each remaining structural membechvmay violate a structural constraint.
Both of these scenarios reduce the individual'ses and hence the algorithm is guided

towards an optimum.

Before an individual’s fitness can be calculatdok vertices contained in the genome
must be converted into a domical structure. Thee@ss is accomplished by constructing the
genome’s convex hull, via the incremental algoriti®mce a convex hull is constructed, its
edges become the structural members of the domenddhuilt the dome, structural analysis
Is used to determine whether it performs within toastraints specified above, if not the
individual is penalized using a quadratic penaltyction (Richardson et al, 1989).

Finally the dome’s surface area and volume raiaetermined along with its overall
weight. At the end of this process an all individuare ranked according to the three main
criteria (with position 0 being considered the hean individual's fitness is based upon the

cumulative positions by ranking. Therefore thia isiinimization problem.
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Shea and Cagan (1997) introduced several additidmjectives into their fithess function
such as an aesthetic value and group penaltieseti@iuraged the evolution of member
clusters with the same length or cross sectiores.arhese objectives have not been included
in this work, as the requirement to minimize thefate area to volume ratio encourages the

evolution of structures with similar member lengths

However, there is one important omission from thk that was present in Shea and
Cagan’s technique: assigning different cross seatiareas to individual members. This work
applies one cross sectional area to the wholetstei€although it can be modified during the
evolutionary process). The genome applied during Work does not consider individual
members, as an explicit parameter therefore theneoi way of storing individual cross-
sectional areas for exchange during the evolutiopancess. Geodesic domes aim to have
homogeneity with regard to member sizes, so th®isuch a major issue.

5.7.9 ‘Junk’ genes

The fitness function does not stipulate that alltted genes contained in an individual’s
genotype are expressed in the phenotype i.e. hqio#&tntial vertices in section 3 of the
representation are expressed in the final domes i§hhecause some potential vertices will be
internal to the convex hull and hence not preserthé dome. These genes are called ‘junk’
genes and it is possible for the genome to comamerous junk genes. To illustrate this
concept, consider the convex hull created from as@0Dcontaining 4 points (Figutel16). In
Figure 5-16 the convex hull is formed by three verticaseréfore the fourth point is

superfluous i.e. a ‘junk’ gene.

B & B Junlk Gene
C'D
5 o 3
D D
LB |C|[D LB |C (D LB |C (D

Figure 5-16 Example genome containing a junk gene in donaesign
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The fitness function does not penalize a solutmrhaving junk genes because they are
irrelevant to the phenotype however they do addgaifgcant computational overhead.
Unfortunately junk genes cannot simply be remousebause this could potentially cause
vital information to be lost. As a compromise, lyefa solution is evolved all junk genes are
identified and a deletion operator applied (eactkjgene has a 50% chance of deletion). If

this stage is not included, the genome tends tat lale per genetic programming.

5.8 lllustrative Example

This section provides an illustrative example & slearch technique described in this chapter.
The aim of the experiment is to evolve a solutioat tmaximizes the enclosed volume while

minimizing the surface area at the same time.
5.8.1 Introduction

The following test case was designed to assesslsparformance, as there are no standard
test cases. The EA tableau (Tabl®) details the values applied to the key evolutionary
parameters however it should be noted that no attdmas been made to optimise any
parameters related to evolutionary operators.

Table 5-2 EA Tableau for dome design

Objective Maximise enclosed volume, minimise susfacea
Representation String containing points

Initialisation Random initialisation (no seeding)

Raw Fitness Based on: enclosed volume and surfeee a
Selection Tournament (size = 3) with Elitism

Major Parameters P=1 M=400,G=25

Evolutionary Operators:

Reproductiopon 0.1
Mutation operator Point, shuffle, addition and diele
Mutationyon 0.4
Crossover operator N point crossover
Crossovesion 0.5
5.8.2 Results

The performance graph (Figugel17) shows the fitness of the best of generatianng the
run, while (Figures-18) indicates the best layout evolved.
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Figure 5-17 Performance graph for dome example

Figure 5-18 Example dome design for illustrative example
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5.8.3 Conclusion

This example demonstrates how the proposed refedsenmaybe used to evolve ‘geodesic-

like’ domes.
5.9 Conclusions

This chapter demonstrates an EA combined with avesorhull algorithm (incremental
algorithm) to create a system capable of desigigagdesic-like’ domes directly in 3D. It is
shown that this produces viable and efficient stmat designs whilst avoiding many of the
problem experienced by the previous approach tr@gegied a 2D truss on to a predefined
curved surface. However because the vertices seofithe genome only contains potential

genes, the genome has a tendency to bloat (cdatgem numbers of superfluous genes).
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6 Summary and Future Work

6.1 Introduction

This chapter will consider the key findings, ofslinesis, in relation to its original objectives
and discuss possible directions for future worke Bmm of this work is to investigate how

some civil engineering design problems, in pardcustructures, can be represented in
evolutionary algorithms. Many representations hbgen used in design each with its own
strengths and weaknesses: strings are generalty fasgparameters based problems, voxels
for shape discovery, while trees and graphs are @se skeletal structures. Within civil

engineering design, the most commonly studied t&tracis the truss and three main
representations have been used, each with theirpo@asiand cons. However in general trees
and graphs are the most suited to trusses bechegepérmit the adaptability required for

topological design: as strings are linear strugtunéth each element having at most two
connections: left and right. Unfortunately, mostygbal structures contain elements that
connect to an arbitrary number of elements. Theeefogher dimensional representations

such as trees or graphs have a more appropriate for

6.2 Summary of Investigative Work Versus Original Objedives

This thesis had two main objectives, each will ramwconsidered.

6.2.1 Investigate existing and develop new representatiofior orthogonal building

design

Chapter 4 considers the conceptual layout desigomimercial office buildings. It starts with
a review of the existing work in this field, all afich are limited to rectangular floor plans.
A 3-section string representation with real encgdis proposed as this ensures column
alignment is retained during evolution, while paiygpartitioning is used to decompose floor
plans. This technique can evolve suitable solutfon®rthogonal buildings with atria. This is

an improvement over all previous research.
6.2.2 Investigate existing and develop new representaticior dome design

Chapter 5 demonstrates an evolutionary algorithmbioed with a convex hull algorithm
creating a system capable of designing ‘geodelsgt-iomes. However this work will only
create domes with geodesic characteristics not geedesic domes because geodesic
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breakdowns are not explicitly enforced. The presiapproach projected a 2D truss on to a
predefined curved surface losing the key variabfesurface area and enclosed volume. This
work searches using these variables and produces mome-like’ results. However the

representation has a tendency to bloat becauseethiees in the genome are not guaranteed

to be included in the final structure.

6.3 Future Work

This section discusses the possible directionfutore work.
6.3.1 Orthogonal building design

While this work proposes a representation capabsleing an orthogonal layout it will not
handle an irregular one, therefore this is mostiaissarea for future development (however
this work could form the basis of such a systemrme @ossible approach to consider would be
to divide an irregular layout into rectangles aight-angled triangles (rather than simply
partitioning a layout in rectangles). Triangulartfieons could be represented by a similar
genome arrangement to that already described, hevwbe x and y column spacing would
only apply to the opposite and adjacent sides. dther major area for improvement is the
fitness function. At the present time this assignsingle numerical value to each solution.
However if this representation to be used on realldvproblems, a multi-objective fitness

function might be more appropriate.
6.3.2 Dome design

At present this work only considers enclosed volusugface area and a structural component
including structural response of the dome fromwtdght and applied loads and weight. A
more realistic fithess function could include wilwhding etc and perhaps incorporate the
material used to cover the dome. On a more practata, the convex hull algorithm could be
improved to give O(n log n) performance. To achi¢ivis, the algorithm must maintain a

‘conflict graph’ indicating which faces are visilée Berg et al, 1997).

Also the proposed system has only been appli¢detalesign of domes but theoretically
it could be used to design any object that is meguio have a continuous, convex surface for

example aircraft nosecones.
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