
David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - i -

Abstract

The aim of this thesis is to investigate how some civil engineering design problems, in

particular structures, can be represented using evolutionary algorithms (EA) and contains two,

independent experimental chapters on building layout design and geometric dome design (an

introduction to EAs and design is also provided).

 Civil engineering design problems are typically approached using traditional techniques

i.e. deterministic algorithms, rather than via stochastic search such as EAs. However EAs are

adept at exploring fragmented and complex search spaces, such as those found in design, but

do require potential solutions to have a ‘representation’ amenable to evolutionary operators.

Four canonical representations have been proposed including: strings (generally used for

parameter based problems), voxels (shape discovery), trees and graphs (skeletal structures).

 Several authors have proposed design algorithms for the conceptual layout design of

commercial office buildings but all are limited to buildings with rectangular floor plans. This

thesis presents an evolutionary algorithm based methodology capable of representing

buildings with orthogonal boundaries and atria by using a 3-section string with real encoding,

which ensures the initialisation and evolutionary operations are not too disruptive on column

alignments encoded via the genome. In order to handle orthogonal layouts polygon-

partitioning techniques are used to decompose them into rectangular sections, which can be

solved individually. However to prevent the layout becoming too discontinuous, an

‘adjacency graph’ is proposed which ensures column line continuity throughout the building.

 Dome geometric layout design is difficult, because every joint and member must be

located on the external surface and not impinge on the internal void. This thesis describes a

string-based representation capable of designing directly in 3D using surface area and

enclosed volume as the major search parameters. The representation encodes support and

joint positions, which are converted into a dome by constructing its corresponding convex

hull. Once constructed the hull’s edges become the structural members and its vertices the

joints. This avoids many of the problems experienced by the previous approach, which suffers

when restrictive constraints such as the requirement to maintain 1/8th symmetry are removed.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - ii -

Declaration

Declaration:

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed ……………………………………………………………………………. (candidate)

Date …………………………………………………………………………….

Statement 1:

This dissertation is the result of my own independent work/ investigation, expect where

otherwise stated.

Other sources are acknowledged by explicit references. A bibliography is appended.

Signed ……………………………………………………………………………. (candidate)

Date …………………………………………………………………………….

Statement 2:

I hereby give consent for my dissertation, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed ……………………………………………………………………………. (candidate)

Date …………………………………………………………………………….

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - iii -

Acknowledgements

I would like to express gratitude to my supervisors Prof J.C. Miles and Prof W.A. Gray for

their tireless support and guidance during this research project and the Departments of

Engineering and Computer Science at Cardiff University for sponsoring me.

 I must also acknowledge the continual encouragement given by my mother and brother

over the years. It certainly gave me the lift I needed to complete this work.

 Finally, I need to thank my incredibly long-suffering girlfriend Helen who has endured

the most and deserves a break from me droning on about computers and evolutionary

algorithms. You are my guiding star.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - iv -

Contents

ABSTRACT ...I

DECLARATION... II

ACKNOWLEDGEMENTS.. III

CONTENTS..IV

LIST OF FIGURES ...IX

LIST OF TABLES ... XII

LIST OF TABLES ... XII

LIST OF ABBREVIATIONS...XIII

LIST OF ABBREVIATIONS...XIII

1 INTRODUCTION.. 1

1.1 AIM ... 1

1.2 OBJECTIVES... 1

1.3 ARRANGEMENT OF THESIS.. 1

1.3.1 Chapter 2: An overview of evolutionary algorithms.. 1

1.3.2 Chapter 3: Representing civil engineering design problems in evolutionary

algorithms... 2

1.3.3 Chapter 4: Conceptual layout design of orthogonal commercial buildings...... 2

1.3.4 Chapter 5: Conceptual geometric design of ‘geodesic-like’ domes 3

1.3.5 Chapter 6: Summary and future work.. 3

2 AN OVERVIEW OF EVOLUTIONARY ALGORITHMS............. 4

2.1 ABSTRACT... 4

2.2 INTRODUCTION.. 4

2.3 WHY HAVE SO MANY SEARCH ALGORITHMS BEEN DEVELOPED?.. 6

2.4 BIOLOGICAL INSPIRATION FOR ALGORITHMS... 6

2.4.1 Darwin’s theory of natural selection ... 7

2.4.2 Phenotype-genotype duality ... 8

2.5 EVOLUTIONARY ALGORITHMS .. 8

2.5.1 Why use evolutionary algorithms?... 8

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - v -

2.5.2 Representation.. 9

2.5.3 Representation space.. 10

2.6 THE BASIC EVOLUTIONARY ALGORITHM.. 12

2.6.1 Overview... 13

2.6.2 Population- Representation independent component 14

2.6.3 Fitness function- Representation independent component............................... 14

2.6.4 Selection- Representation independent component.. 15

2.7 TERMINATION CRITERION- REPRESENTATION INDEPENDENT COMPONENT...................... 17

2.8 INITIALISATION - REPRESENTATION DEPENDENT COMPONENT... 17

2.9 EVOLUTIONARY OPERATORS- REPRESENTATION DEPENDENT COMPONENT..................... 17

2.10 EXPLORATION VS. EXPLOITATION ... 18

2.11 IMPLEMENTING EVOLUTIONARY ALGORITHMS ... 18

2.11.1 Evolutionary Programming..18

2.11.2 Evolutionary Strategies .. 20

2.11.3 Genetic Algorithms... 21

2.11.4 Genetic Programming .. 21

2.12 DISADVANTAGES OF EVOLUTIONARY ALGORITHMS ... 23

2.13 CONCLUSIONS... 24

3 REPRESENTING CIVIL ENGINEERING DESIGN PROBLEMS IN

EVOLUTIONARY ALGORITHMS.. 25

3.1 ABSTRACT... 25

3.2 INTRODUCTION.. 25

3.2.1 Characteristics of civil engineering design.. 26

3.2.2 Decision Support Systems for Conceptual Design... 27

3.3 REPRESENTATION.. 27

3.4 STRING REPRESENTATION... 28

3.4.1 Binary-encoded string .. 29

3.4.2 Integer-encoded string ... 29

3.4.3 Real-encoded string.. 30

3.5 VOXEL REPRESENTATION.. 30

3.6 TREE REPRESENTATION... 31

3.6.1 Yang and Soh’s (2002) tree representation.. 32

3.6.2 Advantages of a tree representation... 33

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - vi -

3.6.3 Disadvantages of a tree representation ... 33

3.7 GRAPH REPRESENTATION.. 35

3.8 OTHER REPRESENTATIONS.. 36

3.9 REPRESENTATION AND TRUSS DESIGN... 36

3.9.1 Truss optimisation versus design ... 37

3.9.2 Shrestha and Ghaboussi (1998) ... 39

3.9.3 Yang and Soh (2002) .. 40

3.9.4 Azid and Kwan (1999).. 42

3.10 CONCLUSIONS... 42

4 CONCEPTUAL LAYOUT DESIGN OF ORTHOGONAL COMMERCIAL

BUILDINGS ... 43

4.1 ABSTRACT... 43

4.2 INTRODUCTION.. 43

4.3 RELATED WORK.. 44

4.3.1 BGRID.. 45

4.4 OBGRID... 45

4.4.1 Column Layout ... 46

4.4.2 Structural Systems.. 46

4.4.3 Environmental Strategy (Ventilation) .. 46

4.4.4 Services Integration.. 47

4.4.5 Clear floor-to-ceiling height .. 47

4.4.6 Floor-to-floor height .. 47

4.4.7 Initial User Input.. 48

4.5 OBGRID AND RECTANGULAR BUILDINGS.. 48

4.5.1 Representation.. 48

4.5.2 Initialising the genome for a rectangular floor plan.. 50

4.5.3 Evolutionary Operators.. 52

4.5.4 Selection ... 53

4.5.5 Fitness function .. 54

4.5.6 Running the algorithm.. 54

4.6 ILLUSTRATIVE EXAMPLE: RECTANGULAR BUILDING .. 55

4.6.1 Introduction.. 55

4.6.2 Results .. 56

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - vii -

4.6.3 Conclusion.. 59

4.7 OBGRID AND ORTHOGONAL BUILDINGS ... 60

4.7.1 Representation.. 60

4.7.2 Polygon Partitioning.. 61

4.7.3 Sweep Line Partitioning Algorithm.. 61

4.7.4 Adjacency Graph.. 62

4.7.5 An Alternative Partitioning Algorithm... 65

4.7.6 Initialising an orthogonal genome ... 66

4.7.7 Evolutionary operators .. 68

4.7.8 Fitness function .. 69

4.8 ILLUSTRATIVE EXAMPLE: ORTHOGONAL BUILDING .. 69

4.8.1 Introduction.. 69

4.8.2 Results .. 70

4.8.3 Conclusion.. 74

4.9 OBGRID AN ORTHOGONAL BUILDINGS WITH ATRIA ... 74

4.9.1 Partitioning .. 75

4.9.2 Adjacency Graph.. 75

4.10 ILLUSTRATIVE EXAMPLE: ORTHOGONAL BUILDING WITH ATRIA 76

4.10.1 Introduction.. 76

4.10.2 Results .. 77

4.10.3 Conclusion.. 80

4.11 CONCLUSIONS... 81

5 CONCEPTUAL GEOMETRIC DESIGN OF ‘GEODESIC-LIKE’ DOME S......... 82

5.1 ABSTRACT... 82

5.2 INTRODUCTION.. 82

5.2.1 Geodesic Domes... 83

5.2.2 Geodesic Patterns .. 84

5.3 RELATED WORK.. 84

5.4 CONVEX HULLS... 85

5.4.1 What are convex hulls? .. 86

5.4.2 Applications of convex hulls... 86

5.4.3 Polyhedra ... 87

5.4.4 Signed volumes... 87

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - viii -

5.4.5 Visibility ... 88

5.5 INCREMENTAL ALGORITHM IN 2D... 89

5.5.1 Overview... 89

5.5.2 Illustrative example .. 90

5.5.3 Results .. 91

5.5.4 Conclusion.. 92

5.6 INCREMENTAL ALGORITHM IN 3D... 92

5.6.1 Updating the convex hull CHi-1 .. 93

5.7 CURRENT WORK ... 94

5.7.1 Representation.. 94

5.7.2 Genome ordering.. 96

5.7.3 Initialisation ... 96

5.7.4 Initialisation of dome supports... 96

5.7.5 Initialisation of dome vertices .. 97

5.7.6 Evolutionary operators .. 97

5.7.7 Selection ... 99

5.7.8 Fitness function .. 99

5.7.9 ‘Junk’ genes.. 100

5.8 ILLUSTRATIVE EXAMPLE ... 101

5.8.1 Introduction.. 101

5.8.2 Results .. 101

5.8.3 Conclusion.. 103

5.9 CONCLUSIONS... 103

6 SUMMARY AND FUTURE W ORK ... 104

6.1 INTRODUCTION.. 104

6.2 SUMMARY OF INVESTIGATIVE WORK VERSUS ORIGINAL OBJECTIVES.......................... 104

6.2.1 Investigate existing and develop new representation for orthogonal building

design 104

6.2.2 Investigate existing and develop new representation for dome design.......... 104

6.3 FUTURE WORK .. 105

6.3.1 Orthogonal building design ... 105

6.3.2 Dome design... 105

7 REFERENCES... 106

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - ix -

List of Figures

FIGURE 2-1 EXAMPLE SIMPLE AND COMPLEX SOLUTION SPACES... 4

FIGURE 2-2 INDICATIVE HIERARCHY OF SEARCH (ADAPTED FROM GOLDBERG, 1989)................. 5

FIGURE 2-3 SOLUTION AND REPRESENTATION SPACES.. 10

FIGURE 2-4 REPRESENTATION SPACE WITH FEASIBLE AND INFEASIBLE REGIONS....................... 11

FIGURE 2-5 MAPPINGS FROM REPRESENTATION TO SOLUTION SPACE.. 12

FIGURE 2-6 SCHEMATIC OF A BASIC EVOLUTIONARY ALGORITHM... 13

FIGURE 2-7 EXAMPLE EP REPRESENTATION (ADAPTED FROM FOGEL, 2000) 19

FIGURE 2-8 EXAMPLE ES REPRESENTATION.. 20

FIGURE 2-9 EXAMPLE GA STRING REPRESENTATION.. 21

FIGURE 2-10 EXAMPLE GP TREE REPRESENTATION... 22

FIGURE 3-1 EXAMPLE BINARY ENCODED STRING REPRESENTATION.. 29

FIGURE 3-2 EXAMPLE INTEGER ENCODED STRING REPRESENTATION... 29

FIGURE 3-3 EXAMPLE REAL ENCODED STRING REPRESENTATION.. 30

FIGURE 3-4 EXAMPLE VOXEL REPRESENTATION.. 31

FIGURE 3-5 EXAMPLE BINARY TREE REPRESENTATION.. 32

FIGURE 3-6 INVALID TREE REPRESENTATION.. 32

FIGURE 3-7 TREE REPRESENTATION FOR STRUCTURAL DESIGN... 33

FIGURE 3-8 EXAMPLE RECOMBINATION OPERATION BETWEEN IDENTICAL PARENTS................. 34

FIGURE 3-9 DEGENERATION OF ‘1-TO-1’ MAPPING.. 34

FIGURE 3-10 PROBLEMS AFTER EVOLUTION FOR TREE REPRESENTATION.................................. 35

FIGURE 3-11 EXAMPLE BRIDGE AND CP-GRAPH REPRESENTATION (ADAPTED FROM BORKOWSKI

AND GRABSKA, 1995) ... 36

FIGURE 3-12 EXAMPLE PLANAR AND SPACE TRUSS... 37

FIGURE 3-13 EXAMPLE GROUND STRUCTURE.. 39

FIGURE 3-14 SECTORIAL JOINT REPRESENTATION (ADAPTED FROM SHRESTHA AND GHABOUSSI

1998)... 39

FIGURE 3-15 STRING REPRESENTATION (ADAPTED FROM SHRESTHA AND GHABOUSSI 1998) ... 40

FIGURE 3-16 SIX MEMBER TRUSS AND TREE REPRESENTATION.. 40

FIGURE 3-17 ‘N-TO1’ MAPPING.. 41

FIGURE 4-1 PROBLEM USING TREE OR GRAPH BASED REPRESENTATION IN LAYOUT DESIGN...... 49

FIGURE 4-2 EXAMPLE GENOME FOR LAYOUT DESIGN.. 49

FIGURE 4-3 RECTANGULAR FLOOR PLAN (SECTION 1 INITIALISED) ... 50

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - x -

FIGURE 4-4 RECTANGULAR FLOOR PLAN (SECTION 2 INITIALISED) ... 51

FIGURE 4-5 RECTANGULAR FLOOR PLAN (SECTION 3 INITIALISED) ... 51

FIGURE 4-6 EXAMPLE MUTATION OPERATION ... 52

FIGURE 4-7 EXAMPLE RECOMBINATION OPERATOR... 53

FIGURE 4-8 BEST FITNESS... 56

FIGURE 4-9 AVERAGE FITNESS.. 57

FIGURE 4-10 WORST FITNESS.. 58

FIGURE 4-11 RETURNED SOLUTIONS FOR RECTANGULAR BUILDING EXAMPLE.......................... 59

FIGURE 4-12 EXAMPLE ORTHOGONAL REPRESENTATION.. 60

FIGURE 4-13 AN EXAMPLE SWEEP LINE... 61

FIGURE 4-14 EXAMPLE PARTITIONING OF ORTHOGONAL LAYOUT... 62

FIGURE 4-15EXAMPLE ADJACENCY GRAPH OF AN ORTHOGONAL LAYOUT................................ 63

FIGURE 4-16 EXAMPLE GENOME UPDATE USING THE ADJACENCY GRAPH................................. 64

FIGURE 4-17 LEAST INK PROBLEM... 65

FIGURE 4-18 DR RAFIQ'S PARTITIONING.. 65

FIGURE 4-19 COMPARISON OF PARTITIONING TECHNIQUES... 66

FIGURE 4-20 EXAMPLE INITIALISATION OF ORTHOGONAL LAYOUT ... 66

FIGURE 4-21 INVALID INITIALISATION OF ORTHOGONAL LAYOUT ... 67

FIGURE 4-22 MUTATION OPERATOR FOR LAYOUT DESIGN... 68

FIGURE 4-23 CROSSOVER OPERATOR FOR LAYOUT DESIGN... 69

FIGURE 4-25 50 GENERATIONS.. 71

FIGURE 4-26 100 GENERATIONS.. 72

FIGURE 4-27 150 GENERATIONS.. 72

FIGURE 4-28 200 GENERATIONS.. 73

FIGURE 4-29 PERFORMANCE GRAPH FOR ORTHOGONAL BUILDING TEST................................... 73

FIGURE 4-30 RETURNED SOLUTIONS FOR ORTHOGONAL BUILDING LAYOUT.............................. 74

FIGURE 4-31 POLYGON PARTITIONING FOR ORTHOGONAL LAYOUT WITH ATRIA....................... 75

FIGURE 4-32 ADJACENCY GRAPH FOR ORTHOGONAL LAYOUT WITH ATRIA............................... 76

FIGURE 4-33 ORTHOGONAL LAYOUT WITH ATRIA EXAMPLE ... 76

FIGURE 4-34 BEST AND AVERAGE FITNESS.. 78

FIGURE 4-35 COMPARISON WITH AND WITHOUT ELITISM.. 79

FIGURE 4-36 WORST FITNESS.. 80

FIGURE 4-37 RETURNED SOLUTIONS FOR ORTHOGONAL BUILDING WITH ATRIA........................ 80

FIGURE 5-1 EPCOT CENTER (FLORIDA) ... 83

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - xi -

FIGURE 5-2 TRIACON AND ALTERNATE GEODESIC BREAKDOWNS.. 84

FIGURE 5-3 EXAMPLE RESULTS FROM SHEA AND CAGAN (1997) .. 85

FIGURE 5-4 CONVEX HULL CH(S) OF S... 86

FIGURE 5-5 POLYHEDRAL PROPERTIES.. 87

FIGURE 5-6 NEGATIVE VOLUME GENERATED BY CCW FACE F AND POINT P............................. 88

FIGURE 5-7 EXAMPLE VISIBILITY OF FACE F FROM POINTS P’ AND P” .. 89

FIGURE 5-8 ILLUSTRATIVE EXAMPLE OF THE INCREMENTAL ALGORITHM IN 2D........................ 90

FIGURE 5-10 BEST OF GENERATION 54 FOR 2D EXAMPLE.. 91

FIGURE 5-11 UPDATING AN EXISTING HULL (ADAPTED FROM O’ROURKE 1998)....................... 93

FIGURE 5-12 EXAMPLE GENOME FOR DOME DESIGN.. 95

FIGURE 5-13 CLASS DIAGRAM FOR DOME GENES... 95

FIGURE 5-14 EXAMPLE N-POINT CROSSOVER.. 98

FIGURE 5-15 MUTATION OPERATORS FOR DOME DESIGN... 98

FIGURE 5-16 EXAMPLE GENOME CONTAINING A JUNK GENE IN DOME DESIGN......................... 100

FIGURE 5-17 PERFORMANCE GRAPH FOR DOME EXAMPLE... 102

FIGURE 5-18 EXAMPLE DOME DESIGN FOR ILLUSTRATIVE EXAMPLE....................................... 102

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - xii -

List of Tables

TABLE 2-1 APPLICATIONS OF GENETIC PROGRAMMING IN CIVIL ENGINEERING......................... 22

TABLE 3-1 BINARY ENCODED STRINGS IN CIVIL ENGINEERING DESIGN...................................... 29

TABLE 3-2 INTEGER ENCODED STRING REPRESENTATION EXAMPLES IN CIVIL ENGINEERING

DESIGN.. 30

TABLE 3-3 EXAMPLE APPLICATIONS OF REAL ENCODED STRING REPRESENTATION IN CIVIL

ENGINEERING DESIGN.. 30

TABLE 3-4 APPLICATIONS OF VOXEL REPRESENTATION IN CIVIL ENGINEERING DESIGN 31

TABLE 3-5 TOPOLOGICAL OPTIMISATION VIA GENETIC ALGORITHMS.. 38

TABLE 4-1 DSS FOR THE CONCEPTUAL DESIGN OF BUILDINGS.. 44

TABLE 4-2 DIMENSIONAL ALLOWANCES FOR SERVICES.. 47

TABLE 4-3 EA TABLEAU FOR RECTANGULAR BUILDING .. 55

TABLE 4-4 EA TABLEAU FOR ORTHOGONAL BUILDING .. 70

TABLE 4-5 EA TABLEAU FOR ORTHOGONAL BUILDING WITH ATRIA EXAMPLE.......................... 76

TABLE 5-1 EA TABLEAU FOR 2D ILLUSTRATIVE EXAMPLE .. 90

TABLE 5-2 EA TABLEAU FOR DOME DESIGN... 101

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - xiii -

List of Abbreviations

DNA Deoxyribonucleic Acid

DSS Decision Support Systems

EA Evolutionary Algorithm

EP Evolutionary Programming

ES Evolutionary Strategies

FSM Finite State Machines

GA Genetic Algorithms

GP Genetic Programming

NFL No free lunch theorems

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 1 -

1 Introduction

1.1 Aim

The aim of this work is to investigate how some civil engineering design problems, in

particular structures, can be represented in evolutionary algorithms. To achieve this aim, the

thesis will consider two types of structural design problem: buildings and domes, both will be

investigated by reviewing existing work, proposing a new solution (including a representation

with associated evolutionary operators) and providing an illustrative example to assess

performance. However it should be noted that each chapter is self contained and should be

considered as such. The only link between them is that the same methodology was applied to

both.

 Conceptual design is a particularly pertinent topic as an efficient representation is

essential in effectively harnessing the search capacity of evolutionary algorithms in decision

support systems for conceptual design. At the present time, conceptual design is considered to

be one of the most difficult challenges facing practising engineers. This is because the lack of

information limits the effectiveness of procedural techniques to assist more junior designers.

Therefore only senior engineers undertake this work as they have the necessary experience.

1.2 Objectives

This work has two main objectives:

• Investigate existing and develop new knowledge for orthogonal building layout design.

• Investigate existing and develop new knowledge for geometric dome design.

1.3 Arrangement of Thesis

The remaining chapters of this thesis are arranged as follows:

1.3.1 Chapter 2: An overview of evolutionary algorithms

This chapter provides an overview of evolutionary algorithms, a family of algorithms that

search problem domains using biologically inspired search operators, and is the type of

algorithm used in this thesis. It starts with the topic of search and solution spaces before

reviewing several categories of search techniques. Next, biological evolution is discussed

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 2 -

because evolutionary algorithms are inspired by nature, before the chapter focuses on the

components of a basic evolutionary algorithm including: initialisation, evaluation, evolution

and termination. Finally, the chapter concludes with a description of the canonical

implementations: evolutionary programming; evolutionary strategies; genetic algorithms and

genetic programming.

1.3.2 Chapter 3: Representing civil engineering design problems in evolutionary

algorithms

Civil engineering design problems are typically approached using traditional techniques i.e.

deterministic algorithms, rather than via stochastic search. Evolutionary algorithms are a type

of stochastic search algorithm inspired by natural selection and a number of authors have

proposed them as a design tool. This chapter discusses how solutions to civil engineering

design problems, in particular structures, have been represented in evolutionary algorithms

without considering implementation specific issues. The aim of this chapter is to consider

representations used by other researchers.

1.3.3 Chapter 4: Conceptual layout design of orthogonal commercial buildings

The aim of this chapter is to investigate existing examples and develop new representation for

orthogonal building layout design.

 Conceptual layout design of commercial office buildings is a non-trivial task because the

numerous variables create a large solution space. To aid designers, several decision support

systems have been developed. However, all these systems are limited to buildings with

rectangular floor plans.

This chapter presents an evolutionary algorithm for layout design of buildings with

orthogonal boundaries and atria. To achieve this, polygon partitioning techniques are used to

decompose a floor plan into rectangular sections. Also in order to prevent illegal solutions

being generated, the representation ensures the initialisation and evolutionary operations are

not too disruptive. The number of initial inputs has also been reduced, because this work is

aimed at the conceptual design stage. Therefore the user only needs to dimension the external

boundary and specify the location of any atria.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 3 -

1.3.4 Chapter 5: Conceptual geometric design of ‘geodesic-like’ domes

The aim of this chapter is to investigate existing and develop new knowledge for geometric

dome design.

 Geometric dome design is a non-trivial task because every joint and member must be

located on the dome’s external surface and not impinge on the internal void. The only

previous stochastic methodology (Shea and Cagan, 1997) tackles this by creating a 2D truss

that is subsequently projected onto a predefined curved surface. Therefore the solution is a 3D

object, but the search is conducted in 2D. While this ‘projection’ or 2.5D technique reduces

the number of problem variables, by constraining the third dimension to be dependent on the

planar layout, it also excludes a dome’s two most important variables from the search: surface

area and enclosed volume. Thus the results, while spatially innovative, are typically sub-

optimal.

This chapter describes a new methodology, using an evolutionary algorithm with string

representation that is capable of designing a dome directly in 3D using surface area and

enclosed volume as the major search parameters. The representation contains Point3D objects

that encapsulate support and joint positions, which are subsequently converted into a dome by

constructing its convex hull. Once constructed, the hull’s edges become the structural

members and its vertices the joints. Finally, structural analysis is used to determine

performance within the context of user-defined constraints. This technique avoids many of the

problems experienced by the previous approach that suffers when restrictive constraints such

as the requirement to maintain 1/8th symmetry are removed.

1.3.5 Chapter 6: Summary and future work

This chapter will consider the key findings, of this thesis, in relation to its original objectives

and discuss possible directions for future work.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 4 -

2 An Overview of Evolutionary Algorithms

2.1 Abstract

This chapter provides an overview of evolutionary algorithms. Evolutionary algorithms are a

family of algorithms that search problem domains using biologically inspired search operators

and are the type of algorithm used in this thesis. The chapter starts with the topic of search

and solution spaces before reviewing several categories of search techniques. Next, biological

evolution is discussed, because evolutionary algorithms are inspired by nature, before the

chapter focuses on the components of a basic evolutionary algorithm including: initialisation,

evaluation, evolution and termination. Finally, the chapter concludes with a description of the

canonical implementations: evolutionary programming; evolutionary strategies; genetic

algorithms and genetic programming.

Keywords: search, evolutionary algorithms, evolutionary programming, evolutionary

strategies, genetic algorithms, genetic programming.

2.2 Introduction

For every problem, a range of possible solutions must exist: with some solutions being more

feasible than others. The problem’s ‘solution space’ (Figure 2-1a) is constructed

by incorporating a notional distance between solutions. To solve the problem, the solution

space is ‘searched’ to locate the optimal values, often equivalent to finding a maxima or

minima.

 Figure 2-1 Example simple and complex solution spaces

 Unfortunately, solution spaces are seldom simple. For most non-trivial problems they are

ill defined (with the search process often generating new points) and contain many local or

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 5 -

false optima (Figure 2-1b). These complications are additional to the issues of where

to start the search, how to conduct it and strategy for limiting the potential for pre-mature

convergence. Consequently, search is generally a non-trivial task.

 Primarily two types of search have been developed: stochastic and deterministic,

although a third type ‘hybrid’ incorporating stochastic and deterministic elements (Figure 2-2)

has also been developed.

Figure 2-2 Indicative hierarchy of search (adapted from Goldberg, 1989)

 Deterministic techniques are either calculus based requiring the problem to be modelled

using derivatives (which may or may not be possible), or enumerative, which can suffer from

the ‘curse of dimensionality’ if the solution space is large. However, if the solution space is a

continuous smooth surface or well understood, a deterministic technique is often the most

appropriate approach. Another disadvantage of deterministic algorithms is that they are often

not robust enough to cope with ‘noisy’ data (as found in ‘real world’ problems) and domain

knowledge maybe required to formulate and solve the problem, so this approach is less useful

for conceptual design.

 Stochastic algorithms, unlike deterministic techniques, are built on randomness, which

improves the search for global optima by sampling random locations in the solution space.

However, while this creates a more ‘robust’ algorithm capable of handling noisy data, it does

mean that stochastic search cannot guarantee to find the global optimum solution.

 All search techniques must distinguish between local and global optima. This issue is

particularly pertinent if some variables are discrete, as discrete variables create a

discontinuous and disjointed solution space. A simple remedy for coping with local optima is

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 6 -

to re-run the algorithm from another location and compare results, this is particularly

important when using deterministic algorithms.

 This work uses stochastic search algorithms because structural design uses a combination

of related, discrete and continuous variables that can create extremely large, disjointed search

spaces.

2.3 Why have so many search algorithms been developed?

Numerous search algorithms have been developed because their performance is problem

dependant. This is because the algorithm’s assumptions maybe incorrect or utilise a

methodology that is inefficient for the given solution domain. Consequently, there is no

search panacea. This is emphasised by the ‘no free lunch theorems (NFL)’, which consider

the utility of search algorithms a priori, without assumptions and from mathematical

principles alone. The NFL theorems conclude “…any elevated performance over one class of

problems is exactly paid for in performance over another class…” (Wolpert and Macready,

1997). However, in practise, search maybe improved by incorporating additional domain

specific information called ‘heuristics’. For example consider the ‘travelling salesman

problem’1. The solution space is well known therefore a deterministic technique incorporating

heuristics may out perform another more general, stochastic technique. However if the

problem’s parameters are changed, the algorithm containing heuristics may perform worse

because the heuristics are invalid.

2.4 Biological inspiration for algorithms

Mankind has always been fascinated by nature’s ability to create solutions to complex

problem and this led to the development of a family of algorithms based on evolution,

evolutionary algorithms. However, it is important to note that evolutionary algorithms are

only inspired by nature, not a duplicate. For example in nature, alleles can be dominant or

recessive. However this feature is not often included in EAs. For a more comprehensive

description of EAs see 2.5 Evolutionary Algorithms.

1 The ‘travelling salesman problem’ is a deceptively simple combinatorial problem: “A salesman spends his time

visiting a number of cities. During one trip, he visits each city only once and finishes where he started. In what

order should he visit the cities to minimise the total distance travelled?”

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 7 -

 The following sub-sections contain a brief discussion of two important issues in

biological evolution, from the perspective of search, Darwin’s theory of natural selection and

phenotype-genotype duality.

2.4.1 Darwin’s theory of natural selection

Darwin’s theory of natural selection (Darwin, 1859) proposes that organisms evolve over time

due to environmental factors that favour certain traits. Roberts et al. (1993) summarised it into

four propositions and two conclusions:

• Proposition 1: individuals are different.

• Proposition 2: offspring generally resemble their parents.

• Proposition 3: not every offspring can survive to reproduce.

• Proposition 4: fitter individuals are more likely to survive.

• Conclusion 1: individuals that survive and reproduce, pass on to their offspring

characteristics that have enabled them to succeed.

• Conclusion 2: in time, a group of individuals that once belonged to the same species may

give rise to two different groups that are sufficiently distinct to belong to separate

species.

 Unfortunately ‘The Origin of the Species’ is often reduced to a single phrase ‘survival of

the fittest’ but this is misleading, as an individual’s mortality is a relatively trivial issue in

evolutionary terms. Fitness, in evolutionary terms, refers to the degree of adaptation shown by

an individual to its environment. The most adapted individuals will have the best fitness and

therefore pass on these beneficial characteristics to their offspring. The best individuals will

often have many adaptations so it not necessarily the strongest, fastest or biggest that will

prevail.

 Ultimately, if a species is to be successful its population must balance two issues:

• Selection: which reduces diversity (propositions 3,4 and conclusion 1).

• Reproduction: which introduces variation (propositions 1,2 and conclusion 2).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 8 -

 Managing this conflict via populations represents one of biological evolution’s greatest

strengths, as it encourages trial and error by favouring advantageous characteristics within a

species.

2.4.2 Phenotype-genotype duality

Every cell in a living organism incorporates helical strands of deoxyribonucleic acid (DNA)

that encodes its phenotype (features and function). A gene is a short section of DNA that

contains the instructions for a single feature e.g. eye colour. However, each gene may have

several values e.g. eye colour = blue/ green/ brown, and these values are called alleles. An

organism’s physical characteristics (its phenotype) are determined by the DNA sequence of

its genes: its genotype. Therefore, every organism can be viewed from either a genotypic or

phenotypic perspective: with the genotype encoding the phenotype.

2.5 Evolutionary Algorithms

Although there are many different types of evolutionary algorithm (EA), “…the common

idea…is to evolve a population of candidate solutions to a given problem, by using search

operations inspired by biology…” (Dumitrescu et al, 2000). This section introduces the basic

EA by considering every major component.

2.5.1 Why use evolutionary algorithms?

Evolutionary algorithms are very good at discovering diverse solutions to problems but are

not pure optimisation algorithms (De Jong, 1993). In spite of this they have made important

contributions to this field especially with regard to problems involving mixed solution spaces

(containing discrete and continuous variables) and in multi-objective optimisation. However,

they tend to be out-performed in combinatorial and continuous parametric optimisation by

more traditional techniques (Eiben and Schoenauer, 2002). Nevertheless, EAs were

considered the most appropriate technique for this work because of the following

characteristics:

• EAs can investigate large numbers of inter-related parameters.

• EAs are adept at locating global optima even in discontinuous solution spaces.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 9 -

• EAs are robust2

 It should also be noted that this work is focused on using EAs for design rather than

optimisation and “…one should distinguish design problems where the goal is to find at least

one very good solution once, from day-to-day optimisation where the goal is to consistently

find a good solution for different inputs. In the design context, a high standard deviation is

desirable provided the average result is not too bad (exploration). In the optimisation context,

a good average and a small deviation are mandatory (exploitation)…” (Eiben and

Schoenauer, 2002).

2.5.2 Representation

Evolutionary algorithms are problem solvers that create solutions by applying search

operators based on biological evolution. Unfortunately, most problems are not instantly

amenable to biological search operators. Therefore, the potential solutions must be converted

to a form that can be used by the EA. This involves developing a ‘representation’. Although

there is some ambiguity in literature about what constitutes a representation, in this thesis

‘representation’ refers to the structure and encoding of a solution so that it can be

incorporated into an EA.

 The primary purpose of a representation is to convert every possible solution to a form

that allows it to be included in the search. It should also be a compromise between

computational effort and problem abstraction e.g. machine code is computationally efficient

but how can it be used to represent a house?

 Many standard representations exist e.g. strings, and this determines how the EA is

applied to the problem, as some components of the EA are representation dependent. Bäck et

al. (1997) describe two approaches to developing a representation: “…the first is to choose

one of the standard algorithms and to design a decoding function according to the

requirements of the algorithm. The second suggests designing the representation as close as

possible to the characteristics of the phenotype, almost avoiding the need for a decoding

function…”. Many researchers use the first method but the second generates a more efficient

representation.

2 The balance between efficiency and efficacy i.e. the more robust the algorithm, the greater the range of

problems it can be applied to (Coley, 2003).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 10 -

2.5.3 Representation space

Living organisms exhibit a phenotype-genotype duality because an organism’s characteristics

are encoded in its DNA. In the same way, individuals3 within an EA also exhibit duality

because they can be viewed from the perspective of their representation or ‘natural’ form.

Therefore when a problem is solved by an EA, it has two problem domains, the solution space

and the representation space (Figure 2-3). The solution space contains solutions in their

natural form while the representation space contains solutions encoded via the representation.

Figure 2-3 Solution and representation spaces

 When solving most non-trivial problems, constraint handling is required because not

every combination of variables is valid. For example, in structural engineering constraints are

often applied to structural members, indicating the permissible maximum stress. Therefore,

constraints define the boundaries of the feasible region. Conceptually this is equivalent to

dividing the representation space into islands of feasible representations, surrounded by an

infeasible region (Figure 2-4).

3 EAs terminology has borrowed heavily from biology. A potential solution in an EA can be referred to as an

individual.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 11 -

Figure 2-4 Representation space with feasible and infeasible regions

 A fundamental feature of all EAs is that they operate on solutions encoded via the

representation rather than directly on the solution. At first glance this may seem a

disadvantage as it adds additional complexity. In reality, by converting solutions to a more

abstract form, via the representation, the EA permits the use of standardised evolutionary

operators.

 It should be noted that while designing a representation is a vital stage in the development

of an EA once complete, the representation (and its related operators) is hidden from the user

allowing them to concentrate on analysis of the results (Borkowski and Grabska, 1995).

 To convert between the two problem domains, a mapping must be applied. However,

pleiotrophy4 and polygeny5 mean there are potentially five types of mapping (Figure 2-5):

• Illegal: a representation decodes to form a nonsensical solution. For example, if solutions

are mathematical equations, = y x + / 3 would be illegal.

• Infeasible: in constrained problems, or those with discrete variables, not every

combination of variables results in a feasible solution. Therefore the representation space is

larger than the solution space, as it contains infeasible individuals. It should be noted that

4 The effect that a single gene may simultaneously affect several phenotypic traits (Fogel, 1995).
5 The effect that a single phenotypic characteristic (of an individual) maybe determined by the simultaneous

interaction of many genes (Fogel, 1995).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 12 -

infeasible solutions are different from illegal solutions: as infeasible solutions are invalid

due to the constraints rather than being nonsensical or plain wrong.

• 1-to-n: one representation decodes to form n solutions. Obviously this is undesirable as a

single representation can have multiple fitness values.

• n-to-1: n solutions decode to form a single solution, while this scenario is applicable in

practice it does enlarge the representation space increasing search difficulty.

• 1-to-1: one representation decodes to form a single solution. This is the ideal scenario as

the solution and representation spaces are identical in size.

Figure 2-5 Mappings from representation to solution space

2.6 The basic evolutionary algorithm

This section describes the main components of an evolutionary algorithm, although please

note this is a high-level summary avoiding implementation specific issues. The following

sections contain more detailed descriptions of the canonical implementations.

 The evolutionary search process commences once a problem is identified and a suitable

representation is developed. For optimisation problems, the EA attempts to locate and return a

single optimum solution while for design problems the EA returns a range of possible

solutions that are likely to be sub-optimal. This highlights the need to determine the EA’s

aims and objectives from the outset so it can be appropriately implemented. In this thesis, the

onus was on design and thus every EA tried to return a range of potentially sub-optimal

solutions (an exploration process).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 13 -

2.6.1 Overview

The basic EA (Figure 2-6) starts by initialising the first population6 of solutions. Initialisation

creates individuals from a random set of variables, based on the representation (although the

initial population can be ‘seeded’ with known solutions but this biases the search). The

population is then evaluated and assigned a ‘fitness’ based on how suitable it is, in the context

of the problem. The algorithm then checks whether the termination criterion has been met

(this usually considers whether a solution of appropriate fitness has been evolved or if a

predetermined number of generations has been generated). If the algorithm terminates, it will

return the best individual(s) evolved so far and if not, perform the evolutionary routine.

 The next generation is evolved from the current population via selection. Selection picks

individuals from the current population (based on certain criteria) and allows them to breed

and pass on their genetic material (to the next generation). However because selection favours

fitter individuals, those with more advantageous characteristics are more likely to be picked.

Figure 2-6 Schematic of a basic evolutionary algorithm

 The following description of the basic evolutionary algorithm will indicate an advantage

of this search technique, most but not all of the methodology is problem independent.

Therefore, search can be conducted before a full understanding of the problem is obtained.

6 A group of potential solutions maintained by the EA

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 14 -

This can be important for complex problems: in fact results generated by the EA may actually

provide some insight.

2.6.2 Population- Representation independent component

EAs maintain at least one population of candidate solutions (this is one of the features that

separates them from other search techniques) with each individual denoting a location in the

representation space. However as in nature, each population must strike a balance between

specialisation and variation. Population size is a fundamental variable in EA’s as large

populations accomplish a more exhaustive search (which maybe unnecessary) but at greater

computational expense than a smaller population (which may not cover a sufficient set of the

solution space).

2.6.3 Fitness function- Representation independent component

Evolutionary algorithms are domain independent problem solvers i.e. the same algorithm can

design buildings and solve scheduling problems, but each problem requires a different

solution. Therefore, how does the EA search for the best?

 As with biological evolution, individuals within an EA are required to exhibit measurable

phenotypic differences. In EAs, individuals then are assigned a single, numerical value that

reflects how ‘fit’ or good it is (as a solution). Unfortunately, assigning a single numerical

fitness to an individual can be problematical especially in multi-objective optimisation. In this

instance, a multi-objective or multi-criteria algorithm incorporating Pareto based techniques

(Pareto, 1896) can be used.

 Fitness values are determined by the ‘objective function’, which contains user-defined

information about the solution space. However, the search for the solution to all but the most

non-trivial problems must consider constraints. Constraint handling may be required due to

problem related issues or simply because as the evolutionary operators only manipulate the

genotype while the objective function only considers the phenotype, an evolved solution

maybe invalid and occupy a point in the infeasible region. Several constraint-handling

techniques exist (Michaelewicz, 1999):

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 15 -

• Rejection: individuals that violate constraints are deleted, focusing the search on the

feasible region. However, the loss of potentially valuable information can hamper search

especially in disjointed solution spaces and leads to premature convergence.

• Reparation: individuals that violate the constraints are modified to meet the constraints.

Unfortunately repairing individuals can be exceptionally complex (or impossible) and thus

hinder the search. Reparation also forces solutions to conform to a preconceived notion,

which might not be appropriate.

• Prevention: evolutionary operators are designed to prevent the formation of illegal

solutions. This can be a practical method for dealing with constraints but can also produce

conservative evolutionary operators that may slow the search process.

• Penalisation: individuals that violate the constraints have their fitness reduced. Penalty

functions are especially suited to disjointed solution spaces or scenarios where the best

solutions lie close to the feasible-infeasible boundary. This is often the case in design,

where the optimum is located on the limit of what is feasible.

 Once an individual has been assessed by the objective function and any constraint

violations considered, its fitness can be determined. Several types of fitness measure may be

used (Goldberg, 1989):

• Raw fitness: objective function adjusted for constraint violations (if appropriate).

• Adjusted fitness: an amended raw fitness, where a lower fitness is advantageous. The

fittest individual has a fitness of 0.

• Standardised fitness: an amended adjusted fitness, limited to the range 0 → 1.

• Scaling: although not strictly a fitness measure, scaling is used to mitigate the effect of a

few highly fit individuals (in early generations) by scaling down the extraordinary and

scaling up the rest, or in later generations when the fitness variance tends to fall,

exaggerating phenotypic differences between individuals.

2.6.4 Selection- Representation independent component

Selection is used to choose which individuals are allowed to breed and pass on their genetic

material to the next generation. Competition based selection is key to EAs as it drives the

search and is solely based upon an individual’s fitness. However as in nature, selection does

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 16 -

not push the population towards a predetermined goal but merely favours phenotypic changes

that have occurred randomly.

 Many selection techniques have been developed and the following list indicates some of

the most widely used (this list is not exhaustive):

• Fitness proportionate: Compares the raw fitness of the individual against the mean, raw

fitness of the population (Holland, 1975). Therefore, an individual that is three times fitter

than average, will be selected three times more often. Unfortunately this has two

problems:

- Premature convergence: a few sub-optimal but highly fit individuals present in the

current population will dominate the next generation by virtue of their large fitness,

dramatically reducing the population’s genetic variation.

- Slow convergence: if the population only contains individuals of similar fitness,

selection pressure will be low, therefore the algorithm degenerates to random search.

• Stochastic sampling with replacement (‘Roulette Wheel’): A predetermined number of

individuals are randomly selected from the population and placed on a ‘roulette wheel’:

with each individual’s segment proportional to its fitness (Baker, 1985). Once the wheel is

‘spun’, the individual on the winning segment selected.

• Stochastic tournament: A predetermined number of individuals are randomly selected

from the population and ranked according to fitness, with the fittest individual being

chosen. As the tournament size is increased, selection pressure is intensified as it

magnifies the chance of a fit individual being selected.

• Ranking: The population is ranked, based on raw fitness, with the fittest at position 0.

Although the actual mapping from rank position to selection probability is arbitrary, in all

cases individuals are selected by their rank (not raw fitness). This preserves selection

pressure but reduces the effect of dominant individuals.

• Elitism: Ensures that the best member(s) from the last generation are copied into the next.

This can be useful because fitness proportionate selection does not guarantee the survival

of any individual (Coley, 2003). Elitism is not a selection technique in its own right but

can be used in conjunction with others and while it maintains the best solutions, it does

increase the likelihood of premature convergence.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 17 -

2.7 Termination Criterion- Representation independent component

An EA should terminate once the desired solution has been obtained. However stochastic

algorithms are not guaranteed to locate the global optimum solution and in many problems,

including design, the form of the optimum solution is not known. Therefore problem specific

criteria cannot be specified. In this instance, the termination criterion stops the algorithm after

a fixed effort has been expended e.g. a predetermined number of generations have been

evolved or a maximum number of CPU cycles.

2.8 Initialisation- Representation dependent component

Ideally, initialisation should create a well-distributed spread of individuals in the solution

space. Unfortunately in practise this is hard to achieve, especially if the solution space is ill

defined. Therefore, individuals are usually randomly constructed from a set of variables.

 The initial population often has a low fitness, but its most important feature is diversity.

‘Doping’ can be used to include good solutions into the population, based on the user’s

experience, but this can create bias (Dumitrescu et al., 2000).

2.9 Evolutionary operators- Representation dependent component

Search operators, inspired by biology, are a fundamental feature of all EAs. Evolutionary

operators alter an individual’s genotype (as in biology) and enable EAs to be problem

independent. EAs use a mixture of the following three operators (some implementations may

even omit an operator altogether):

• Reproduction: copies an individual unaltered into the next generation.

• Recombination: two individuals (parents) are selected and exchange genetic information

to produce two new individuals (offspring). Depending on the operator, offspring are

either inserted directly into the next generation or inserted after some additional selection.

Recombination is referred to as a conservation operation as it “…is used to exploit and

consolidate what has already been obtained by the individuals in the population…”

(Dumitrescu et al., 2000).

• Mutation: a single individual is selected and altered by deleting and randomly rebuilding

a section of its genetic information. Mutation is referred to as an ‘innovation’ operation

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 18 -

because it “…ensures that new aspects of the problem are taken into account…”

(Dumitrescu et al., 2000).

2.10 Exploration vs. Exploitation

By employing a competition based selection process EAs encourage fitter individuals to pass

on their genetic material, which focuses the search (exploitation). However, these individuals

may not lie in the most productive region. By contrast, evolution injects new genetic material

into the population, which encourages variation and thus the algorithm to consider another

area of the solution space (exploration). EAs manage this conflict by allowing the user to set

the probability of reproduction, recombination and mutation during a run.

2.11 Implementing Evolutionary Algorithms

The previous section introduced the basic EA without considering specifics. This will discuss

the canonical forms of the principle implementations in more detail: Evolutionary

Programming; Evolutionary Strategies; Genetic Algorithms; Genetic Programming (for a

more comprehensive history of EA development see Fogel (1998)). However, these

implementations should not be considered as discrete but rather as the most commonly used

forms of evolutionary algorithm (each focusing on different aspects of the evolutionary based

search). In fact the experimental chapters will only refer to evolutionary algorithms, as using

more explicit descriptions encourages the reader to apply their preconceived ideas rather than

focusing on what is being described.

 Evolutionary search can be considered from two perspectives, top-down and bottom-up

(Fogel, 1995):

• Top-down: emphasises the phenotypic behaviour of individuals (Evolutionary Strategies)

or populations (Evolutionary Programming).

• Bottom-up: emphasises the genotypic mechanisms (Genetic Algorithms and Genetic

Programming) of evolution.

2.11.1 Evolutionary Programming

Developed by Fogel (1962) as an attempt to create artificial intelligence that can predict

future events based on historical information, Evolutionary Programming (EP) is used in

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 19 -

continuous parameter optimisation problems. As a representation, EP uses ‘Finite State

Machines (FSM)’ (Figure 2-7) that transforms an input sequence into an output sequence.

FSM are composed of at least one state, one or more state transitions (these specify the FSM

response to an input, based on its current state) and have a predetermined input and output

alphabet.

 During a run, a population of FSM receive an identical input sequence and process it.

Fitness is assigned based on the accuracy of the response, with a more accurate response

receiving a higher fitness. Individuals are then mutated (EP only incorporates mutation) to

produce a single offspring. There are five mutation operators: mutate an output; mutate a state

transition; insert a new state; delete an existing state; change the initial state. After mutation,

the new offspring are evaluated against the initial input sequence. If the offspring is fitter than

its parent, it survives, otherwise it is deleted and the parent survives. This process continues

until the termination criterion is met.

 A classic EP task is to predict the next character in a sequence, when given the last one.

For example, consider the response of the three-state machine shown in (Figure 2-7) to the

following series of inputs: 01110.

Figure 2-7 Example EP representation (adapted from Fogel, 2000)

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 20 -

2.11.2 Evolutionary Strategies

 Developed by Rechenberg and Schwefel in 1964 (Beyer and Schwefel 2002),

Evolutionary Strategies (ES) are a continuous parameter optimisation tool. To encode

potential solutions, ES use a representation based on a pair of real-valued vectors v (Figure

 2-8): the first vector x encodes a point in the search space while the second σ is a vector of

standard deviations.

Figure 2-8 Example ES representation

 Although created independently, ES shares many similarities with EP including only

using mutation as an evolutionary operator. In ES mutation, a vector randomly selected from

a Gaussian or Normal distribution with a mean of 0 and variance of σ can mutate each

component of the representation. Therefore, the value of σ controls the manner in which the

algorithm can search the solution space. Originally, the value of σ was set to produce a fitter

offspring at a ratio of 1:5 (Rechenberg, 1973). Thus this is often called the ‘1/5 success rule’.

However, Schwefel (1975) proposed ‘self adaptation strategies’ that vary mutation parameters

(including σ) during a run.

 Several mutation-selection techniques have been devised (all ES use the same

representation and mutation methodology) that are identified by a notation system unique to

ES literature:

• (1+1): a single individual is present in the population, which mutates to produce a single

offspring with only the fittest solution surviving to form the next generation.

• (µ+λ): µ individuals mutate to produce λ offspring (this produces a population larger than

the original). If the offspring is fitter than its parent it survives, else it is deleted and the

parent survives.

• (µ, λ): a population containing µ individuals evolves to produce λ offspring. But because

an individual may evolve more than one offspring (λ > µ), the next generation is only

selected from the offspring. Therefore, an individual can only survive for a maximum of

one generation (irrespective of fitness).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 21 -

 Although these mutation-selection strategies have been extensively studied using

empirical experiments, ES retains a tendency to converge on local optima: this is confirmed

by the only theoretical model of ES mutation (Rudolph, 2001) which suggests that the ‘1/5

success rule’ cannot guarantee convergence during numerical optimisation.

2.11.3 Genetic Algorithms

Holland (1975) is considered to have developed Genetic Algorithms (GA) in 1975 with the

publication of his seminal work. However, it is acknowledged that research had been

conducted prior to this. Since then GAs have become the most widely known EA and are

generally used as combinatorial optimisers although this issue is contentious (De Jong, 1993)

because for design problems (as in this thesis) they are often used as search algorithms.

Figure 2-9 Example GA string representation

 As a representation, the canonical GA uses a fixed-length, binary string (Figure 2-9)

although other encoding are permitted including integers and real numbers. More advanced

implementations even allow variable gene length. Other representations including voxels

(Griffiths and Miles, 2004) and graphs (Borkowski et al, 2002) have also been developed.

Another characteristic of the GA is their stochastic selection techniques and extensive use of

recombination and mutation operators inspired by genetics.

2.11.4 Genetic Programming

Developed by Koza (1992), the Genetic Programming (GP) differs from the other EA

implementations because it is pre-dominantly used for machine learning. GP is highly suited

to this because its canonical tree representation can be constructed from ‘LISP S-Expressions’

(Figure 2-10), which are computer programmes. Therefore the GP trees can be used to evolve

computer programmes and thus solve one of the fundamentals of computing: how can you

make computers code themselves? Other representations based on graphs or linear structures

have also been developed.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 22 -

Figure 2-10 Example GP tree representation

 The mechanics of the GP closely related to the GA and is even considered by some to be

‘a genetic algorithm using a tree based representation’. However unlike the GA, the GP tends

to either ignore the mutation operator or use it infrequently. Evolved solutions are also ‘active

structures’ that can be executed without post-processing, while GA’s typically operate on

coded strings that require post-processing i.e. passive structures.

 Within civil engineering the GP is a relatively new technique. Table 2-1 lists most

published applications of the genetic programming in civil engineering. In general the GP is

used for modelling purposes.

Table 2-1 Applications of genetic programming in civil engineering

Application Author Year Details
Shear strength
prediction of deep RC
beams

Ashour et al 2003 Estimation of the shear strength of deep RC
beams, subjected to two point loads, from 141
published experimental results.

Modelling of
wastewater treatment
plants

Hong and
Bhamidimarri

2003 Modelling the dynamic performance of municipal
activated sludge wastewater treatment plants.

Detection of traffic
accidents

Roberts and Howard 2002 Detection of accidents on motorways in low flow,
high-speed conditions i.e. late at night based on
three years of traffic data whilst producing a near
zero false alarm rate.

Flow through a urban
basin

Dorado et al 2002 Construction of sewage network model in order to
calculate the risk posed by rain to the basin and
thus providing prior warning of flooding or
subsidence.

Journey time prediction Howard and Roberts 2002 Forecasting motorway journey times.

Estimation of design
intent

Ishino and Jin 2002 Using the GP to automatically estimate design
intent based on operational and product-specific
information monitored throughout the design
process.

Modelling of water
supply assets

Babovic et al 2002 In order to determine the risk of a pipe burst, a GP
is evolved to ‘data mine’ a database containing
information about historic pipe bursts.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 23 -

Identification of crack
profiles

Kojima et al. 2001 Detection of cracks inside hundreds of heat
exchanger tubes in a nuclear power plant’s steam
generator via analysis of data measured via
quantitative non-destructive testing.

Modelling rainfall
runoff

Whigham and
Crapper

2001 Discovery of rainfall-runoff relationships in two
vastly different catchments.

Improving engineering
design models

Watson and Parmee 1998 Symbolic regression and Boolean induction to
model engineering fluid dynamics systems.

Prediction of long-term
electric power demand

Lee et al 1997 Symbolic regression via genetic programming to
predict the long-term electric demand of Korea
(based on training data from 1961 to 1980).

Systems identification Watson and Parmee 1996 Symbolic regression to calibrate Rolls Royce
preliminary design gas turbine cooling systems
software.

Traffic light control
laws

Montana and
Czerwinski

1996 Develop an adaptive control system for a network
of traffic signals depending on variations in traffic
flow.

Identification of crack
profiles

Köppen and
Nickolay

1996 Agent generation to detect and track dark regions
that could be cracks in greyscale images of
textured surfaces.

2.12 Disadvantages of Evolutionary Algorithms

This chapter has, thus far, focused on the positive aspects of evolutionary algorithms.

However as previously stated, there is no search panacea and algorithm performance is

problem dependent. This section discusses some general disadvantages associated with EAs.

 A major disadvantage of evolutionary algorithms is the amount of computational effort

expended when solving a problem because rather than solving the problem just once, it

evaluates every individual (in every population) at least once per generation. In addition,

while the evolutionary operators are computationally trivial e.g. swapping elements, the

fitness function tends to be more complex and thus generates a large overhead. For example,

Grierson (1993) estimates that 95% of a GA’s computational effort is devoted to calculating

fitness. However, this figure should be considered indicative, as the actual value (of

computational effort) is problem dependent. To counter this, one solution is to use a simple

fitness function in early generations, when overall fitness is low.

 Humans prefer to organise their conscious thinking in a parsimonious way for example in

mathematics it is common practice to simplify equations. However fitness, not parsimony is

the dominant factor in evolutionary algorithms. Therefore if a solution performs adequately,

there is no fitness advantage and thus no selection pressure to improve it. This problem is

particularly prevalent in the GP, as its representations have no fixed shape or size.

Unfortunately, this means that solutions generally increase in size during a run: this is called

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 24 -

‘programme bloat’. For example, (Jefferson et al, 1990) suggest that on average a GP tree will

grow at one level per generation. A bloated solution will contain large sections of inactive

code (Bhattacharya and Nath, 2001), which can slow convergence and increase the

computational load. Bloat can also result in the evolution of solutions that while accurate,

provide no new insight into the problem because of their complexity (Keijzer and Babovic,

1999).

2.13 Conclusions

Evolutionary algorithms are domain independent problem solvers that utilise search operators

inspired by biological evolution. Historically four implementations have been developed,

which incorporate different representations and are used for different tasks, evolutionary

programming is typically used to predict future outcomes based on historical information,

evolutionary strategies are used as continuous parameter optimisation tools, genetic

algorithms can either be used for discrete parameter optimisation or as a search tool while

genetic programming is often used in machine learning.

 This thesis will use EAs because they are robust enough to handle issues related to civil

engineering design including large numbers of inter-related parameters, discrete and

continuous variables creating discontinuous search spaces.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 25 -

3 Representing Civil Engineering Design Problems in Evolutionary

Algorithms

3.1 Abstract

Civil engineering design problems are typically approached using traditional techniques i.e.

deterministic algorithms, rather than via stochastic search. Evolutionary algorithms are a type

of stochastic search algorithm inspired by natural selection and a number of authors have

proposed them as a design tool. This chapter discusses how solutions to civil engineering

design problems, in particular structures, can be represented in evolutionary algorithms

without considering implementation specific issues.

Keywords: evolutionary algorithms, civil engineering, design

3.2 Introduction

This section considers the topic of engineering design. The following section discusses how

computers can be utilized to aid the design process specifically via decision support systems.

 Design is a highly complex process that has been investigated via numerous theoretical

and empirical studies e.g. Lawson, 1997: Dym, 1994: Pahl and Beitz, 1996. In spite of this, a

definitive design methodology remains elusive. This is because “…design is not a simple

hierarchical process where the designer is presented with a set of requirements and works

steadily through a decomposition strategy, moving from abstract concepts to the final

concrete product. The design problem is ill-defined and changes as the designer explores it

through solutions and partial solutions…” (Hudson and Parmee, 1995). However design

problems, regardless of discipline, are generally solved iteratively: by constantly proposing

and refining solutions rather than by a purely sequential methodology, but it should be noted

that design does not iterate around a single solution but rather around a range of acceptable

solutions (particularly in multi-disciplinary projects). Finally, it must be acknowledged that as

the design progresses every partial solution will influence the final solution. Therefore, each

partial solution generates “waves of consequences” (Moran and Carroll, 1996), so decisions

made during the early stages influence the later stages (of the design). Even without a

definitive model of the design process, it is generally accepted that any design involves the

following stages, whether a prescriptive (Finger and Dixon, 1989) or descriptive (Dym, 1994)

methodology is used:

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 26 -

• Conceptual design: having determined a statement of need, the most important factor in

conceptual design is the consideration of alternatives while developing a working

solution (phrased at a high level).

• Embodiment design: “… the part of the design process in which, starting from the

working structure or concept of a technical project, the design is developed…to the point

where subsequent detail design can lead directly to production…” (Pahl and Bietz,

1996).

• Detailed design: the final stage where the embodied design is developed. This stage is

almost procedural in nature and many algorithms have been created to aid designers.

 This thesis will only consider the conceptual design stage because embodiment and

detailed design have been extensively studied and are suited to classical/ procedural

approaches. Conceptual design is characterised by the lack of information available to the

designer however evolutionary algorithms are adept at searching such solution spaces.

3.2.1 Characteristics of civil engineering design

Civil engineering design problems generally involve the construction of bespoke artefacts, as

conditions are rarely identical on different projects. However, traditionally designers typically

start by looking at existing solutions of similar projects and adapting them to the current

specification. So, while the solution is generally unique it is often based on a previous design

and so exhibits common characteristics.

 It should be noted that design is different to optimisation: optimisation generally involves

manipulating defined variables to achieve an optimal solution; however in design, especially

conceptual design, the problem is not fully defined at the outset. To solve the problem the

designer proposes and refines solutions that also define the problem. To highlight these

issues, Hudson and Parmee (1995) suggest that design problems contain three issues that are

not present in optimisation:

• Neither the structure of the final solution nor the design space is fixed.

• The evaluation of concepts is not a simple quantitative comparison.

• A range of feasible solutions is more important than a single ‘optimal’ one.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 27 -

 However, it is acknowledged that the differentiation of design and optimisation is not

clear. Rosenmann (1997) suggests a more general hypothesis that ‘design’ systems should be

able to generate new solutions from random initial conditions using minimal heuristics.

3.2.2 Decision Support Systems for Conceptual Design

This section discusses the need for computer based Decision Support Systems (DSS)

especially for civil engineering conceptual design, before the remainder of the chapter

considers how solutions can be represented using a DSS based on evolutionary algorithms.

 Decision Support Systems aim to expand the user’s existing skills and experience by

providing a problem solving methodology, which enables them to make better decisions

(Miles and Moore, 1994). DSS achieve this by providing the following functionality (Turban,

1988):

• Allowing designers to quickly and objectively assess how their chosen solution responds

if inputs or assumptions are changed.

• Providing a standardised framework for decision-making.

• Allowing all interested parties to participate in the design process, enabling everyone to

develop a clearer understanding of the problem and possible solutions.

• Cost savings. Although contentious, a well-designed DSS should focus a design team on

more viable solutions whereby reducing the chance of costly mistakes. It should also

hasten the initial design process and thus reduce the overall cost.

 Finally, a DSS can improve the final design by proposing a variety of ideas early in the

design process. This is vital as Ullaman et al (1987) found that within 45 minutes of starting a

design, designers have settled on their proposed solution and rather than consider alternatives

they adapt it when problems arise. Therefore, by suggesting solutions without preconceived

ideas and prejudices, a DSS should open the designer to more novel solutions (Sisk, 1999).

3.3 Representation

Evolutionary algorithms require candidate solutions to be evolved using operators based on

biological evolution. Unfortunately most problems do not have solutions that are instantly

amenable to these operators. Therefore they must be converted to a form that is. This involves

developing an appropriate ‘representation’.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 28 -

 In this work, ‘representation’ refers to the structure and encoding that allows potential

solutions to be included in the search: some exclude the encoding methodology from the

representation while others include the fitness function. The primary purpose of a

representation is to convert every possible solution to a form that allows it to be included in

the search.

 The canonical evolutionary algorithms use a variety of representations:

• Evolutionary Programming (EP): Finite state machines.

• Evolutionary Strategies (ES): Real-valued vectors.

• Genetic Algorithms (GA): String representation (with binary encoding).

• Genetic Programming (GP): Representation based on tree, graph or linear structure.

 The following discussion does not consider implementation specific issues but focuses on

how structures can be represented (including the advantages and disadvantages of every

approach). However it should be noted that most representations discussed are commonly

associated with either the GA or the GP. This is because the EP and the ES are generally used

as continuous parameter optimisation tools and are therefore not particularly suited to

conceptual design. Also this thesis considers labelling evolutionary algorithms as GA or GP

etc as potentially misleading because it encourages people to apply their preconceived ideas

rather than focusing on what is being described.

3.4 String Representation

This section considers string representations. For the purpose of this thesis, ‘strings’ are one-

dimensional structures that do not allow cycles and in general contain a sequence of

parameters.

 String representations are often appropriate for parametric problems or when discrete

elements are required. Strings are composed of a series of variables (in some instances

variable ordering is important). In any case, there are three ways to encode a string: binary,

integer and real (although a single string may include several encodings).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 29 -

3.4.1 Binary-encoded string

A binary-encoded string (Figure 3-1) is often the most natural representation for Boolean

variables. As binary-encoded strings formed the initial GA representation used by Holland

(1975), they have become synonymous with GAs. Unfortunately, this means that they are

often used irrespective of suitability. However, they do provide the most schemata7 per bit of

information of any encoding and may be extended to encode integer and real numbered

variables.

Figure 3-1 Example binary encoded string representation

Within civil engineering examples of binary encoded strings include (Table 3-1):

Table 3-1 Binary encoded strings in civil engineering design

Application Year Author

Optimum composite laminate design 2000 Matous et al.

Reinforced concrete biaxial column design 1998 Rafiq and Southcombe

Building layout 1999 Park and Grierson

Truss design 1995 Shrestha and Ghaboussi

3.4.2 Integer-encoded string

Integer-encoded strings are often the most appropriate representation for a finite set of

discrete variables or integer based variables (Figure 3-2). For example, the diameter of steel

reinforcement bars. It should be noted that an integer-based variable could be converted to a

binary bit string, which will provide more schemata per bit of information. However,

retaining the integer encoding ensures that two genes will remain close in both the solution

and representation spaces and reduce the string’s overall length.

Figure 3-2 Example integer encoded string representation

7 A sub-region of the representation space created by including an additional ‘don’t care’ character ‘#’ in the

representation’s encoding (Holland, 1975)

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 30 -

Within civil engineering examples of integer encoded strings include (Table 3-2).

Table 3-2 Integer encoded string representation examples in civil engineering design

Application Year Author

Structural building design 2003 Sisk et al.

3.4.3 Real-encoded string

A real-encoded string (Figure 3-3) is often the most appropriate representation for continuous

or high precision variables e.g. the length of a structural beam. It should be noted that as with

integer variables, a real-based variable could be converted to a binary bit string. However, the

disadvantage of converting to a binary representation is the level of precision must be

specified in advance. Therefore the string can become exceptionally long if a large quantity of

high precision variables is required.

Figure 3-3 Example real encoded string representation

Within civil engineering examples of real encoded strings include (Table 3-3).

Table 3-3 Example applications of real encoded string representation in civil engineering design

Application Year Author

Design of reinforced concrete beams 1997 Coello et al.

3.5 Voxel Representation

This section describes ‘voxel’ representations, which are often appropriate for shape

discovery problems because they decompose the solution space into discrete elements

(usually square or triangular in shape) called ‘voxels’ (volume pixels). Once the solution

space is decomposed, each voxel is allocated a Boolean value. If the value is true, then the

voxel is considered to contain some material, and if false the voxel is empty. Therefore, this

representation allows two-dimensional structures to be mapped to a binary string.

 Unfortunately, because adjacent voxels are not guaranteed to remain adjacent in the

genome, a disadvantage of this representation is that it is prone to “…the development of

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 31 -

small holes, isolated voxels and jagged edges […] and eliminating these deficiencies without

having to apply strong guidance using heuristics poses a significant challenge…” (Griffiths

and Miles, 2003). These issues can be mitigated by post-processing solutions or utilizing

intelligent evolutionary operators (Zhang and Miles, 2004). A final disadvantage of voxels is

the ‘fineness’ of the voxel grid must be determined at the outset, which significantly biases

the final solution. However they are very well suited to modelling structures such as I beams.

Figure 3-4 Example voxel representation

Within civil engineering examples of voxel representations include (Table 3-4).

Table 3-4 Applications of voxel representation in civil engineering design

Application Year Author

Optimisation of I beam cross section 1999 Baron et al.

Optimisation of I beam cross section (including shear stress) 2003 Griffiths and Miles

Optimisation of I beam cross section (including shear stress) 2004 Zhang and Miles

3.6 Tree Representation

Trees are a non-linear, hierarchical and strictly acyclical data structures constructed from

nodes (Figure 3-5). Every tree starts with a ‘root’ node, at depth 0. The root node is unique

because it does not have a parent, but it does have children8. Each child forms a separate sub-

branch and maybe a parent for other nodes. Any node that does not have a child is called a

‘leaf’. Leaf nodes generally contain inputs. The remaining nodes are ‘functions’. Function

nodes process leaf inputs and transfer the result to their parent.

8 As with genealogical trees, tree representations use familial terminology when referring to other nodes

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 32 -

Figure 3-5 Example binary tree representation

 Theoretically, every node has an arbitrary number of children. However trees are often

designed with a predetermined number of children. For example, every binary tree node has a

maximum of two children (Figure 3-5).

 As previously stated, trees are hierarchical and strictly acyclical. Therefore, a child

cannot have a higher depth that its parent (Figure 3-6).

Figure 3-6 Invalid tree representation

3.6.1 Yang and Soh’s (2002) tree representation

Within civil engineering design, only one set of authors has published papers incorporating a

tree representation: Yang and Soh. This section discusses their representation while the

following section discusses some of the issues related to using a tree representation (as

proposed by Yang and Soh). The representation they propose incorporates a binary tree with

two types of node:

• Function nodes: representing cross-sectional areas of the members Ap (p= i,j,k,l,m,n).

• Leaf nodes: representing structural joints Ni (i= 1,2,3,4).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 33 -

 To decode which two nodes a member spans the tree is parsed by starting at the relevant

node and progressing down the connection lines until a terminal node is reached. For example

member Al spans nodes N4 and N3 (Figure 3-7).

Figure 3-7 Tree representation for structural design

3.6.2 Advantages of a tree representation

Tree encoding appears very simple, when compared to the equivalent binary string e.g. when

designing a truss capable of supporting six loads, the tree representation required 29 nodes

(16 joint and 15 members) where as Shrestha and Ghaboussi’s (1998) string representation

required 25,200 bits. However this comparison is slightly unfair because tree nodes

encapsulate9 data, while the string representation does not.

3.6.3 Disadvantages of a tree representation

During evolution, especially recombination, tree representations have a tendency to develop

problems: consider the following crossover (Figure 3-8) between two identical parents

encoding a six-member truss:

9 Process by which an object ‘hides’ data and provides methods to access it (in object-orientated programming).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 34 -

Figure 3-8 Example recombination operation between identical parents

There are three problems with these offspring:

• The ideal ‘1-to-1’ mapping can only be assumed during initialisation, as it can degenerate

during evolution (Figure 3-9). Therefore, unless the evolutionary operators are restricted

or individuals are repaired, evolution will produce a ‘n-to-1’ mapping with all its

repercussions.

Figure 3-9 Degeneration of ‘1-to-1’ mapping

• Evolution may produce members that span between the same joint (a null member) or

create several copies of the same member (Figure 3-10). While often not fatal to the

structure, it does add a computational overhead and causes the solutions to ‘bloat’.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 35 -

Figure 3-10 Problems after evolution for tree representation

3.7 Graph representation

Graphs are a non-linear data structure composed of nodes connected by edges. However

unlike trees, graphs allow cycles and can incorporate loops and recursive commands. This is

because in addition to performing a function, graph nodes determine which node will be

executed next.

 Graphs are often a good representation for skeletal structures e.g. trusses, because they

support the adaptability required for topological design. For example strings are linear

structures, therefore each element has at most two connections: left and right. Unfortunately,

most physical structures contain elements that connect to an arbitrary number of elements.

Therefore, a higher dimensional representation maybe required having a more appropriate

form.

 Graphs are often used for modelling problems in civil engineering, within design only

one paper has been published: Borkowski et al (2002). The representation proposed by

Borkowski et al (2002) involves two elements:

• Composition graphs (CP-graphs): A directed labelled graph (Figure 3-11) representing a

structure’s topological features (its genotype). CP-graphs are composed of nodes

(representing joints) and edges connecting two nodes (representing members) both of

which are labelled and attributed.

• Realisation schemes: A mapping that assigns properties to the CP-graph to generate the

phenotype.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 36 -

Figure 3-11 Example bridge and CP-graph representation (adapted from Borkowski and Grabska, 1995)

 In addition to this, Borkowski et al (2002) suggest that a physical structure is created by a

finite number of topologically identical units that they call ‘panels’. For each panel, a CP-

graph in evolved. This reduces the representation space’s size.

3.8 Other Representations

This chapter has covered the most common representations, however others do exist

including:

• Homogenisation: The material (from which the structure is constructed) is considered to

be ‘sponge-like’ containing an infinite number of micro-cells and voids, which can be

assigned different densities (Bendsoe and Kikuchi, 1988).

• Voronoi-based: The structure is composed of a finite number of voronoi sites that define a

voronoi diagram (Kane and Schoenauer, 1996).

• Shape Grammars: This method is often used for layout design. Shape grammars perform

computations with shapes in two steps: recognition of a particular shape and possible

replacements (Stiny and Gips, 1972).

3.9 Representation and truss design

This section provides an introduction to trusses before reviewing the existing approaches to

truss optimisation and design. Trusses have been selected because they are the most

commonly studied type of structure for civil engineering design problems. Therefore there are

a number of approaches to compare and contrast.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 37 -

 Structural trusses Figure 3-12 are composed of at least two members (in tension or

compression), which when joined together create a stable construction in either two

dimensions (planar truss) or three dimensions (space truss). Trusses are a common

engineering structure often used to support roofs or bridges.

Figure 3-12 Example planar and space truss

 Structural optimisation and design problems frequently use trusses “…this maybe

attributed to the fact that trusses usually possess many nodes and elements that can be deleted

or retained without affecting the functional requirements. In addition, the truss is a relatively

simple, yet non trivial structure…” (Kirsch, 1990).

3.9.1 Truss optimisation versus design

Truss optimisation involves modifying an existing design so that it is more efficient. This

usually involves reducing its weight whilst ensuring it remains fit for purpose and has been a

research topic since Mitchell’s seminal paper in 1904 (Mitchell, 1904). When optimising a

truss, there are three variables to consider:

• Sizing: Modifying the size of structural members.

• Geometry: Modifying the position of structural nodes.

• Topology: Modifying the number and connectivity of structural members.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 38 -

 Most existing approaches consider a truss’ sizing, geometry and topology to be

independent and solve them in turn. However, sizing, geometry and topology are obviously

not independent because the initial modifications will constrain those that come after.

Nevertheless this approach is frequently adopted as it makes the problem more accessible.

 Topological optimisation is the most difficult process to investigate because the

representation must incorporate a mechanism by which member connectivity can be modelled

(Deb, 2002) and this factor limits the applicability of classical/ procedural approaches. As if

to highlight this, some approaches even neglect topology and concentrate on optimising sizing

and geometry. Evolutionary algorithms, and in particular genetic algorithms, with their

adaptive representations are more suited to this type of problem and many optimisation papers

suggest using this approach Table 3-5, but all utilise a ‘ground structure’ first proposed by

Dorn et al (1964).

Table 3-5 Topological optimisation via genetic algorithms

Author Year
Ruy et al. 2001
Deb and Gulati 2001
Camp et al. 1998
Rajeev and Krishnamoorthy 1997
Hajela and Lee 1995
Rajan 1995

 Ground structures contain a large number of highly connected nodes (Figure 3-13). To

optimise the topology, an algorithm removes all non-essential members (although it is

arguable that because topology is predetermined, optimisation only occurs within a limited

search space). This can be accomplished by associating an extra ‘flag’ gene, with each

member in the genome indicating whether the member is present or not. To add or remove a

member, the algorithm changes it flag status. Unfortunately, this produces long genomes

containing large quantities of redundant information. Therefore, the final topology is biased

by the ground structure. However, this approach does simplify the issue of representation

because each genome contains every possible member configuration (even if the genome is

excessively long).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 39 -

Figure 3-13 Example ground structure

 Truss design is a more difficult problem than optimisation, because there is no initial

structure to adapt. Therefore, for it to be effective, the design algorithm must generate at least

one potential solution and modify its sizing, geometry and topology simultaneously without

the need to rely on a ground structure.

 The major issue with topological design (of trusses) is how to represent the ‘node element

diagrams’ of structural analysis and in particular that a member spans between two joints (in

addition to its own properties). As topological design is a difficult subject and there are only

three major representations to date, all will now be reviewed.

3.9.2 Shrestha and Ghaboussi (1998)

Shrestha and Ghaboussi suggest a solution based on a fixed length, string representation, by

encoding individual joints and duplicating member information. Each string genome is

composed of a fixed number of sub-strings (Figure 3-15), which encode joint locations using

Cartesian coordinates. In addition to this, the space around each joint is discretised into 8

regions (Figure 3-14).

Figure 3-14 Sectorial joint representation (adapted from Shrestha and Ghaboussi 1998)

 When a member is associated with a joint, the relevant joint region encodes its properties.

However, because a member spans between two nodes, it can potentially have two different

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 40 -

sets of properties (one maintained by each region). To decide which properties to use nodes

are assigned priorities with the dominant node defining the member.

Figure 3-15 String representation (adapted from Shrestha and Ghaboussi 1998)

 This indicates some of the deficiencies of a 1D string representation: because it lacks a

suitable structure, topology must be encoded in addition to the geometry and sizing

information and this arbitrary representation (of topology) creates redundant information in

the genome increasing its size.

3.9.3 Yang and Soh (2002)

Yang and Soh suggest a solution based upon a 2D adaptive tree structure, by encoding

members and duplicating joint information. They propose that the tree should compose two

types of node (Figure 3-16):

• Leaf nodes: representing structural joints.

• Inner nodes: representing structural members.

Figure 3-16 Six member truss and tree representation

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 41 -

 They also recognise that this encoding methodology only provides a ‘n-to-1’ mapping,

which means that the same truss can be represented by several different tree configurations

(Figure 3-17).

Figure 3-17 ‘n-to1’ mapping

 While valid, ‘n-to-1’ mapping enlarges the solution space reducing an algorithm’s

efficiency. Therefore Soh and Yang suggest an improvement to produce a ‘1-to-1’ mapping:

joints and members are numbered and (without loss of generality) the lower numbered

element considered first. To encode a truss, the following procedure is applied:

“…The lowest numbered member is selected to be the root node.

This member then has its start and end joints represented by children

nodes to the left and right respectively. Then, from left to right, the lowest

numbered member associated with each joint is removed from the

structure and inserted into the tree. This procedure continues until every

member is represented in the tree…”

 It is important that the left-right relationship of offspring and parent be maintained as the

tree is constructed, because the nodes to its far left and far right define every member. For

example, member i spans between joints J1 and J3 (Figure 3-16). For more information

regarding issues with tree representations please refer to 3.6.3.

 The following paragraph is slightly esoteric, but interesting nevertheless! Soh and Yang

consider that using a tree structure indicates the use of genetic programming (Koza, 1992).

However, because the phenotype (the truss) has a different structure to the genotype (the tree)

an additional decoding step must be incorporated into the solution procedure. Therefore, the

solutions are not ‘active structures’. It is this author’s opinion that if this work is to be pigeon

holed into one of the four canonical EAs their work should be considered to be a genetic

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 42 -

algorithm (Holland, 1975). However it is only by labelling their approach as genetic

programming the authors have left themselves vulnerable to this sort of criticism. It is for this

reason that this thesis will refer to any experimental work as an evolutionary algorithm using

a particular representation.

3.9.4 Azid and Kwan (1999)

Azid and Kwan published an approach that allows the evolutionary operators, of a GA based

system, to act directly on the phenotype rather than its genotypic representation. However

they must use some form of representation (as defined in this thesis), as it is impossible to

implement any computer based technique without some form of representation. Therefore

because trusses naturally form graphs it is assumed that they used a graph-based

representation. They also highlight the problem of using a coded string: the evolutionary

operators are highly disruptive. To mitigate this, several rules are used to ensure that any

offspring mimic their parents (to prevent too many infeasible solutions being generated):

• Any offspring formed by two structurally viable parents must be structurally viable i.e.

not a series of discontinuous joints and bars in space.

• There must be some visual architectural resemblance between offspring and parent.

3.10 Conclusions

Conceptual design is the first stage in a highly complex process. To aid the designer, decision

support system based on evolutionary algorithms maybe used because although conceptual

design is characterised by the lack of information available to the designer, EAs are adept at

exploring fragmented and complex search spaces. However EAs require candidate solutions

to be converted to a form that is amenable to evolutionary operators. Many representations

have been designed each with its own strengths and weaknesses: strings are generally used for

parameters, voxels for shape discovery, trees and graphs for skeletal structures. Within civil

engineering design, the most commonly studied structure is the truss and three main

representations have been used, each with their own pros and cons.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 43 -

4 Conceptual Layout Design of Orthogonal Commercial Buildings

4.1 Abstract

The conceptual layout design of commercial office buildings is a non-trivial task because the

numerous design variables create a large solution space. To aid designers, several decision

support systems have been developed. However, all these systems are limited to buildings

with rectangular floor plans.

This chapter presents a evolutionary algorithm based methodology capable of designing

buildings with orthogonal boundaries and atria. To achieve this the floor plan is partitioned

into rectangular sections using a sweep line algorithm and to prevent unrealistic solutions

being generated, the representation (a 3-section string) ensures the initialisation and

evolutionary operations are not too disruptive. The number of initial inputs has also been

reduced, because this work is aimed at the conceptual design stage. Therefore the user only

needs to specify the external boundaries shape and location of any atria.

The aim of this chapter is to investigate existing examples and develop new representation

for orthogonal building layout design.

Keywords: commercial office buildings, conceptual layout design, evolutionary algorithm,

polygon partitioning, orthogonal boundary.

4.2 Introduction

Conceptual design commences once a problem has been identified and a vague description of

a solution has been formulated (usually in functional terms) called the ‘project brief’.

Generally, the aim of conceptual design is to generate a range of solutions that will be further

developed during the subsequent design stages. Therefore although these solutions are based

on limited information, they will determine most of the major design parameters. In fact it is

often quoted that by the end of the conceptual design stage 70 to 80 percent of a project's

resources are committed.

Conceptual design is also considered to be one of the most difficult challenges facing

practising designers because of the range of possible options. For example, it is estimated that

for a typical commercial building of 20 stories, even if one only considers the architectural

and structural aspects, there are approximately 170 million possible design options

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 44 -

(Khajehpour and Grierson, 2003). Therefore only experienced engineers carry out conceptual

design tasks, because the lack of initial information limits the effectiveness of procedural

techniques to assist more junior designers.

4.3 Related Work

In order to aid building designers, various papers (Table 4-1) have proposed Decision

Support Systems (DSS) based on evolutionary algorithms. Evolutionary algorithms are suited

to this role because they are adept at exploring fragmented and complex search spaces.

However, all these systems are limited to buildings with rectangular floor plans.

Table 4-1 DSS for the conceptual design of buildings

Author Year Method Details
Harty and Danaher 1994 Knowledge Based

System (KBS)
Produces realistic designs in structural steel and reinforced
concrete for regularly shaped buildings

Grew 1995 KBS Uses simple calculations and rules of thumb (can reuse
knowledge gained from existing structures) for the design of
portal framed buildings.

Fenves et al. 1995 Case Based Reasoning
(CBR)

Part of the SEED system (Software Environment to Support
the Early Phases in Building Design) that is user extensible.

Fuyama et al. 1997 KBS Based on behaviour considerations and first principles this
system, implemented in an object orientated programming
environment, designs moment resisting steel frames.

Rajeev and
Krishnamoorthy

1998 GA (String) Design optimisation of reinforced concrete plane frames
using a genetic algorithm (taking into account factors related
to detailing and placement of reinforcement).

Khajehpour and
Grierson

1999 GA (String) Conceptual design of medium-rise office buildings using a
multi-criteria genetic algorithm in conjunction with pareto
optimisation theory.

Rafiq et al. 1999 GA (String) Design of concrete framed buildings using a genetic
algorithm incorporating a neural network for a floor plan
based on regular column spacings.

Soibelman et al. 2000 CBR + GA Structural design of tall buildings by proving designers with
adapted past design solutions generated by a distributed
multi-reasoning mechanism.

Miles et al. 2001 GA (String) Design of commercial office buildings using a genetic
algorithm as a search engine to determine layouts with
regular and irregular column spacings.

Grierson and
Khajehpour

2002 GA (String) Cost-revenue conceptual design of high-rise buildings using
a multi-criteria genetic algorithm.

Eisfeld and Scherer 2003 KBS + Descriptive
Logic Reasoning

Interactive planning algorithm using an expressive
description logic language to represent structural knowledge
acquired from practitioners.

Sahab et al. 2005 Hybrid GA (String) Two stage conceptual design of reinforced, concrete flat slab
buildings.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 45 -

4.3.1 BGRID

The work published by Miles et al. (2001) called ‘BGRID’ will now be discussed in more

depth, because this section of the thesis is a continuation of it. BGRID was developed in close

collaboration with practising engineers and focuses on the design of rectangular floor plans,

using a genetic algorithm (Holland, 1975) to generate column layouts. To achieve this,

BGRID concentrates on a number of ‘first order’ design decisions:

• Dimensions of the structural, constructional, servicing and planning grids.

• Environmental strategy (for both lighting and ventilation).

• Floor-to-ceiling height including (spacing requirements for services).

• Structural depth and its impact on the building height.

• Cost

However the search within BGRID is heavily constrained, as the user is required to fix

their preferred dimensions for the modular and structural grids at the start. The GA is also

allowed to modify the overall building and atria dimensions to fit a potential grid. By heavily

constraining the search and modifying the outline, BGRID is able to carry out a near

exhaustive search of the feasible options. Unfortunately the final solutions are often only

marginally better than the initial, random solutions. This lack of improvement could be due to

the fact that the best solutions tend to lie on the boundary between the feasible and infeasible

regions. Thus by not allowing the search to explore the infeasible region the algorithm’s

search is restricted. It is also a reflection on the heuristics applied during initialisation, which

ensures the population is only seeded with viable options.

After its development, BGRID was assessed by about 80 practising designers including

architects, building services engineers and structural engineers and 68% of them suggested

that this type of tool could be useful.

4.4 OBGRID

This section provides an introduction to the OBGRID (Orthogonal Building GRID) a DSS for

the conceptual design of orthogonal buildings by considering some of the key issues.

OBGRID is a continuation of BGRID however it must be stressed that the aim of this work is

to develop a suitable representation (capable of handling non-rectangular floor plans) rather

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 46 -

than a complete building design system. Therefore the fitness function and evolutionary

operators used are to demonstrate the representation’s flexibility rather than to optimise

performance. The following sections describe how OBGRID designs rectangular and

orthogonal floor plans.

4.4.1 Column Layout

One of the most important features of commercial buildings is that columns should preferably

be arranged in rectangular grids. This is not to say that other arrangements are not used, but

regular rectangular grids tend to be easier and more economical to construct and provide a

flexible layout that can be readily adapted during the life of the structure.

4.4.2 Structural Systems

At present OBGRID contains the information for three structural spanning systems: short,

medium and long (however the system is user extensible). As stated previously, the aim of

this work is to develop a suitable representation for orthogonal buildings. Therefore BGRID’s

structural systems have been incorporated into OBGRID.

• Short: Slimflor™ has an integrated steel deck (minimising the depth of the structural

zone). [Economic range = 5-8m].

• Medium: Composite steel beam and composite slab system. [Economic range 6-12m].

• Long: Steel stub girder and composite slab system. [Economic range 18-20m].

 As larger column spacing generally produce a more flexible internal environment

OBGRID tends to favour longer spans, which is admittedly biases the search.

4.4.3 Environmental Strategy (Ventilation)

Ensuring the correct ventilation is a fundamental problem in building design because it is

difficult to change once built. Three environmental strategies have been considered (although

others maybe added by the user):

• Natural ventilation: Natural ventilation is provided by the glazing system, but usually

only available in non-urban environments.

• Mechanical ventilation: If the building is too deep for natural ventilation then mechanical

ventilation maybe suitable.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 47 -

• Air conditioning: In an urban environment this is often the only option as it allows the

building to effectively maintain a self-contained environment.

4.4.4 Services Integration

The electrical, communication and ventilation services must be coupled with the structural

system in one of three ways:

• Separate: The services and structural system are accommodated in adjacent zones. This

approach is characterised by short spans and a shallow construction depth.

• Partial: If the structural system is deep enough, some of the services maybe

accommodated within it. However, some services must be routed under the primary

beams and thus out of the structural zone.

• Full : The services and structural system are accommodated in the same zone. This

approach is often characterised by long spans with a deep construction depth (within

cillular beams).

4.4.5 Clear floor-to-ceiling height

The clear floor-to-ceiling represents the usable ‘office’ space. A high floor-to-ceiling height is

required if the client requires natural daylight and natural ventilation. It is suggested that this

should be between 2.4m => 4.0m with a recommended minimum of 2.7m.

4.4.6 Floor-to-floor height

To calculate the floor-to-floor height, the floor-to-ceiling height is added to the distance

required for the floor spanning system and services (Table 4-2).

Table 4-2 Dimensional allowances for services

Environmental Strategy

Air Conditioning
(mm)

Mechanical
(mm)

Natural
(mm)

Separate 900 635 350

Partial 650 500 325

S
er

vi
ce

s
In

te
gr

at
io

n

Full 350 350 350

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 48 -

4.4.7 Initial User Input

Because this work is aimed at the conceptual design stage, the number of input variables has

been reduced. The user is only required to enter the dimensions of the boundary and atria in

addition to specifying the total number of storeys. Other GA based DSS allow the algorithm

to search for the optimum number of storeys e.g. Khajehpour and Grierson (1999) and Rafiq

et al. (1999). However, during BGRID’s evaluation it was suggested that the client usually

fixes this parameter at the outset therefore this option has been omitted (if the designer wishes

they can re-run the algorithm with different numbers of floors to investigate this variable).

4.5 OBGRID and Rectangular Buildings

This section contains a detailed description of how OBGRID handles rectangular buildings.

Layout design of rectangular floor plans is fundamental in this work, because every

orthogonal floor plan will be partitioned into rectangles.

4.5.1 Representation

In an efficient building layout, columns should be aligned in straight rows. Therefore, the

representation should be robust enough to reflect this feature even after the disruption caused

by the evolutionary operators.

Initially an attempt was made to include individual column locations in the genome using a

tree or graph structure (Figure 4-1a). However, this representation proved to be slightly

unstable and tended to leave some columns isolated in the floor plan particularly after

evolution (Figure 4-1b). This is because by focusing on individual columns, these

representations failed to incorporate the idea of rows. So if one column’s location was altered,

the algorithm was unable to update the remaining columns.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 49 -

Figure 4-1 Problem using tree or graph based representation in layout design

OBGRID uses a 3-section string representation (Figure 4-2) that focuses on aligning

column rows by considering a column’s x and y coordinates independently, so a gene

references a row of columns rather than an individual one. It should also be noted that the

number of columns included in sections 1 and 2 is not fixed (and can vary during the search)

thus this representation is a variable length genome.

• Section 1: contains column x spacing.

• Section 2: contains column y spacing.

• Section 3: contains the remainder of the information including: structural system, services

integration, environmental strategies and the floor to ceiling height.

Figure 4-2 Example genome for layout design

 Sections 1 and 2 of the genome contain values that always increase from left to right.

This ordering is maintained because it ensures a 1-to-1 mapping between the representation

and solution spaces. Span length, the distance between columns, is calculated by finding the

difference between adjacent genes (as genes signify column locations).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 50 -

 Each gene, in section 1 or 2, references a row of structural columns rather than just a

single column. Therefore any change to an individual gene will not invalidate the layout

because the whole row will be altered (see 4.5.3).

4.5.2 Initialising the genome for a rectangular floor plan

The following section will describe how the genome for a rectangular floor plan is initialised.

To aid understanding, an example floor plan of 50m x 30m will be initialised. Each section of

the genome is considered in turn:

• Section 1: starting at the upper left hand corner of the floor plan (it is always assumed that

the top left hand corner has the local coordinates (0,0)) the algorithm generates random

column spacings in the x direction until the end of the floor plan is reached.

Figure 4-3 Rectangular floor plan (Section 1 Initialised)

• Section 2: restarting at the upper left hand corner (0,0), the algorithm generates random

column spacings in the y direction until the end of the floor plan is reached.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 51 -

Figure 4-4 Rectangular floor plan (Section 2 Initialised)

• Section 3: The final section is initialised with randomly selected genes from the

appropriate gene set. For example the basic structural system gene set contains three

elements: 0 = Short, 1= Medium, 2 = Long, so this gene will either be a 0, 1 or 2.

Figure 4-5 Rectangular floor plan (Section 3 Initialised)

 It should be stated that unlike BGRID no effort is made to constrain column positions to

‘realistic’ spacing i.e. within the economical range for the selected spanning system. This is to

encourage the algorithm to for solutions in both the feasible and infeasible regions. However,

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 52 -

the fitness function does penalise individuals that contain a wide range of column spacing.

This is to encourage a degree of uniformity in column spacing, which aids ‘buildability’

without adding much bias.

4.5.3 Evolutionary Operators

Evolutionary algorithms search the solution space by using biologically inspired operators.

However because the genome is divided into 3 distinct sections of variable length, the

evolutionary operators have been amended to reflect this:

• Mutation: used to inject new solutions into the population improving the search by

(hopefully) preventing premature convergence (Goldberg, 1989). Having selected an

individual’s genome, a new value is generated for a random gene. If the mutation operator

selects a gene from sections 1 or 2 then it is replaced with a randomly generated value

between 0 and the limits of the floor plan. Unlike BGRID that restricts the new spacing to

a value between the two adjacent genes, OBGRID simply generates a random spacing and

when it’s needed sorts the genome so that the column spacing increase from left to right10.

If a gene from section 3 is selected a random gene from the appropriate gene set is used.

Figure 4-6 Example mutation operation

10 The sorting algorithm is that contained in Java’s native java.utils package: a modified mergesort (in which the

merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This

algorithm offers guaranteed n log(n) performance.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 53 -

• Recombination: used to exploit the information already in the population. OBGRID

employs a single point crossover operator. Single point crossover is used because it is

simple to implement even with variable length genomes (as in OBGRID). However rather

than applying the crossover operator on the whole genome, it performs a separate

crossover on each of the genome’s three sections. Although for section 3, the cut point is

always located at the same point to ensure this section of the genome remains of constant

length.

Figure 4-7 Example recombination operator

4.5.4 Selection

BGRID originally used the standard fitness method (Bradshaw and Miles, 1997) to select

individuals during evolution. This technique ranks the individuals by raw fitness and then

assigns a predetermined fitness to every individual according to their rank. However,

OBGRID has replaced the standard fitness method with the more conventional tournament

selection technique (Goldberg, 1989) to improve search performance.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 54 -

4.5.5 Fitness function

The fitness function assigns a single numerical value to an individual reflecting how ‘good’ it

is. A multi-objective fitness function might be more appropriate for this work however the

goal was to develop a representation capable of handling orthogonal layouts rather than a

complete building system.

 OBGRID is a minimisation algorithm, which means that the optimum solution has a

fitness of 0. This is because floor plans are assigned an initial fitness of 0 but during

evaluation are penalised if they break the predetermined criteria. Therefore a layout with 0

fitness is not penalised and thus should be a very ‘good’ solution. OBGRID uses a penalty

function because although this can be a conservative approach, convergence delay was

considered to be less dangerous than the premature loss of material: as the optimum will

typically be located on the boundary between the feasible and infeasible regions and this

approach allows the EA to search from both directions. Although there are many types of

penalty function OBGRID uses a quadratic penalty function, which assigns a greater penalty

to a larger transgression.

 OBGRID has three components to its fitness function but it is acknowledged that other

factors could be added. However the following components are included to test the

representation’s performance using relatively ‘realistic’ criteria:

• Overall height: The solution’s overall height must not exceed the value stipulated by the

user. If the solution is larger it is penalised by the penalty function.

• Column spacing compatibility: Column spacing must be compatible with the economical

span distance of the structural spanning system. For example, if the structural system is

‘short’ (specified by the first gene in section 3), the span distances should be between 5

and 8m (4.4.2 Structural Systems).

• Uniformity of the grid: OBGRID attempts to evolve solutions based on regular column

spacing, so the standard deviation of the spacings is used in the fitness calculation. With a

lower standard deviation being preferable (indicating greater spacing uniformity).

4.5.6 Running the algorithm

There are potentially two ways to run this algorithm: with the algorithm able to vary the

flooring system during a run or by preventing the algorithm varying the flooring system and

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 55 -

re-running for each flooring system. It was decided to use the second approach because this

will typically evolve a good solution for each flooring system rather than ignoring it. This can

be important in the ‘real world’, as practising engineers are typically sceptical of ‘black box’

solutions that ignore their criteria and might wish to view a particular spanning system

(although OBGRID will indicate a solution’s suitability via its fitness).

4.6 Illustrative Example: Rectangular Building

This section provides an illustrative example of OBGRID designing a rectangular building.

The parameters in the EA tableau (Table 4-3) should be considered indicative because the aim

of this work is to develop a new representation rather than a complete building design system.

4.6.1 Introduction

The following test case was designed to assess OBGRID’s performance. Unfortunately,

unlike structural optimisation, there are not standard test cases. This is possibly because there

is no such thing as a standard building because they are multi-disciplinary structures (unlike

trusses) therefore the following test case was used:

• Building dimensions: 60m x 18 m

• Height restriction: none.

Table 4-3 EA Tableau for Rectangular Building

Objective Evolve example layout designs for a rectangular
boundary of 60m x 18m with no height restrictions)

Representation 3-section string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibility and column

spacing uniformity
Selection Tournament (size = 2)
Major Parameters* P = 1, M = 100, G = 50

Evolutionary Operators:
Reproductionprob 0.1
Mutation operator Point
Mutationprob 0.3
Recombination operator One point crossover
Recombinationprob 0.6

*P = Number of populations M = Population size G = Max number of generations

 Some researchers may question why the probability of mutation is so high by comparison

to a typical GA. There are two reasons for this:

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 56 -

• The algorithm used in this these is described as an evolutionary algorithm rather than a

pure genetic algorithm, for example. Therefore by considering it as such, the researcher

has a tendency to apply preconceived ideas, which may or may not be appropriate.

• The mutation operator is mechanistically very similar to that used for recombination.

Therefore the algorithm is less sensitive to changes in these probabilities than other

implementations. However the mutation operator has the potential to introduce a gene

pattern not already found in the population, while recombination simply exchanges

existing gene patterns between individuals.

4.6.2 Results

The following graphs show the best, mean and worst fitness recorded during an indicative run

for the medium structural spanning system. It is important to note that because OBGRID is a

minimisation algorithm a lower the fitness indicates a better solution.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50

Generation

F
it

n
es

s

Figure 4-8 Best fitness

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 57 -

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50

Generation

F
it

n
es

s

Figure 4-9 Average fitness

 The best and average graphs trend downwards during the run. This indicates that the

algorithm is converging towards the ‘optimum’ (although the algorithm is not guaranteed to

locate it). The spread also narrows between the average and best, which suggests that the by

employing fitness-based selection, the algorithm is encouraging the ‘better’ characteristics to

propagate. However the same cannot be said for the worst fitness.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 58 -

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50

Generation

F
it

n
es

s

Figure 4-10 Worst fitness

 Although the worst fitness ‘stabilises’ in the range of 50 –300 after generation 10, it

never reaches equilibrium and often ‘spikes’ e.g. generation 33. But again, this is to be

expected. The evolutionary operators are potentially very disruptive and an individual’s

fitness may actually be reduced afterwards. However this is why evolutionary algorithms are

so powerful: although evolution may produce a harmful result for an individual it may also

produce a beneficial change, which maybe be propagated throughout the whole population.

This is shown in Figure 4-8 and Figure 4-9. During the run, the average fitness trends

downwards in a fairly smooth manner, whilst the best proceeds in discrete steps. This is

because the best individuals are formed by chance therefore they can be a huge improvement

over their ancestors (this feature is especially prominent at the beginning of a run). However,

as stated above, once the improvement has been found, it often spreads through the population

reducing the overall fitness in a more gradual manner.

 There is one final feature of Figure 4-8 worthy of mention: because the best solution is

not explicitly copied into the next generation i.e. elitism is not used, the best fitness can rise

between generations. For example, between generations 18 and 19 the best solution actually

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 59 -

decreases in fitness. But this merely demonstrates how robust evolutionary algorithms can be.

Even though the algorithm has lost its best solution to date, it quickly recovers and by

generation 24 has found an even better solution. Ignoring the best of generation can also help

to prevent premature convergence. For example, if the algorithm is forced include the best

solution to date, but this solution is simply a local optimum, then the algorithm would be

hindered rather than helped. So by ignoring the effects of evolution on an individual, for

example after recombination, the algorithm is free to search using all the information

contained in the population and if the best solution to date is the global optimum, hopefully it

will return to it!

 Figure 4-11 shows the solutions returned when the algorithm is run for each structural

spanning system.

Figure 4-11 Returned solutions for rectangular building example

 The final average spacings are all within the economic ranges and were as follows: short

x = 7.5m y = 6m; medium x = 12m y =9m; long x = 20m y = 18m. However these averages

are slightly misleading, as the column spacings returned are not necessarily uniform. In

particular, as the number of columns increases, OBGRID finds it harder to retain regular

spacings. Having OBGRID search explicitly for the number of rows per partition, rather than

for column spacings could rectify this. However this would represent a much simpler

challenge and thus was not pursued for this thesis.

4.6.3 Conclusion

Although simple, this example indicates how OBGRID solves rectangular building layouts.

This is a fundamental process in this work because orthogonal layouts are decomposed into

rectangular sections that are solved in this manner.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 60 -

4.7 OBGRID and Orthogonal Buildings

This section contains a detailed description of how OBGRID handles orthogonal11 buildings:

by partitioning them into rectangles and using the previously described methodology to

design a layout for each partition. This process is a novel feature of OBGRID that has not, so

far as the author is aware, been previously used in building layout design systems and is an

improvement over all existing examples that are limited to rectangular floor plans. To ensure

column row continuation throughout the building an ‘adjacency graph’ is used.

4.7.1 Representation

OBGRID partitions an orthogonal floor plan into rectangles, using the sweep line algorithm

described in 4.7.3, and associates a genome with each partition. Therefore each individual

(representing an orthogonal boundary) contains a set of genomes rather than a single genome

as per a rectangular floor plan (see Figure 4-12). However section 3 is considered to be

standard for all genomes, as it refers to attributes applicable to the whole building rather than

simply one area.

Figure 4-12 Example orthogonal representation

 To ensure column line continuity throughout the floor plan each partition is linked to its

neighbours via the adjacency graph (see 4.7.4). For the remainder of this section, the same ‘C’

shaped floor plan will be used as an example.

11 A layout involving right angles.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 61 -

4.7.2 Polygon Partitioning

Computational geometry (Shamos, 1978) is the study of efficient algorithms (usually

computer based) and data structures for solving geometric problems. The partitioning of

polygons is a major topic in this field and several algorithms have been developed. However a

‘sweep line’ approach was considered the most appropriate for column layout design because

of the need to ensure column line continuation throughout the building (this issue will be

discussed later).

4.7.3 Sweep Line Partitioning Algorithm

Sweep lines algorithms (O’Rourke, 1998) move an imaginary line, the ‘sweep line’, over a

polygon from top to bottom or left to right. At predetermined points the sweep line is stopped

and the polygon partitioned. These points are called ‘event points’. In this work when

partitioning orthogonal layouts without atria, event points are any reflex12 vertex on the

boundary (see Figure 4-13).

Figure 4-13 An example sweep line

Partitioning is completed in two stages:

• First stage: a line is swept from top to bottom. When the line encounters an event point it

extends the boundary edge horizontally across the floor plan until it encounters another

edge. The encountered edge is then split at the point of intersection, which partitions the

building into several, ‘thin’ rectangles. For example in Figure 4-14a edges a and b have

been extended to edge c.

12 A reflex vertex has an internal angle strictly greater than π.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 62 -

• Second stage: a line is swept from left to right across the boundary, further partitioning

the rectangles created by the first stage. This creates the final grid pattern. For example in

Figure 4-14b edge z has been extended to split edges x and y.

Figure 4-14 Example partitioning of orthogonal layout

 It should be noted that for each floor plan, there is a unique partitioning. Therefore once it

has been partitioned, no further partitioning is required during the search.

 In terms of originality, as far as the author is aware, this is the first time a sweep line

algorithm has been applied to building layout design. However, sweep line algorithms are

commonly used in pure mathematics especially topology.

4.7.4 Adjacency Graph

This section describes the ‘adjacency graph’ a data structure that is used to ensure column line

continuity throughout the building, which as far as the author is aware, is unique to this work.

 With the floor plan decomposed into a grid of rectangles, via the sweep line algorithm,

each partition must now share at least one edge with another partition (with an upper limit of

four). The adjacency graph links partitions which share an adjacent edge and is used to repair

individuals during initialisation or after evolution, reducing the potential for generating

nonsensical solutions.

 The adjacency graph is created from nodes, with each rectangular partition having a node

associated with it (see Figure 4-15a). The nodes of adjacent partitions are then linked. For

example in Figure 4-16b, node a is linked to nodes b and c but not directly to d because they

do not share an adjacent edge. However during initialisation and evolution, any updates are

applied recursively therefore changes a’s genome will be reflected in partition d too. Having

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 63 -

linked all adjacent partitions, the adjacency graph is complete. But how does the adjacency

graph help maintain column line continuity?

Figure 4-15Example adjacency graph of an orthogonal layout

 When a partition’s genome is modified, either during initialisation or evolution, it updates

the corresponding section of its neighbour’s genome. For example if any changes are made to

the x coordinates (section 1) of partition a, then section 1 of partition c will also be updated

(partition d will also be updated by c). However section 1 of partition b is unaffected because

it does not share an edge in the x direction (they share one in the y direction). This is shown in

Figure 4-16 where the column row at 10m in the x direction is deleted from partition d and the

adjacency graph is used to ensure this gene is deleted from the genome’s of partitions a and c.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 64 -

Figure 4-16 Example genome update using the adjacency graph

 This example also demonstrates why this sweep line algorithm was developed as it has

been, because it ensures that adjacent edges are always of the same size. For example, some

sweep line algorithms are used to solve the ‘least ink problem’ where the goal is to partition

an orthogonal polygon using the smallest number of partitions, in terms of length. This

problem is illustrated in Figure 4-17a with the least ink solution shown in Figure 4-17b.

However the adjacent edge x (between partitions a and b) is smaller than the left edge of

partition b (see Figure 4-17c) and thus it would be much more complicated to ensure column

line continuity during initialisation and evolution.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 65 -

Figure 4-17 Least ink problem

4.7.5 An Alternative Partitioning Algorithm

Dr Rafiq of Plymouth University proposed the following partitioning and representation

during a discussion about this work. The proposed methodology indiscriminately extends all

edges across the floor plan (see Figure 4-18), allowing it to be expressed by a single genome

rather than multiple genomes are proposed by this thesis.

Figure 4-18 Dr Rafiq's partitioning

 Unfortunately by extending edges across the whole floor plan, it has a tendency to

generate superfluous partitions (not generated by this thesis’ technique) and thus bias the

search towards shorter column spacings creating a less flexible layout. For example in Figure

 4-19 Dr Rafiq’s technique generates 24 partitions (see Figure 4-19a) while this technique

generates 17 (see Figure 4-19b).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 66 -

Figure 4-19 Comparison of partitioning techniques

4.7.6 Initialising an orthogonal genome

With the building layout partitioned and adjacent partitions ‘monitoring’ each other (via the

adjacency graph), a genome is initialised for each partition.

 The initialisation process starts by selecting the furthest left, upper partition. This is an

arbitrary selection as the initialisation process could theoretically start at any partition,

however to standardise the process it always starts at the same place. As the overall

dimensions of this partition are known (and that it is a rectangle) the algorithm uses the

initialisation procedure described earlier (see 4.5.2). At this stage the layout has one initialised

partition (Figure 4-20a) however as frequently stated, maintaining column line continuity is

essential. So an adjacent partition is initialised next. If there is more than one adjacent

partition one is randomly selected. The adjacency graph is used to achieve this.

Figure 4-20 Example initialisation of orthogonal layout

 Rather than initialising the adjacent partition as previously described, because the two

partitions (the initial partition and its adjacent partition) must share a common edge, the

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 67 -

algorithm firstly copies the column spacings for this edge. For example in Figure 4-20b, edge

x is shared between the two partitions so the y spacings from section 2 of the initial partition’s

genome are copied into the adjacent partition’s genome. The remaining section is initialised

as before, by generating new spacings in the required direction (see Figure 4-20c). This

process is then repeated for another adjacent partition until the floor plan is fully initialised

(see Figure 4-20d).

 In complicated buildings it is possible that a partition may have been initialised ‘by

proxy’ i.e. because all of its adjacent partitions have been initialised, it already has a complete

genome. In this instance it skipped and the algorithm considers the next partition.

By constantly maintaining and updating the status of neighbouring sections, via the

adjacency graph, the algorithm ensures column line continuity throughout the building. This

continuity is vital to prevent the building from becoming a series of blocks that when placed

together do not form a coherent solution. For example, in Figure 4-21 when considered in

isolation each section is valid however, when considered as a whole, the building’s layout is

flawed because the columns do not align.

Figure 4-21 Invalid initialisation of orthogonal layout

The third section of the genome is assumed to be fixed throughout the building therefore

every genome has an identical section 3 (see 4.7.1). It is acknowledged that because section 3

is constant, it could be removed from the genome. However it has been retained because it

adds transparency i.e. all information pertaining to an individual is contained in the genome.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 68 -

4.7.7 Evolutionary operators

The same evolutionary operators described previously are applied to each rectangular

partition. However to ensure column continuity, the adjacency graph is incorporated at the

end of the process to update the column line spacings in adjacent partitions:

• Mutation: Having selected the individual to mutate, the mutation operator randomly

chooses (with uniform probability) one partition of the building and applies the mutation

procedure discussed for a rectangular partition. Having mutated its genome, the section is

placed back into the building and all adjacent sections are updated (Figure 4-22). This

final step means the mutation operator is able to modify the building in only one location

but the change ripples throughout the building, preventing column alignments

degenerating. The adjacency graph used is during this process to determine which

partitions need to be updated (for more information see 4.7.4).

Figure 4-22 Mutation operator for layout design

Prior to mutation, partitions a, c and d had 6 genes within section 1 of their genome

(because they share an adjacent edge in the x direction therefore they had identical

genome section 1). However after mutation both the number and value of these genes had

been altered. This occurs because although only partition a was selected for mutation, the

adjacency graph recursively applies the change to all adjacent partitions (c and d in the y

direction and b in the x direction) after reinsertion.

• Recombination: OBGRID employs a single point crossover operator (Goldberg, 1989),

which exchanges part of the genomes associated with a section of the building.

Recombination is as per a rectangular partition, however once recombination has been

accomplished, the altered sections are reinserted into the building and all other adjacent

partitions updated (as with the mutation operator described above) (Figure 4-23).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 69 -

Figure 4-23 Crossover operator for layout design

It is noted that by updating adjacent partitions after reinsertion, the layout is

substantially altered but this is the point. Recombination is a disruptive operator allows

the algorithm to transfer spacings (or partial spacings) from one individual to another.

However recombination can only transfer existing column locations between individuals,

it cannot create new (although the column spacings maybe arranged in a new order).

4.7.8 Fitness function

OBGrid applies the same fitness function as previously described (see 4.5.5) to each partition

in the floor plan and aggregates the results. Therefore individuals with more partitions will

tend to have a numerically larger fitness, but remember, OBGRID aims to minimise this

fitness.

4.8 Illustrative Example: Orthogonal Building

This section provides an illustrative example of OBGRID designing an orthogonal floor plan.

The parameters in the EA tableau (Table 4-4) should be considered indicative because the aim

of this work is to develop an appropriate representation rather than a complete building design

system.

4.8.1 Introduction

The following test case was designed to assess OBGRID’s performance. Unfortunately,

unlike structural optimisation, there are not standard test cases. Therefore the ‘C’ shaped

layout shown in Figure 4-24 was developed (no height restriction was imposed). The first

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 70 -

stage of the solution process involved partitioning the layout using a sweep line algorithm

described above Figure 4-24.

 Figure 4-24 Orthogonal layout example

Table 4-4 EA Tableau for Orthogonal Building

Objective Evolve example layout designs for a ‘C’ shaped
boundary (with no atria or height restrictions)

Representation 3-Section string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibility and column

spacing uniformity
Selection Tournament (size = 2)
Major Parameters* P = 1, M = 100, G = 50, 100, 150 and 200

Evolutionary Operators:
Reproductionprob 0.1
Mutation operator Point
Mutationprob 0.3
Recombination operator One point crossover
Recombinationprob 0.6

*P = Number of populations M = Population size G = Max number of generations

4.8.2 Results

Although this example is more complicated than the previous one, the results are actually

fairly similar. For example, the best and average fitness trends downwards steeply at first

before flattening off. The worst fitness does show a greater improvement that before, however

it never converges and fluctuates between 30 and 85. Therefore this section will focus on how

the number of generations affects a solution.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 71 -

 The following 4 performance graphs (see Figures 4-25, 4-26, 4-27, 4-28) each show the

combined average fitness after 10 runs, for the short spanning system, with a maximum

number of generations of 50, 100, 150 and 200. The final graph (see Figure 4-29) overlays all

the results on one graph.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

Generation

F
it

n
es

s

Figure 4-25 50 Generations

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 72 -

0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60 70 80 90 100

Generation

F
it

n
es

s

Figure 4-26 100 Generations

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Generation

F
it

n
es

ss

Figure 4-27 150 Generations

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 73 -

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

Generation

F
it

n
es

s

Figure 4-28 200 Generations

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

Generation

F
it

n
es

s

200 150 100 50

Figure 4-29 Performance graph for orthogonal building test

 Figure 4-29 in particular indicates how robust this algorithm is, as all trend lines lie

within a narrow range of each other. It also suggests that the most efficient number of

generations to use is 100 (although it could be argued that 110 – 120 would be better). This is

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 74 -

because the algorithm has not converged, at a solution, by 50 but soon after 100 it has.

Therefore to continue the search beyond this point, for example to 150, is computationally

wasteful. If you were determined to expend more CPU time on this problem, restarting the

algorithm to repeat the earlier generations rather than continuing with a stable solution would

yield a greater return.

 Finally Figure 4-30 depicts the returned solutions for each structural system after 100

generations.

Figure 4-30 Returned solutions for orthogonal building layout

4.8.3 Conclusion

This example demonstrates how OBGRID solves orthogonal building layouts. To accomplish

this, OBGRID partitions an orthogonal floor plan into rectangles and then uses the previously

described rectangular methodology to design a layout. However an additional complication is

the need to ensure column line continuation throughout the building. This constraint is

achieved by using an ‘adjacency graph’, which updates adjacent partitions during

initialisation and after evolution.

4.9 OBGRID an Orthogonal Buildings with Atria

This section contains a detailed description of how OBGRID handles orthogonal buildings

with atria. It is acknowledged that this process is very similar to that for orthogonal buildings

without atria, however this section has been included for completeness.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 75 -

4.9.1 Partitioning

The floor plan is partitioned in two stages using a sweep line algorithm Figure 4-31.

However, event points are any reflex vertex on the boundary or any vertex on an atrium. It

should be noted that partitions do not ‘cross atria’ for example line ‘x’ in Figure 4-31.

Figure 4-31 Polygon partitioning for orthogonal layout with atria

 It is apparent that once atria are included, the number of partitions is dramatically

increased. This is because atria add additional event points during partitioning. However the

additional partitions are required to retain column alignment via the adjacency graph.

4.9.2 Adjacency Graph

An adjacency graph is associated with a floor plan using the methodology previously

described. For example see Figure 4-32. However it should be noted that internal atria are not

associated with an adjacency node. Thus column spacings on one side of an atria may not be

found on the opposite side.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 76 -

Figure 4-32 Adjacency graph for orthogonal layout with atria

4.10 Illustrative Example: Orthogonal Building with Atri a

This section provides an illustrative example of OBGRID designing an orthogonal floor plan

with atria. The parameters in the EA tableau Table 4-5 should be considered indicative

because the aim of this work is to develop a representation rather than a complete building

design system.

4.10.1 Introduction

The following test case was designed to assess OBGRID’s performance. Unfortunately,

unlike structural optimisation, there are not standard test cases. Therefore the layout shown in

Figure 4-33a was developed as was partitioned using the sweep line algorithm described

above to give the adjacency graph shown in Figure 4-33b.

Figure 4-33 Orthogonal layout with atria example

Table 4-5 EA Tableau for orthogonal building with atria example

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 77 -

Objective Evolve example building designs for the layout shown in
Figure 4-29a

Representation 3-part string
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: column spacing compatibility and column

spacing uniformity
Selection Tournament (size = 2)
Major Parameters* P = 1, M = 100, G = 150

Evolutionary Operators:
Reproductionprob 0.1
Mutation operator Point
Mutationprob 0.3
Recombination operator One point crossover
Recombinationprob 0.6

*P = Number of populations M = Population size G = Max number of generations

4.10.2 Results

The following 2 performance graphs showing the best, average and worst fitness during an

indicative run for a short spanning system and a discussion of the results. Please note that

because OBGRID is a minimisation algorithm, a lower fitness is considered beneficial.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Generation

F
it

n
es

s

Average Best

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 78 -

Figure 4-34 Best and average fitness

 Figure 4-34 shows a much smaller spread between the average and best fitness when

compared to the previous example without atria and for a rectangular outline. This could be

because this problem is more challenging as it contains 11 partitions, compared to 5 for the

example without atria and 1 for the rectangular outline. The partitions are also much more

varied. For example, contrast the long, thin partition 4, with the almost square partition 10.

Therefore after initialisation, the ‘best’ solution is only twice as good as the average (in the

rectangular layout problem the best solution had a fitness of just under 8 while the average

was approx. 160!). So on reflection a closer spread is expected. In spite of this, the best and

average fitness have the usual characteristics: the best improves in steps, while the average

gradually increases. This graph also demonstrates that the increased number of generations

150 is not excessive, as better solutions are frequently evolved until generation 135

(compared with generation 37 out of 50 in the rectangular example) reflecting this problems

difficulty again.

 It is also important to note that elitism was used with layout i.e. the best of generation

was always copied over to the next without modification. Although this approach can hinder

the search by potentially focusing on local optima, because this is a significantly harder

problem it was used after some experimentation indicated its value (see Figure 4-35). Figure

 4-35 highlights some of the characteristics found with elitism (if used in an appropriate

setting): although both fitness curves have the same overall trend, without elitism it is more

ragged and returns inferior results.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 79 -

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Without With

Figure 4-35 Comparison with and without elitism

 Tbe worst fitness graph (see Figure 4-36) shows a greater trend of improvement when

compared to the rectangular layout problem. This is probably because given that the problem

is more complex they have less chance of destroying a good layout as these are harder to find

(where as for the rectangular problem, the ‘best’ solution was actually quiet easy to locate).

Also the evolutionary operators are only applied to one partition per generation. Therefore

their effect is diminished because fitness is cumulative therefore they have less effect.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 80 -

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Generation

F
it

n
es

s

Worst

Figure 4-36 Worst fitness

 Figure 4-37 indicates the best layouts returned for each structural spanning system, all

spans are within their economic range. However as previously noted, OBGRID does tend to

struggle evolving regular column spacings as the number of columns increases.

Figure 4-37 Returned solutions for orthogonal building with atria

4.10.3 Conclusion

This example demonstrates that OBGRID is capable of solving orthogonal layouts including

atria and indicates one deficiency of this methodology: the inclusion of atria tends to bias the

search towards shorter spanning systems because the number of partition increases and thus

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 81 -

each partition becomes smaller (when compared to the equivalent layout without atria). And

as each partition is solved independently, the floor plan’s average span length is reduced. This

could limit the performance of this approach with very complex layouts.

4.11 Conclusions

The EA based methodology described in this chapter is able to solve conceptual layout design

problems for orthogonal, commercial buildings which is an improvement over all existing

systems that are limited to rectangular floor plans. This work achieves this, by partitioning

orthogonal floor plans using a sweep line algorithm to create rectangular sections that can be

solved individually. Also to ensure column line continuity, an adjacency graph that associates

adjacent partitions, is used especially during initialisation and evolution. However the

inclusion of atria, to a floor plan, tends to increase the number of partitions biasing the search

towards shorter spanning systems. This is because once atria are included, the partitions

become smaller and as each partition is solved independently the spans are reduced. This

could limit the performance of this approach with very complex layouts however OBGRID

seems to handle the examples effectively, although the only true test would be to trial

OBGRID over a period of months in a design office.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 82 -

5 Conceptual Geometric Design of ‘Geodesic-like’ Domes

5.1 Abstract

Dome layout design is a non-trivial task because every joint and member must be located on

the dome’s external surface and not impinge on the internal void. The only previous

stochastic methodology (Shea and Cagan, 1997) tackles this by creating a 2D truss that is

subsequently projected onto a predefined curved surface. Therefore the solution is a 3D

object, but the search is conducted in 2D. While this ‘projection’ or 2.5D technique reduces

the number of problem variables, by constraining the third dimension to be dependent on the

planar layout, it also excludes a dome’s two most important variables from the search: surface

area and enclosed volume. Thus the results, while spatially innovative, are typically sub-

optimal.

 This chapter describes a new approach using an evolutionary algorithm with string

representation that designs directly in 3D, with surface area and enclosed volume as the major

search parameters. The string representation encodes support and joint positions, which are

converted into a dome by constructing its corresponding convex hull. Once constructed, the

hull’s edges become the structural members and its vertices the joints. Finally, structural

analysis is used to determine performance within the context of user-defined constraints. This

technique avoids many of the problems experienced by the previous approach that suffers

when restrictive constraints such as the requirement to maintain 1/8th symmetry are removed.

 The aim of this chapter is to investigate existing and develop new knowledge for dome

design. It should be noted that there is no obvious connection between the structure

investigated in this chapter and the last. This is because this thesis is focused on investigating

how civil engineering structures can be represented using evolutionary algorithms. Therefore

domes were deliberately chosen because they are very different to buildings and thus the

research had to start at the beginning.

Keywords: geodesic domes, evolutionary algorithm, convex hull, incremental algorithm.

5.2 Introduction

Domes are a common architectural structure, synonymous with many landmark buildings

including St Peter’s Basilica (Rome) and St Paul’s Cathedral (London). Traditionally domes

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 83 -

are created by rotating an arch about its’ vertical axis. However, in the 1950’s a new approach

was proposed: Geodesic domes.

5.2.1 Geodesic Domes

Invented by Buckminster Fuller in 1954 (The Buckminster Fuller Institute, 2005), geodesic

domes have homogeneity in both member length and nodal angular incidence and are

considered by some to be the strongest, lightest and most efficient building system (Motro,

1994). Geodesic dome geometry is usually based upon the sub division of a spherical surface

into triangles (because triangles are the simplest non-deformable rigid shape). However,

geodesic dome geometry may also be based upon the sub division of any Platonic13 or

Archimedean14 solid. Perhaps one of the most famous geodesic domes is the Epcot Center in

Florida (Figure 5-1).

Figure 5-1 Epcot Center (Florida)

 There are four types of geodesic dome (Motro, 1994): frame (or skeleton) single layer

domes; truss or double layer domes; stressed skin domes; formed surface domes. However,

this chapter will only consider the first type.

13 Convex polyhedra with identical faces constructed of congruent, regular polygons. There are exactly five

Platonic solids the cube, dodecahedron, isosahedron, octahedron and tetrahedron.
14 Convex polyhedra that have a similar arrangement of nonintersecting regular convex polygons of two or more

different types arranged in the same way about each vertex with all sides the same length. There are exactly

thirteen Archimedean solids (Weisstein, 2005).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 84 -

5.2.2 Geodesic Patterns

Geodesic domes based on spheres, start by inscribing ‘great circles’ onto the sphere (a process

that can create no more than 120 similar but irregular triangles on the surface or a maximum

of 20 equilateral triangles). Alternate and triacon breakdowns (Motro, 1994) are then applied

to this network of triangles (Figure 5-2). In Figure 5-2 ‘frequency’ refers to the number of

subdivisions per side of the original triangle. Thus a frequency 2 breakdown subdivides each

side of the original triangle into two. Once a breakdown has been applied, the geodesic layout

is complete.

Figure 5-2 Triacon and alternate geodesic breakdowns

 It should also be noted that this work only creates domes with geodesic characteristics not

strict geodesic domes. This is because geodesic breakdowns are not explicitly enforced

therefore there the evolved structures may not adhere to geodesic patterns (as defined by the

triacon and alternate breakdowns). Thus the solutions will be described as ‘geodesic-like’.

Geodesic breakdowns cannot be enforced in this work, because the representation does not

consider shapes, only points. However the representation is capable of evolving spatially

innovative and structurally efficient designs.

5.3 Related Work

Within the field of structural design using stochastic search algorithms, very little research has

been published on dome design. Therefore this section will discuss papers by Porter et al

(1995) and Shea and Cagan (1997) in detail.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 85 -

 Porter et al (1995) use a genetic algorithm to compute the length and location of

geodesics15 (not geodesic domes) on complicated curved surfaces. They demonstrate a

technique capable of producing results comparable to the theoretical optima for spherical

surfaces. However, they only calculate a linear set of geodesics (between two points), so each

geodesic links to at most two others (one at each end). In dome design however, an arbitrary

number of members are connected at each structural joint. Therefore their technique is not

appropriate for dome design.

 Shea and Cagan (1997) apply simulated annealing (Kirkpatrick, 1973) combined with a

shape grammar representation to dome design, a process they call ‘shape annealing’. Their

technique, constructs a 2D truss that is projected onto a predefined 3D curved surface

constraining the third coordinate (z) to be dependent on the other two (x,y). Therefore, search

is conducted within a 2D design domain. However, while they demonstrate that shape

annealing is capable of generating novel solutions that are comparable to those produced by

other shape optimization techniques (Pedersen, 1973), projection hampers the search by

removing two of the most important variables: enclosed volume and surface area. Therefore,

once some of the constraints are removed e.g. design is required to maintain 1/8th symmetry;

most of the evolved solutions bear little resemblance to geodesic domes. For example, a few

extremely large members may dominate the dome so that the evolved structure is actually

more like a pyramid or simply not resemble a dome (Figure 5-3).

Figure 5-3 Example results from Shea and Cagan (1997)

5.4 Convex Hulls

Computational Geometry is the design and analysis of efficient algorithms (usually computer

based) for solving geometric problems (Shamos, 1978) and convex hulls are one of its

15 A locally length-minimising curve.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 86 -

fundamental structures. The following section will provide an overview of convex hulls

including what they are, their applications and some issues related to their construction while

the subsequent section will describe a hull construction algorithm in detail.

5.4.1 What are convex hulls?

The convex hull of a finite set of points is considered to be the convex polyhedra with the

smallest volume that encloses that set (Figure 5-4). This work makes extensive use of convex

hulls to create dome from a set of vertices by using the incremental algorithm, which are

described in the following sections.

Figure 5-4 Convex hull CH(S) of S

5.4.2 Applications of convex hulls

Convex hulls produce convex approximations of non-convex point sets. Therefore they are

commonly used in the following applications (this list is by no means exhaustive, merely

indicative):

• Pattern recognition: A complex shape may be approximated via its convex hull and

compared to a database of known shapes (Laszlo, 1996).

• Motion planning: A robot may approximate its footprint via a convex hull to simplify

terrain negotiation (Laszlo, 1996).

• Computer animation: In computer games etc. collision detection may be improved by

approximating shapes to their convex hulls and only comparing the actual shapes if the

hulls indicate a collision (de Berg et al. 1997).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 87 -

5.4.3 Polyhedra

This sub section contains a general discussion about polyhedra: the shape formed by convex

hulls. Polyhedra are considered to be three-dimensional objects composed of a finite number

of flat faces, edges and vertices (Figure 5-5a). They can also be described as the 3D

generalisation of a 2D polygon16. Within this work, every dome will be convex and have

triangular faces: technically a simplicial complex17. However, domes will be referred to as

convex polyhedra.

Figure 5-5 Polyhedral properties

 Polyhedral faces (Figure 5-5a), in this work, have an important feature: they maintain

their vertices so that when ‘viewed’ from the exterior, vertices have a counter clockwise

(CCW) ordering ensuring the right hand rule always yields a vector normal to the face,

pointing away from the polyhedron (O’Rourke, 1998). This is not simply for aesthetic

reasons, as the right hand rule is used judiciously during convex hull construction.

5.4.4 Signed volumes

The volume V of a pyramid with a base area B and height h can be calculated by:

3

.hB
V = (1)

 However (Eq 1) does not allow for the direct computation of tetrahedral volume from

vertices (as required during this work). Therefore, volumes will be calculated via the

16 The region of the plane bounded by a finite collection of line segments, forming a simple closed curve.
17 Space with a triangulation.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 88 -

determinant form of the cross product. For example, a tetrahedron defined by four vertices (xi,

yi, zi) has the volume:

1

1

1

1

!3

1

444

333

222

111

zyx

zyx

zyx

zyx

V = (2)

 The volume calculated by (Eq 2) is described as ‘signed’ because it can be positive or

negative. Signed volumes form an integral part of many algorithms in computational

geometry because they remove the need to perform the complex calculations to determine

angular relationships between points (especially when considering spatial relationships). For

example, whether a point is to the left or right of another. During this work, a negative

volume is generated when a face f forms a tetrahedron with a point p that can ‘see’ its vertices

in a CCW manner (Figure 5-6).

Figure 5-6 Negative volume generated by CCW face f and point p

5.4.5 Visibility

The incremental algorithm is based upon determining the visibility of a face from a point.

Therefore, a simple yet robust routine is required. A face f is considered to be visible from

point p, iff18 a line drawn from p to some point x interior to f does not intersect with the

polyhedra at any point other than x. For example in (Figure 5-7), f is visible from p’ but

invisible from p” .

18 “if and only if”.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 89 -

Figure 5-7 Example visibility of face f from points p’ and p”

 Visibility can also be formally defined using sets (Eq 3). It should be noted that (Eq 3)

defines a face that is ‘edge on’ to p to be invisible. A face is considered to be ‘edge on’ when

only its edge is visible from p i.e. the face’s vertices and point p are coplanar.

{ }xCHpxiff =∩ (3)

 The visibility of a face f from a point p is determined by calculating the signed volume of

the tetrahedron defined by f and p. f is considered to be visible from p, iff the signed volume

is negative.

5.5 Incremental Algorithm in 2D

Several algorithms have been developed to construct a convex hull (O’Rourke, 1998).

However this chapter only considers one: the incremental algorithm. The following section

discusses the incremental algorithm in detail, starting with an overview and an illustrative

example in 2D. The following section describes the implementation for this work.

5.5.1 Overview

The incremental algorithm constructs the convex hull CH of a finite set of points S by taking a

subset Ssub of S and constructing its convex hull CH(Ssub). Having constructed CH(Ssub) the

algorithm adds an additional point to Ssub and updates the hull (if required). This process

continues until all points from the original set S are included in the convex hull. Figure 5-8

illustrates the incremental algorithm in 2D.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 90 -

Figure 5-8 Illustrative example of the incremental algorithm in 2D

5.5.2 Illustrative example

This section provides an illustrative example of an evolutionary algorithm combined with a

2D convex hull algorithm. The aim is to evolve the largest possible circle within a square of

side length 200m. A string representation was used containing points randomly located in the

problem domain. The EA tableau (Table 5-1) details the values applied to the key

evolutionary parameters however it should be noted that no attempt has been made to

optimise any values. For more information on the evolutionary operators and fitness function,

please review the subsequent sections.

Table 5-1 EA tableau for 2D illustrative example

Objective Maximise enclosed area, minimise perimeter

Representation String containing random points
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: enclosed volume and surface area
Selection Tournament (size = 3)
Major Parameters P = 1, M = 200, G = 60

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 91 -

Evolutionary Operators:
Reproductionprob 0.1
Mutation operator(s) Mutate existing point, add new points, delete existing

points
Mutationprob 0.4 (the actual mutation operator is selected at random)
Crossover operator n point crossover
Crossoverprob 0.5

5.5.3 Results

Figure 5-9 shows the fitness of the best of generation during the run, while (Figure 5-10)

indicates the best layout found in generation 54 (the light grey circle indicates the optimum).

30100

30300

30500

30700

30900

31100

31300

31500

0 5 10 15 20 25 30 35 40 45 50 55 60

Generation

E
n

cl
o

se
d

 a
re

a
(m

^2
)

632

637

642

647

652

657

662

667

672

677

P
er

im
et

er
 (

m
)

Area Perimeter

Figure 5-9 Performance graph for 2D example

Figure 5-10 Best of generation 54 for 2D example

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 92 -

5.5.4 Conclusion

Although simple, this example demonstrates how effective the combination of an

evolutionary algorithm and convex hull algorithm can be, as the best solution has an enclosed

area (31392.4 m2) within 0.1% of the optimum, while the perimeter (639.99 m) is within

1.8%.

5.6 Incremental Algorithm in 3D

The previous section provided an overview of the incremental algorithm and an illustrative

example in 2D, however domes are a 3D structure. Therefore the following sections describe

how the incremental algorithm can be implemented in 3D. The implementation described is a

O(n2) algorithm. This means that if the number of points n doubles, algorithm execution time

will increase four-fold. A possible improvement is discussed in the future work section of this

thesis.

 In this work, the initial subset Ssub always contains just four points: three non-collinear19

points and a fourth non-coplanar20 point. This ensures that the initial convex hull is always a

tetrahedron: its base formed by the non-collinear points and its apex by the non-coplanar

point. If S does not contain these points, it is 2D and invalid for this problem.

 When an additional point pi is added to Ssub, the issue of whether to update the existing

convex hull CH(Ssub) involves considering the question: Are there any faces of CH(Ssub)

visible from pi?

• No. If none of CH(Ssub)’s faces are visible from pi, then pi must be internal to CH(Ssub).

Therefore CH(Ssub) is still valid, as it encloses all points and remains unaltered.

• Yes. If some of CH(Ssub)’s faces are visible from pi, then pi must be exterior to CH(Ssub).

Therefore CH(Ssub) is invalid, because it no longer encloses all points and must be updated

to include pi.

19 Three or more points are collinear if they lie on the same straight line.
20 Four or more points are coplanar if they lie on the same geometric plane.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 93 -

5.6.1 Updating the convex hull CHi-1

This section describes how an existing convex hull is updated to include a new point. The

convex hull is updated in two stages: locating the horizon and incorporating the external

point.

 Conceptually, the external point pi divides the existing hull into two regions: the visible

and the invisible. The horizon (de Berg, 2000) is formed by the series of edges that are

adjacent to both a visible and invisible face (Figure 5-11) and can be located once the

visibility of every face from pi has been determined.

 To incorporate the external point into the existing convex hull, a new set of new faces

must be appended to it. All new faces will be triangular, constructed from a horizon edge and

have an apex at pi (Figure 5-11). After building these new faces, the original faces (that were

visible from pi) are now underneath the new faces and should be deleted (along with any

superfluous edges and vertices). At the end of this process convex hull is completely updated

(Figure 5-11).

Figure 5-11 Updating an existing hull (adapted from O’Rourke 1998)

 At this point, it is worth returning to the definition of visibility that considers ‘edge on’

faces to be invisible (see 5.4.5 Visibility). If ‘edge on’ faces are considered to be invisible,

then any new faces will be simply appended to existing ‘edge on’ faces. However, if ‘edge

on’ faces are considered to be visible, then the algorithm will attempt to remove them and

replace them with a single new face. Unfortunately, the new face may not be triangular or

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 94 -

result in the existing face fracturing into a series of smaller faces making the algorithm

significantly more computationally intensive (de Berg, 2000). This is why ‘edge on’ faces are

treated as invisible (in this work).

5.7 Current Work

This work uses an evolutionary algorithm (EA) with string representation to search for

potential solutions and following sections describe its structure and function.

5.7.1 Representation

The representation allows potential solutions to be included in the EA’s search and several

canonical forms have been published including string and trees. This section discusses how a

representation was developed for geometric dome design.

 Although domes are skeletal structures containing joints and loads, this work considers

the members to be implicitly defined by the joint layout. This is because members must form

the external surface and not impinge on the internal void. Therefore a member can only span

between ‘adjacent’ joints. Geodesic domes are also composed of triangles, again limiting the

joints a particular member can span to. In light of this, this work considers dome design to be

more of a parametric problem. Once the joint layout has been evolved, member

configurations can be determined. Parametric problems are generally best represented by

string genomes. Therefore this work uses a 3-section string representation (Figure 5-12), with

each gene encoding a potential vertex on the convex hull. Genes are composed of software

objects as shown in Figure 5-13 (supports are considered to be vertices at Z = 0).

 It is acknowledged that section 1 and sometimes section 2 (when user defined support

locations are used) could be removed from the genome because they are constant for all

individuals. However they have been retained because they add ‘transparency’. Transparency

is the idea that the user should have a single reference to for an individual (as in nature where

all cells contain the complete genome rather than just the sections appropriate to its own

function). For example, if the location and magnitude of loads is removed from the genome

where should it be placed and why?

• Section 1: encodes the location of and magnitude of loads that must be supported by the

structure (in addition to its self weight).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 95 -

• Section 2: encodes the location of the dome supports. Dome supports represent locations

at which the dome is attached to the ground or supporting structure. In this work, dome

supports are vertices in the plane z = 0. Supports can be user specified or searched for

during the evolutionary process. For example if the user has predetermined support

locations then it is pointless for the algorithm to search for the optimum because they are

fixed. However if the user has no preference support locations are included in the search.

• Section 3: encodes the location of potential dome vertices (structural joints). For non-

trivial structures this is the largest section of the genome. However, each gene is only a

potential vertex because they may not lie on the genome’s convex hull (as generated by

the incremental algorithm) and therefore may not form the dome.

Figure 5-12 Example genome for dome design

Figure 5-13 Class diagram for dome genes

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 96 -

5.7.2 Genome ordering

The incremental algorithm has an interesting feature: as it gradually constructs the convex

hull, the final structure is dependent on the order in which the vertices are added. So two

convex hulls constructed from the same set of vertices but with different orderings, could

have identical vertices but different arrangements of faces and edges and thus different

structural responses. Therefore, the EA must consider genome ordering during its search.

5.7.3 Initialisation

As this work is aimed at the conceptual design stage, the initial number of input parameters

has been kept to a minimum: the user is only required to input the location of any loads and

define the size of the circular base. If required the user can stipulate the number and location

of the dome supports and ensure that they are constant for all individuals but if not, the

algorithm will search for appropriate support positions during the run.

5.7.4 Initialisation of dome supports

Dome supports represent the locations at which the dome is attached to the ground or

supporting structure. Some structural optimization techniques specify support positions using

a ground structure (Dorn et al, 1964), but this can bias or inhibit the search (especially when

an asymmetric or lateral loading is applied to the dome). Therefore this work, removes the

need for a ground structure including number and location of supports in the search.

 Support locations are a series of randomly generated points on the circumference of the

circular base (the base circumference is the same for all individuals) generated by selecting

two numbers x1 and x2 from a uniform distribution between -1 and 1 (ensuring that the sum of

the square of both numbers is not greater than or equal to 1). The corresponding Cartesian

coordinates related to x1 and x2 are given by (Eq 4) (Weisstein, 2005).

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1 ..2

xx

xx
y

xx

xx
x

+
=

+
−

= (4)

NB z coordinates are not generated as the base is assumed to lie on the plane z = 0.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 97 -

5.7.5 Initialisation of dome vertices

Vertices are generated from random points within a cube that is centered on the dome’s base

and with a side length of equivalent to the diameter of the base. This procedure is used to

prevent the EA searching in completely unproductive regions (a large number of useless

points will still be generated, however these must be included to allow the EA to explore the

search space). To prevent additional supports being generated, vertices may not lie on the

domain boundaries. While this does improve the search, it does prevent the algorithm from

evolving domes, which has sections wider than the base.

 At the outset each individual has a random number of vertices in its genome (an upper

limit of 100 vertices and lower limit of 1 was generally used in this work, however this was

purely arbitrary and no attempt was made to optimize it). However because the dome is only

constructed from vertices that lie on the convex hull, it does not necessarily follow that all of

these will be used to construct the dome. This can cause bloat.

5.7.6 Evolutionary operators

Within the EA’s search, the loads section of the genome is unaffected (as these loads must be

carried by every solution) while the crossover and mutation operations are individually

applied to the two remaining sections.

• Recombination: An ‘n-point’ crossover operator, which is a generalised version of one-

point crossover with several cut points, is employed in this working creating variable

length genomes. An example n-point crossover operator is shown in Figure 5-14 although

integer genomes are used for clarity.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 98 -

Figure 5-14 Example n-point crossover

• Mutation: Several mutation operators are used in this system: point, shuffle, addition and

deletion. Point mutation (Figure 5-15) randomly selects a gene to alter and then uses the

same procedures as described during initialisation to generate a new point depending on

whether a support or vertex is selected. Shuffle mutation reorders a length of the genome

(Figure 5-15). This operator is included because genome ordering is important thus a

solution maybe improved by shuffling the genes. Addition mutation adds a random

number of new points while deletion removes a random number (although there must

always be at least 4 vertex in the genome).

Figure 5-15 Mutation operators for dome design

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 99 -

5.7.7 Selection

This work uses a conventional tournament selection technique (Goldberg, 1989). In

tournament selection a predetermined number of individuals are randomly selected from the

population and ranked according to fitness, with the fittest individual being chosen. As the

tournament size is increased, the selection pressure is increased as it favours the chance of a

fit individual being selected.

5.7.8 Fitness function

A fitness function is used by an EA to evaluate how ‘good’ a particular solution is. This work

uses enclosed volume and surface area as its major objectives, which are combined with a

structural parameter that seeks to ensure constraints such as allowable buckling, tensile and

compressive stresses are not violated (it also includes a weight component).

 To search for the optimum number and location of supports the EA initially generates a

random number of supports and uses structural weight and stress constraints to guide it. This

is because for every additional support there must be at least two additional structural

members which increases the overall weight: while the removal of a support increases the

loads carried by each remaining structural member which may violate a structural constraint.

Both of these scenarios reduce the individual’s fitness and hence the algorithm is guided

towards an optimum.

 Before an individual’s fitness can be calculated, the vertices contained in the genome

must be converted into a domical structure. This process is accomplished by constructing the

genome’s convex hull, via the incremental algorithm. Once a convex hull is constructed, its

edges become the structural members of the dome. Having built the dome, structural analysis

is used to determine whether it performs within the constraints specified above, if not the

individual is penalized using a quadratic penalty function (Richardson et al, 1989).

 Finally the dome’s surface area and volume ratio is determined along with its overall

weight. At the end of this process an all individuals are ranked according to the three main

criteria (with position 0 being considered the best). An individual’s fitness is based upon the

cumulative positions by ranking. Therefore this is a minimization problem.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 100 -

 Shea and Cagan (1997) introduced several additional objectives into their fitness function

such as an aesthetic value and group penalties that encouraged the evolution of member

clusters with the same length or cross sectional area. These objectives have not been included

in this work, as the requirement to minimize the surface area to volume ratio encourages the

evolution of structures with similar member lengths.

 However, there is one important omission from this work that was present in Shea and

Cagan’s technique: assigning different cross sectional areas to individual members. This work

applies one cross sectional area to the whole structure (although it can be modified during the

evolutionary process). The genome applied during this work does not consider individual

members, as an explicit parameter therefore there is no way of storing individual cross-

sectional areas for exchange during the evolutionary process. Geodesic domes aim to have

homogeneity with regard to member sizes, so this is not such a major issue.

5.7.9 ‘Junk’ genes

The fitness function does not stipulate that all of the genes contained in an individual’s

genotype are expressed in the phenotype i.e. not all potential vertices in section 3 of the

representation are expressed in the final dome. This is because some potential vertices will be

internal to the convex hull and hence not present in the dome. These genes are called ‘junk’

genes and it is possible for the genome to contain numerous junk genes. To illustrate this

concept, consider the convex hull created from a 2D set containing 4 points (Figure 5-16). In

Figure 5-16 the convex hull is formed by three vertices, therefore the fourth point is

superfluous i.e. a ‘junk’ gene.

Figure 5-16 Example genome containing a junk gene in dome design

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 101 -

 The fitness function does not penalize a solution for having junk genes because they are

irrelevant to the phenotype however they do add a significant computational overhead.

Unfortunately junk genes cannot simply be removed, because this could potentially cause

vital information to be lost. As a compromise, before a solution is evolved all junk genes are

identified and a deletion operator applied (each junk gene has a 50% chance of deletion). If

this stage is not included, the genome tends to bloat as per genetic programming.

5.8 Illustrative Example

This section provides an illustrative example of the search technique described in this chapter.

The aim of the experiment is to evolve a solution that maximizes the enclosed volume while

minimizing the surface area at the same time.

5.8.1 Introduction

The following test case was designed to assess search performance, as there are no standard

test cases. The EA tableau (Table 5-2) details the values applied to the key evolutionary

parameters however it should be noted that no attempt has been made to optimise any

parameters related to evolutionary operators.

Table 5-2 EA Tableau for dome design

Objective Maximise enclosed volume, minimise surface area

Representation String containing points
Initialisation Random initialisation (no seeding)
Raw Fitness Based on: enclosed volume and surface area
Selection Tournament (size = 3) with Elitism
Major Parameters P = 1, M = 400, G = 25

Evolutionary Operators:
Reproductionprob 0.1
Mutation operator Point, shuffle, addition and deletion
Mutationprob 0.4
Crossover operator N point crossover
Crossoverprob 0.5

5.8.2 Results

The performance graph (Figure 5-17) shows the fitness of the best of generation during the

run, while (Figure 5-18) indicates the best layout evolved.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 102 -

2300000

2400000

2500000

2600000

2700000

2800000

2900000

3000000

3100000

0 5 10 15 20 25

Generation

E
n

cl
o

se
d

 V
o

lu
m

e
(m

^3
)

95000

100000

105000

110000

115000

120000

125000

130000

135000

140000

S
u

rf
ac

e
A

re
a

(m
^2

)

Volume Surface Area

Figure 5-17 Performance graph for dome example

Figure 5-18 Example dome design for illustrative example

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 103 -

5.8.3 Conclusion

This example demonstrates how the proposed representation maybe used to evolve ‘geodesic-

like’ domes.

5.9 Conclusions

This chapter demonstrates an EA combined with a convex hull algorithm (incremental

algorithm) to create a system capable of designing ‘geodesic-like’ domes directly in 3D. It is

shown that this produces viable and efficient structural designs whilst avoiding many of the

problem experienced by the previous approach that projected a 2D truss on to a predefined

curved surface. However because the vertices section of the genome only contains potential

genes, the genome has a tendency to bloat (contain large numbers of superfluous genes).

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 104 -

6 Summary and Future Work

6.1 Introduction

This chapter will consider the key findings, of this thesis, in relation to its original objectives

and discuss possible directions for future work. The aim of this work is to investigate how

some civil engineering design problems, in particular structures, can be represented in

evolutionary algorithms. Many representations have been used in design each with its own

strengths and weaknesses: strings are generally used for parameters based problems, voxels

for shape discovery, while trees and graphs are used for skeletal structures. Within civil

engineering design, the most commonly studied structure is the truss and three main

representations have been used, each with their own pros and cons. However in general trees

and graphs are the most suited to trusses because they permit the adaptability required for

topological design: as strings are linear structures with each element having at most two

connections: left and right. Unfortunately, most physical structures contain elements that

connect to an arbitrary number of elements. Therefore higher dimensional representations

such as trees or graphs have a more appropriate form.

6.2 Summary of Investigative Work Versus Original Objectives

This thesis had two main objectives, each will now be considered.

6.2.1 Investigate existing and develop new representation for orthogonal building

design

Chapter 4 considers the conceptual layout design of commercial office buildings. It starts with

a review of the existing work in this field, all of which are limited to rectangular floor plans.

A 3-section string representation with real encoding is proposed as this ensures column

alignment is retained during evolution, while polygon partitioning is used to decompose floor

plans. This technique can evolve suitable solutions for orthogonal buildings with atria. This is

an improvement over all previous research.

6.2.2 Investigate existing and develop new representation for dome design

Chapter 5 demonstrates an evolutionary algorithm combined with a convex hull algorithm

creating a system capable of designing ‘geodesic-like’ domes. However this work will only

create domes with geodesic characteristics not true geodesic domes because geodesic

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 105 -

breakdowns are not explicitly enforced. The previous approach projected a 2D truss on to a

predefined curved surface losing the key variables of surface area and enclosed volume. This

work searches using these variables and produces more ‘dome-like’ results. However the

representation has a tendency to bloat because the vertices in the genome are not guaranteed

to be included in the final structure.

6.3 Future Work

This section discusses the possible directions for future work.

6.3.1 Orthogonal building design

While this work proposes a representation capable of solving an orthogonal layout it will not

handle an irregular one, therefore this is most obvious area for future development (however

this work could form the basis of such a system). One possible approach to consider would be

to divide an irregular layout into rectangles and right-angled triangles (rather than simply

partitioning a layout in rectangles). Triangular partitions could be represented by a similar

genome arrangement to that already described, however the x and y column spacing would

only apply to the opposite and adjacent sides. The other major area for improvement is the

fitness function. At the present time this assigns a single numerical value to each solution.

However if this representation to be used on real world problems, a multi-objective fitness

function might be more appropriate.

6.3.2 Dome design

At present this work only considers enclosed volume, surface area and a structural component

including structural response of the dome from its weight and applied loads and weight. A

more realistic fitness function could include wind loading etc and perhaps incorporate the

material used to cover the dome. On a more practical note, the convex hull algorithm could be

improved to give O(n log n) performance. To achieve this, the algorithm must maintain a

‘conflict graph’ indicating which faces are visible (de Berg et al, 1997).

 Also the proposed system has only been applied to the design of domes but theoretically

it could be used to design any object that is required to have a continuous, convex surface for

example aircraft nosecones.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 106 -

7 References

Atmar W . On the Rules and Nature of Simulated Evolutionary Programming. In: Fogel D.B.

and Atmar W. (eds). Proceedings of the First Annual Conference on Evolutionary

Programming. La Jolla: CA. pp 17-26. 1992.

Ashour A.F, Alvarez L.F. and Toropov V.V. Empirical modelling of shear strength of RC

deep beams by genetic programming. Computers and Structures. Pergamon. 81. 2003. pp

331-338.

Azid I.A. and Kwan A.S.K. A layout optimisation technique with displacement constraint.

In: Topping, B.H.V. and Kumar, B (eds).Optimization and Control in Civil and Structural

Engineering. Civil-Comp Press: Edinburgh. 1999. pp 71-77.

Babovic V, Drecourt J-P, Keijzer M. and Hansen P.F. A data mining approach to

modelling of water supply assets. Urban Water. 4. 2002. pp 401-414.

Bäck T, Hammel U. and Schewefel H.-P. Evolutionary Computation: Comments on the

History and Current State. IEEE Transactions on Evolutionary Computation. 1(1). pp 15-28.

1997.

Baker J.E. Adaptive Selection Methods for Genetic Algorithms. In: Grenfenstett, J.J. (ed),

Proceedings for the First Annual Conference on Genetic Algorithms and their Applications.

1985.

Baron P, Fisher R, Tuson A, Mill F. and Sherlock A. A voxel-based representation for

evolutionary shape optimization. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing. 13. 1999. pp 145-156.

Bendsoe M.P. and Kikuchi N. Generating optimal topologies in structural design using a

homogenization method. Computer Methods in Applied Mechanics and Engineering. 71,

1998. pp 197-224.

Beyer H.-G. and Schwefel H.-P. Evolutionary Strategies- A comprehensive introduction.

Natural Computing. 1. pp 3-52. 2002.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 107 -

Bhattacharya M and Nath B. Genetic Programming: A review of some concerns. In:

Alexandrov V.N. (ed) ICCS2001. Lecture Notes in Computer Science 2074. Springer-Verlag.

2001. pp 1031-1040.

Borkowski A. and Grabska E. Representing Designs by Composition Graphs. In:

International Association for Bridge and Structural Engineering (IABSE) Colloquium.

Bergamo. IABSE Reports (72). 1995.

Borkowski A, Grabska E., Nikodem P. and Strug B. On genetic search of optimal layout of

skeletal structures. In: Schnellenbach-Held M. and Denk H. (eds). Advances in intelligent

computing in engineering. Proceedings of the 9th International EG-ICE Workshop. Darmstadt.

Germany. 2002.

Bradshaw J. and Miles J.C. Using standard fitnesses with genetic algorithms. Advances in

Engineering Software. 28. 1997. pp 425-435

Camp, C. Pezeshk, S. and Cao, G. Optimized design of two-dimensional structures using a

genetic algorithm. Journal of Structural Engineering. 1998. pp 551-559.

Coello C.C, Hernandez F.S. and Farrera F.A. Optimal Design of Reinforced Concrete

Beams Using Genetic Algorithms. Expert Systems with Applications. Elsevier Science. 12(1).

1997. pp 101-108.

Coley D.A. An Introduction to Genetic Algorithms for Scientists and Engineers. World

Scientific Publishing. 2003.

Darwin C. The Origin of the Species by Means of Natural Selection or the Preservation of

Favoured Races in the Struggle for Life. Murray: London. 1859.

De Berg M. Computational geometry: algorithms and applications. New York: Springer.

2000.

De Jong K.A. Genetic algorithms are NOT function optimisers. In: Whitley L.D. (ed).

Foundations of Genetic Algorithms –2. Morgan Kaufmann. 1993.

Deb, K. Multi-objective optimization using evolutionary algorithms. Wiley. 2002.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 108 -

Deb, K. and Gulati, S. Design of truss-structures for minimum weight using genetic

algorithms. Finite Elements in Analysis and Design. 37. 2001. pp 447-465.

Dorado J, Rabunal J.R, Puertas J, Santos A and Rivero D. Prediction and modelling of

the flow of a typical urban basin through genetic programming. In: Cagnoni S (ed).

EvoWorkshops 2002. LNCS 2279. Springer-Verlag. 2002. pp190-201.

Dorn, W.C, Gomory, R.E. and Greenberg, H.J. Automatic design of optimal structures.

Journal de M’ecanique.1964. pp 25-52.

Dumitrescu D, Lazzerini B, Jain L.C and Dumitrescu A. Evolutionary Computation. CRC

Press: London. 2000.

Dym C.L. Engineering design: A synthesis of views. Cambridge University Press. 1994.

Eiben A.E. and Schoenauer M. Evolutionary Computing. Information Processing Letters.

82. 2002. pp 1-6.

Eisfeld M. and Scherer R. Assisting conceptual design of buildings by and interactive

description logic based planner. Advanced Engineering Informatics. 17. 2003. pp 41-57

Fenves S.J, Rivard H. and Gomez N. Conceptual structural design in SEED. Journal of

Architectural Engineering. 1(4). 1995. pp 179-186

Finger S. and Dixon J.R. A review of research in mechanical engineering design. Part 1:

Descriptive, prescriptive and computer-based models of design process, research in

engineering design. 1 (1). 1989. pp 51-67.

Fogel D.B. Phenotypes, genotypes and operators in evolutionary computation. In: IEEE

International Conference on Evolutionary Computation. 1995.

Fogel D.B. Evolutionary Computation: The Fossil Record. IEEE Press: Piscataway. 1998.

Fogel D.B. Evolutionary Computation (Towards a New Philosophy of Machine Intelligence.

IEEE Press: NY. 2000.

Fogel L.J. Autonomous automata. Industrial Research. 4. 1962. pp 14-19.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 109 -

Fuyama H, Law K.H. and Krawinkler H. An interactive computer assisted system for

conceptual structural design of steel buildings. Computers and Structures. 63(4). 1997. pp

647-662

Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Publishing. 1989.

Grew R.J. The use of a knowledge based system as an aid in the preliminary design of

building structures. In Topping B.H.V. (ed) Developments in Artificial Intelligence for Civil

and Structural Engineering. Civil-Comp Press. 1995. pp 177-182

Grierson D.E. and Khajehpour S. Method for conceptual design applied to office buildings.

Journal of Computing in Civil Engineering. 16(2). 2002. pp 83-103

Grierson D.E. and Pak W.H. Optimal sizing, geometrical and topological design using

genetic algorithms. Journal of Structural Optimisation. 6. 1993. pp 151-159.

Griffiths D.R. and Miles J.C. Determining the Optimal Cross Section of Beams. In: Topping

B.H.V (ed). Proceedings of the Seventh International Conference on The Application of

Artificial Intelligence to Civil and Structural Engineering. Paper 36. Civil-Comp Press. 2003.

Hajela, P. and Lee, E. Genetic algorithms in truss topological optimization. International

Journal. 32(22). 1995. pp 3341-3357.

Harty N. and Danaher M. A knowledge-based approach to preliminary design of buildings.

Structural Board Paper 10312. Proceedings of the Institution of Civil Engineers, Structures

and Buildings. 104. 99. pp 135-144

Holland J.H. Adaptation in Natural and Artificial Systems. University of Michigan Press:

Ann Arbor. 1975.

Hong Y.S. and Bhamidimarri R. Evolutionary self-organising modelling of a municipal

wastewater treatment plant. Water Research. 37. 2003. pp 1199-1212.

Howard D. and Roberts S.C. The prediction of journey times on motorways using genetic

programming. In: Cagnoni S et al (ed). EvoWorkshops 2002. LNCS 2279. Springer-Verlag.

2002. pp 210-221.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 110 -

Hudson M.G. and Parmee I.C. The application of genetic algorithms to conceptual design.

In: Sharpe J (ed). AI system support for conceptual design. Proceedings of the 1995 Lancaster

University Workshop on Engineering Design. Springer-Verlag. 1995. pp 17-36.

Ishino Y. and Jin Y. Estimate design intent: a multiple genetic programming and

multivariate analysis based approach. Advanced Engineering Informatics. 16. 2002. pp 107-

125.

Jefferson D, Collins R, Cooper C, Dyer M. Flowers M, Kort R, Taylor C. and Wong A.

Evolution as a theme in artificial life: The genesys/ tracker system. In: Langton C.G. and

Farmer D. (eds). Artificial life II. Addison-Wesley. 1990.

Kane C. and Schoenauer M. Topological optimum design using genetic algorithms. Control

Cybernet. 25(5). 1996. pp 1059-1088.

Keijzer M. and Babovic V. Dimensionally aware genetic programming. In: Banzhaf W.

Proceedings of the Genetic and Evolutionary Computation Conference. July 13-17. Orlando

(USA). 1999.

Khajehpour S. and Grierson D.E. Profitability versus safety of high-rise office buildings.

Journal of Structural and Multidisciplinary Optimisation. 25. 2003. pp 1-15

Khajehpour S. and Grierson D.E. Filtering of Pareto-Optimal trade-off surfaces for

building conceptual design. In Topping B.H.V. and Kumar B. (eds). Optimzation and control

in Civil & Structural Engineering. Civil-Comp Press. Edinburgh UK. 1999. pp 63-70

Kirkpatrick S, Gerlatt C. D. Jr, and Vecchi M.P. Optimization by Simulated Annealing.

Science. 220. 1983. pp 671-680.

Kirsch, U. On singular topologies in optimum structural design. Structural Optimization. 72.

pp 133-142.

Kojima F, Kubota N and Hashimoto S. Identification of crack profiles using genetic

programming and fuzzy inference. Journal of Materials Processing Technology. Elsevier.

108. 2001. pp 263-267.

Köppen M. and Nickolay B. Design of image exploring agent using genetic programming.

Proceedings of IIZUKA’96. Japan. 1996. pp 549-552.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 111 -

Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press:Cambridge. 1992.

Lawson B. How designers think: The design process demystified. Architectural Press. 1997.

Laszlo M.J. Computational Geometry and Computer Graphics in C++. Prentice Hall. 1996.

Lee D.G, Lee B.W. and Chang S.H. Genetic programming model for long-term forecasting

of electric power demand. Electric power systems research. Elsevier. 40. 1997. pp17-22.

Lewontin R.C. The Genetic Basis of Evolutionary Change. Columbia University Press: NY.

1974.

Matous K, Leps M, Zeman. J. and Sejnoha M. Applying genetic algorithms to selected

topics commonly encountered in engineering practice. Computer Methods in Applied

Mechanics and Engineering. 190. 2000. pp 1629-1650.

Michaelewicz Z. Genetic algorithms + Data Structures = Evolutionary Programming.

Springer-Verlag:Berlin. 1999.

Miles J.C. and Moore C.J. Practical Knowledge Based Systems in Conceptual Design.

Springer-Verlag. 1994.

Miles J.C, Sisk G.M. and Moore C.J. The conceptual design of commercial buildings using

a genetic algorithm. Computers and Structures. 79. 2001. pp 1583-1592

Mitchell, A.G.M. The limits of economy of material in frame structures. Philosophical

Magazine. 8(47). 1904. pp 589-597.

Moran T.P. and Carroll J.M. Overview of Design Rationale. In: Moran T.P. and Carrol

J.M. (eds). Design Rationale Concepts, Techniques and Use. A Computers, Cognition and

Work Publication. 1996. pp 1-19.

Montana D.J. and Czerwinski S. Evolving control laws for a network of traffic signals.

Proceedings of the Firs Annual Conference: Genetic Programming. July 28-3. Stanford

University. 1996. pp 333-338.

Motro R. Review of the development of geodesic domes. In: Makowski Z.S. (ed). Analysis,

design and construction of braced domes. Cambridge University Press. 1994. pp 387-412.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 112 -

O’Rourke J. Computational Geometry in C. Second Edition. Cambridge University Press.

1998.

Pahl G. and Beitz W. Engineering design: A systematic approach. Springer-Verlag. 1996.

Pareto V. Cours D’Economie Politique. Switzerland: Lausanne. 1896.

Parmee I.C. Evolutionary and adaptive strategies for efficient search across whole system

engineering design hierarchies AIEDAM. 12. 1998. pp 431-445

Park K-W, and Grierson D.E. Pareto-Optimal Conceptual Design of the Structural Layout

of Buildings Using a Multicriteria Genetic Algorithm. Computer-Aided Civil and

Infrastructure Engineering. 14. 1999. pp 163-170.

Pedersen P. Optimal joint positions for space trusses. Proceedings of the American Society of

Civil Engineers. 99(ST12). 1973. pp 2459-2475.

Porter B, Mohamed S.S. and Crossley T.R. Genetic computation of geodesics on three-

dimensional curved surfaces. Genetic Algorithms in Engineering Systems: Innovations and

Applications (GALESIA’95). IEEE Conference Publication No.414. University of Sheffield

(UK), 12-14th September. 1995. pp 448-453.

Rafiq M.Y. and Southcombe C. Genetic algorithms in optimal design and detailing of

reinforced concrete biaxial columns supported by a declarative approach for capacity

checking. Computers and Structures. 69. 1998. pp 443-457.

Rafiq M.Y, Bugmann Y. and Easterbrook D.J. Building concept generation using genetic

algorithms integrated with neural networks. Proceedings of AI in Structural Engineering, IT

for Design, Manufacturing, Maintenance and Monitoring. EG-SEA-AI. Wierzba, Poland.

1999. pp 165-173

Rajan, S.D. Sizing, shape and topology design optimization of trusses using genetic

algorithm. Journal of Structural Engineering. 1995. pp 1480-1487.

Rajeev S. and Krishnamoorthy C.S. Genetic algorithm-based methodology for design

optimisation of reinforced concrete frames. Computer-Aided Civil and Infrastructure

Engineering. 13. 1998. pp 63-74

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 113 -

Rajeev, S. and Krishnamoorthy, C.S. Genetic algorithms-based methodologies for design

optimization of trusses. Journal of Structural Engineering. 1997. pp 350-358.

Rechenberg I. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Frommann-Holzboog: Stuttgart. 1973.

Richardson J.T, Palmer M.R, Liepins G. and Hilliard M. Some guidelines for genetic

algorithms with penalty functions. In: Proceedings of the 3rd International Conference on

Genetic Algorithms. Morgan Kaufmann. 1989. pp 191-197.

Robert M, Reiss M. and Monger G. Biology (Principles and Processes). Thomas Nelson

and Sons. 1993.

Roberts S.C. and Howard D. Detection of incidents on motorways in low flow high speed

conditions by genetic programming. In: Cagnoni S et al (ed). EvoWorkshops 2002. LNCS

2279. Springer-Verlag. 2002. pp245-254.

Rosenmann M. The generation of form using evolutionary approach. In: Dasgupta D and

Michalewicz Z (eds). Evolutionary algorithms in engineering applications. Springer. 1997. pp

69-86.

Rudolph G. Self-adaptive mutations may lead to premature convergence. IEEE Transactions

on Evolutionary Computation. 5 (4). 2001. pp 410-414.

Ruy, W.S. and Yang, Y.S. Topology design of truss structures in a multicriteria

environment. Computer-Aided Civil and Infrastructure Engineering. 16. 2001, pp 246-258.

Sahab M.G, Ashour A.F. and Toropov V.V. A hybrid genetic algorithm for reinforced

concrete flat slab buildings. Computers and Structures. 83. 2005. pp 551-559

Schwefel H-P. Evolutionsstrategie und numerische Optimierung. PhD Thesis. TU Berlin.

Germany. 1975.

Shamos M.I. Computational Geometry. PhD Thesis. Yale University, New Haven, UMI

#7819047. 1978.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 114 -

Shea K. and Cagan J. Innovative dome design: Applying geodesic patterns with shape

annealing. Artificial Intelligence for Engineering Design, Analysis and Manufacturing. 11.

1997. pp 379-394.

Shrestha S.M. and Ghaboussi J. “Evolution of optimum structural shapes using genetic

algorithm”. Journal of Structural Engineering. ASCE. 124(11). 1995. pp1331-1338.

Sisk G.A. The use of a GA-Based DSS for Realistically Constrained Conceptual Building

Design. Cardiff University. PhD Thesis. 1999.

Sisk G.M, Miles J.C. and Moore C.J. Designer Centered Development of GA-Based DSS

for Conceptual Design of Buildings. Journal of Computing in Civil Engineering. ASCE.

17(3). 2003. pp 159-166.

Soibelman L. and Pena-Mora F. Distributed multi-reasoning mechanism to support

conceptual structural design. Journal of Structural Engineering. 126(6). 2000. pp 733-742

Stiny G, Gips J. "Shape Grammars and the Generative Specification of Painting and

Sculpture". In C V Freiman (ed). Proceedings of IFIP Congress71, Amsterdam: North-

Holland 1460-1465. Republished in O R Petrocelli (ed), The Best Computer Papers of 1971:

Auerbach, Philadelphia. 1972. pp 125-135.

The Buckminster Fuller Institute. [www] <URL:http://www.bfi.org/domes/>. [Accessed 20

May 2005].

Turban E. Decision Support and Expert Systems: Managerial Perspectives. Macmillan.

1998.

Ullman D.G, Stauffer L.A. and Diettrich T.G. Preliminary Results of an Experimental

Study of the Mechanical Design Process. In: Waldron M.B. (ed). NSF Workshop of the

Design Process. Ohio State University. pp 143-188.

Wang S.Y. and Tai K. Graph representation for structural topology optimization using

genetic algorithms. Computers and Structures. 82. 2004. pp 1609-1622.

Yang Y. and Soh C.K. Automated optimum design of structures using genetic programming.

Computers and Structures. 80. 2002. pp 1537-1546.

David Shaw Geometric Representations for Conceptual Design using Evolutionary Algorithms

 - 115 -

Watson A.H. and Parmee I.C. Systems identification using genetic programming.

Proceedings of ACEDC’96. 1996.

Watson A.H. and Parmee I.C. Improving engineering design models using an alternative

genetic programming approach. Proceedings of International Conference on Adaptive

computing in design and manufacture. 1998. pp 193-206.

Weisstein E.W. "Archimedean Solid", From MathWorld--A Wolfram Web Resource, [www]

<URL: http://mathworld.wolfram.com/ArchimedeanSolid.html>, [Accessed 20 May 2005].

Weisstein E.W. Circle point picking. In: MathWorld--A Wolfram Web Resource, [www]

<URL: http://mathworld.wolfram.com/CirlePointPicking.html>, [Accessed 20 May 2005].

Weisstein E.W. Convex Hull. In: MathWorld--A Wolfram Web Resource, [www] <URL:

http://mathworld.wolfram.com/ConvexHull.html>, [Accessed 20 May 2005].

Whigham P.A. and Crapper P.F. Modelling rainfall-runoff using genetic programming.

Mathematical and Computer Modellin. 33. 2001. pp 707-721.

Wolpert D.H. and Macready W.G. No free lunch theorems for optimisation, IEEE

Transactions on Evolutionary Computation. 1(1). 1997. pp 67-82.

Zhang Y. and Miles J.C. Representing the problem domain in stochastic search. In:

Schnellenbach-Held M. and Hartmann M. (eds). Next generation- intelligent systems in

Engineering. 2004. pp 156-168.

