
SearchGEM5: Towards Reliable gem5
with Search Based Software Testing

and Large Language Models

Aidan Dakhama1[0009−0002−7318−7964], Karine
Even-Mendoza1[0000−0002−3099−1189], W.B. Langdon2[0000−0002−6388−4160],

Hector Menendez1[0000−0002−6314−3725], and Justyna Petke2[0000−0002−7833−6044]

1King’s College London {aidan.dakhama,karine.even_mendoza,hector.menendez}@kcl.ac.uk
2 University College London {w.langdon,j.petke}@ucl.ac.uk

Abstract. We introduce a novel automated testing technique that com-
bines LLM and search-based fuzzing. We use ChatGPT to parameterise
C programs. We compile the resultant code snippets, and feed compil-
able ones to SearchGEM5, our extension to AFL++ fuzzer with customised
new mutation operators. We run thus created 4005 binaries through our
system under test, gem5, increasing its existing test coverage by more
than 1000 lines. We discover 244 instances where gem5 simulation of the
binary differs from the binary’s expected behaviour.

Keywords: AI · LLM · SBSE · SBFT · genetic improvement of tests

1 Introduction

Testing plays a key role in software’s lifecycle. Today test generation is often
expensive, tedious and labor-intensive. Instead, we propose to automate software
testing by combining large language models (LLMs) and search-based techniques
and demonstrate this on gem5.

Creating a test suite for gem5 is challenging. gem5 simulates software execu-
tion on different architectures, either processor micro-architectures or system-
level. gem5 is a large piece of code (1.34 million lines of code, LOC). Considering
that the set of test inputs for gem5 is a combination of both the architecture sim-
ulation and the program that runs within that simulation, the space of possible
inputs for testing is exponentially large.

We propose a novel way of testing gem5. First, starting from a mix-collection
of (1) industry-standard C compiler test suites and (2) tutorial programs, Chat-
GPT (GPT 3.5) [14] automatically creates a set of parameterized C programs
with information on how to execute it. The information is a valid value of argu-
ments and their data types, upon which the parameterized C program terminates
normally. Arguments are the real values passed to the program. By compiling
the LLM-generated parameterized C programs, we construct a corpus of test in-
puts. A test input is a binary and its information. Second, we extend AFL++,
a coverage-based fuzzer [9,18]. To generate new test inputs, we have introduced

2 A. Dakhama et al.

custom mutators. These can modify (i) a binary using bit-flips. (ii) its arguments
with their data types (e.g., mutating 0:INT32 to 55:INT32).

To check whether our generated test inputs lead to errors in gem5, we use
feedback from AFL++ (crash testing) and the resultant binary run on the given
architecture as an automatic test oracle: if gem5 produces the same result, we
deem the test run as successful. We treat it as a potential bug otherwise. We gen-
erated 4005 unique test inputs, 244 of which caused gem5 to produce behaviour
different to the one observed when the binary was run outside of gem5.

2 SearchGEM5

A single test input for gem5 is composed of a binary file (--binary) and its argu-
ments (--options). Consequently, to test gem5, we need a set of binaries. These
binaries can be generated in two ways: 1) Compiling programs, which yield the
desired binaries; 2) Alternatively, we can create binaries by mutating an existing
binary. We first select a set of example programs and use a Large Language
Model (LLM) to create variants that extract internal parameters as program
arguments. We compile them. Subsequently, we diversify them using AFL++ and
our custom mutators.
1. Test Input We use LLM to generate a set of C programs suitable for

testing gem5. We use a BASH script to amend minor errors.
2. Coverage-Guided Mutation-Based Fuzz Testing using AFL++ [9,18].
3. Differential Testing Per test case, we compare the result from gem5 to

the actual test execution.
Creating a Corpus of Programs We create a corpus of parameterized test
inputs. To execute a single test in gem5, we need: the program binary that
gem5 simulates; its arguments; and their types (e.g. 32-bit int). We generate the
binary by compiling programs obtained from LLM. We also prompt LLM for a
file containing the program’s arguments and their types.
Training LLM to Generate Test Inputs We have three prompts to train it:
1) a simple prompt that describes the task using a small C code and a free text
description; 2) a prompt that gives an example of a good response; 3) a prompt
that gives an example of a wrong response with a short explanation of what is
not valid. Then we automatically construct a prompt with many programs from
a single source (e.g., a single git repository):

" I w i l l g ive you a s e t o f N programs from source X, can you generate
a pa i r per program with an input sample and i t s type in fo rmat ion f o r the
second program? These are the programs : (name : code , name : code , . . .) " .

The LLM returns pairs of programs, consisting of the original C program and
its parameterized counterpart, plus, for each argument, an example of a valid
argument (input value) and its type (e.g., 5 INT32). (The original program is for
sanity checks and types are needed by SearchGEM5 when it mutates an input.)

The sources of programs used with LLM are: c-testsuite, the LLVM test suite
and C Examples. The programs that have no arguments or fail to compile are
invalid. We try up to three times to automatically fix them, either using a BASH
script for known problems (e.g., missing includes) or by asking the LLM again.

https://github.com/c-testsuite/c-testsuite
https://github.com/llvm/llvm-test-suite/
https://www.programiz.com/c-programming/examples/

SearchGEM5 3

Fuzzing We use AFL++ fork [9] of the American Fuzzy Lop (AFL) fuzzer [18].
AFL++ operates by taking an initial set of files each of which is an input to the
System Under Test (SUT) and instrumenting the SUT to measure test coverage.
Whilst running, AFL++ uses code coverage to guide its search towards previously
untested code. The next section describes our extension of AFL++ for gem5, with
its complex test inputs, using a coverage-guided mutational approach.
Custom AFL++ Mutation Operators We have extended AFL++ by reimple-
menting the mutation operators and part of the mutation strategy though we still
make use of AFL++ coverage selection criteria. This enables the selection of spe-
cific test input from the corpus and mutation of its binary file, arguments or their
types, based on the test coverage data collected by AFL++ for each test input.

We have introduced two mutation operators of a test input for gem5: 1) bit-
flip operator to edit a program’s compiled binary file and 2) an operator to edit
the value of its arguments. We do not mutate gem5 itself. Operator (2) uses type
information so that the arguments remain valid.

We have implemented the extension to AFL++ in a new tool, SearchGEM5.
SearchGEM5 evaluates new test inputs in the form of binary name, arguments
list, types. SearchGEM5 then uses this information to carry our mutation
operators either directly on the compiled binaries or to their arguments.
Experimental Setup The corpus of C programs was created using ChatGPT
(August 3, 2023) GPT-3.5-turbo. The compiler was GCC-11, except for cover-
age measurements done with gcov-9 due to gem5’s requirements. The Python
script chosen is an example file provided by the SSBSE Challenge Track 2023
organisers, in particular, hello-custom-binary.py. SearchGEM5 uses AFL++ as
the search engine, using its default parameters.

We ran our experiments on a single virtual machine with 8 virtual CPU Cores
and 72 GB RAM, running Ubuntu 20.04.2 LTS x86_64. The host had a single
AMD EPYC 7313P CPU (single socket, 3.0 GHz, 16 cores, 2 threads per CPU).

3 Results

We evaluated SearchGEM5 on its test generation capabilities, coverage, bug find-
ing and efforts required to reproduce the results. We provide further details
about the discovered bugs at [2].
Test Generation To assess the reliability of LLMs as a source of test cases for
gem5 when given the prescribed test framework, we aim to evaluate: (RQ1) to
what extent can GPT-3.5-turbo effectively generate parameterized C programs
for gem5 that adhere to the specified requirements (see Section 2).

Beyond the basic prompt, we presented GPT-3.5-turbo extra examples:
1) pairs of a valid C program and a valid input for it and 2) pairs of a valid
C program but with an invalid input. We ran GPT-3.5-turbo for 25 hours, of-
ten waiting due to usage limits. With GPT-4 and no subscription limits, results
could be obtained within minutes. We generated 1869 C parameterized files:
1086 compiled ok with GCC-11 -O3, forming a valid set of LLM-generated test
programs for AFL++. AFL++ used 744 out of 1086 GPT-3.5-turbo test inputs

https://github.com/BobbyRBruce/gem5-ssbse-challenge-2023/blob/stable/ssbse-challenge-examples/hello-custom-binary.py

4 A. Dakhama et al.

whilst searching for new tests (AFL++ ignored 342 test inputs, usually because of
invalid arguments). During 10 days run, AFL++ generated further 2136 unique
mutated test inputs. In total, SearchGEM5 generated 4005 unique tests, with
3222 of them becoming binaries.
Test Coverage Our objective is to evaluate the gap between LLM-generated
test inputs and the overall coverage achieved by our hybrid approach, which
combines LLMs with AFL++ search for additional coverage leveraging our novel
mutation operators. (RQ2) What is the coverage of LLM- and AFL++-generated
test inputs? Can AFL++ improve the basic coverage achieved by LLM-generated
ones in gem5?

For coverage measurements, we used 1086 and 2136 distinct binaries gener-
ated using LLM and AFL++, respectively. We built gem5 with g++ 9.4 -O1 and
gcov, adding gcov instrumentation overheads. We measured a smaller part of
the gem5 codebase, i.e. that relevant only to X86. We used the gcov-based tool
gfauto[10] to generate the coverage results in a human-readable format for 3380
files in the gem5 codebase (including header and system header files). The LLM-
generated test inputs achieved a total of 39,143 lines of coverage on the gem5
codebase. While our AFL++ covered 40,337 lines, an extra 1,194 lines (inclusive).
Bug Finding in gem5 Our primary objective here is to estimate the effec-
tiveness of our approach in uncovering bugs within gem5. That is, (RQ3) how
effective is our approach at finding bugs in gem5?

We have found panic crashes, assertion violations, crashes, hangs and mis-
simulation bugs in gem5 summarized in Table 1. We have investigated and clas-
sified all the crashes, identifying two different types of assertion violations and
10 different panic crashes in the gem5 codebase. Although the hangs may be
caused by several different issues, they are grouped together in Table 1 (none of
them are associated with pending inputs or lack of resources).

For example, a test input on line #14 of Table 1 was generated by GPT-3.5-turbo.
It was incorrectly simulated by gem5 (running without simulating the operating
system as well as the program, SE mode), resulting in a different output than
the native X86 run. During the simulation with gem5, with an invalid input, the
program terminated wrongly with an exit code 0. However the same combina-
tion of program and bad input led to the program, on reaching line 11 when run
on a native X86 being terminated with a segmentation fault (LLM-generated
program executed as ./00172.c.o 0; available at [2]). It appears that the ad-
dress space of gem5 might mask these kinds of pointer errors, similarly to what
happens with virtualization for obfuscations [15], where invalid addresses that
normally belong to the operating system are part of the process address space.
Portability AFL++ has been applied to various targets [1,12,16,17] and hence a
different target SUT should be easy. Our custom AFL++ mutator can be re-used
since we are doing target-independent bit-level mutations.

GPT-3.5-turbo has been trained on a wide range of code from many pro-
gramming languages, such as Python and Java. By adjusting the LLM prompt
and program examples to use the desired language, our method can easily be
adapted to the generation of test inputs in other programming languages [5,8].

SearchGEM5 5

Table 1: List of errors in gem5 found with SearchGEM5-generated test inputs. Mutation operations:
B=Binary bit-flip; C=Constants bit-flip of arguments; B/C=B and/or C; B (C optional)=B with
or without C; ANY=LLM-generated or B/C. #Input: distinct test inputs of the same bug.

Error Kind Operations #inputs Details

1 Panic error B 1 File exec-ns.cc.inc, line 17, "attempt to execute
unimplemented instruction ’femm’ (...)".

2 Panic error B/C 52 File sim/faults.cc, line 60, "panic condition !FullSystem
occurred: fault (General-Protection) detected (...)".

3 Panic error B 4 File base/loader/elf_object.cc, line 129,
"gelf_getphdr failed for segment 0 (...)".

4 Panic error B 3 File base/loader/memory_image.hh, line 70, "panic
condition offset + size >ifd->len() occurred (...)".

5 Panic error B 1 File cpu/simple/timing.cc, line 953, "panic
condition pkt->isError() occurred: Data access (...)".

6 Panic error B (C optional) 26 File arch/x86/faults.cc, line 131,
"Unrecognized/invalid instruction executed (...)".

7 Panic error B 1 File arch/x86/faults.cc, line 164,
"Tried to execute unmapped address (...)".

8 Panic error B (C optional) 14 File arch/x86/faults.cc, line 166,
"Tried to execute unmapped address (...)".

9 Panic error B/C 61 File arch/x86/faults.cc, line 166,
"Tried to read unmapped address (...)".

10 Panic error B/C 12 File arch/x86/faults.cc, line 166,
"Tried to write unmapped address (...)".

11 Crash
(assert fail) B 2 File base/loader/elf_object.cc, line 80, "virtual gem5::

loader::ObjectFile* gem5::loader::ElfObjectFormat (...)".

12 Crash
(assert fail) B 1 File base/loader/elf_object.cc, line 311, "void gem5::

loader::ElfObject::determineOpSys(): Assertion (...)".

13 Hangs B/C 6 gem5hangs with a timeout of 500 s on small programs.

14 Mis-simulation ANY 56 Invalid program is simulated as valid a program.

15 Mis-simulation B 1 Variable’s value is random in X86 but fixed in simulation.

16 Crash C 1 X86 terminates normally but the simulation failed to
parse input arguments (UnicodeDecodeError).

17 Mis-simulation C 2 X86 and simulation had different outputs.

4 Conclusions

Finding bugs in complex simulation systems like gem5 [4] requires new combina-
tions of search-based strategies (like fuzzing) and LLMs like ChatGPT to provide
extensive test cases by re-purposing and improving existing benchmarks of test
programs. Although the initial complexity can be discouraging because preparing
the simulation system for feedback-based fuzzing tools, like AFL++ [18], requires
the instrumentation of the whole system, it allows us to automatically discover
new errors, which need not be the catastrophic faults, such as segmentation er-
rors, which fuzz testing usually demands, but can be a simple but automatically
recognized difference in output, which is easily detected by an internal oracle
(see Section 3) [13]. In tandem with differential testing, we showed that it allows
masked errors discovery. Our approach uses AFL++ in an unconventional way,

6 A. Dakhama et al.

replacing test input fuzzing with a more sophisticated input format as discussed
in Section 2, an idea which was adopted by various domains such as compiler
testing [1,3] or network protocol analysis to manipulate network protocols for
fuzzing [16]. In terms of testing gem5, while there are efforts in verifying its archi-
tectural compliance [7] and the integrity of its code, gem5 testing or verification
approaches [6] that can go deeper into its internals, such as SearchGEM5, are
essential to validate its many possible options. The portability discussion and
Table 1, which quantifies instances of test inputs per bug, offer partial insights
on bug reproducibility limitations stemming from non-determinism in random
testing and LLMs (Section 3). We defer further analysis to future research.
Data Availability SearchGEM5, the LLMs prompt and the experimental in-
frastructure, data, and results are freely available via [2,11].
Acknowledgments Authors are listed in alphabetical order. This work was
supported by the UKRI EPSRC grant no. EP/P023991/1 and the UKRI TAS
Hub grant no. EP/V00784X/1 and EP/V026801/2.

References

1. AFL compiler fuzzer: https://github.com/agroce/afl-compiler-fuzzer
2. Artifact of SearchGEM5. Zenodo (2023). https://doi.org/10.5281/zenodo.8316685
3. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.R., Teuchert, D.:

Nautilus: Fishing for deep bugs with grammars. In: NDSS (2019)
4. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH computer architecture

news 39(2), 1–7 (2011)
5. Biswas, S.: Role of ChatGPT in computer programming.: ChatGPT in computer

programming. Mesopotamian Journal of Computer Science 2023, 8–16 (Feb 2023)
6. Bossuet, L., Grosso, V., Lara-Nino, C.A.: Emulating side channel attacks on gem5:

lessons learned. In: EuroS&PW. pp. 287–295. IEEE (2023)
7. Bruns, N., Herdt, V., Große, D., Drechsler, R.: Toward RISC-V CSR compliance

testing. IEEE Embedded Systems Letters 13(4), 202–205 (2021)
8. Destefanis, G., Bartolucci, S., Ortu, M.: A preliminary analysis on the code gen-

eration capabilities of GPT-3.5 and Bard AI models for java functions (2023)
9. Fioraldi, A., et al.: AFL++ : Combining incremental steps of fuzzing research. In:

USENIX Workshop at WOOT 20. USENIX Association (2020)
10. Git repository of gfauto,: https://github.com/google/graphicsfuzz.git
11. Git repository of searchGEM5: https://github.com/karineek/SearchGEM5/
12. Kersten, R., Luckow, K., Păsăreanu, C.S.: POSTER: AFL-based fuzzing for java

with kelinci. In: SIGSAC. p. 2511–2513. CCS ’17, ACM (2017)
13. Langdon, W.B., Yoo, S., Harman, M.: Inferring automatic test oracles. In: SBST.

pp. 5–6. Buenos Aires, Argentina (22-23 May 2017)
14. Lund, B.D., Wang, T.: Chatting about ChatGPT: how may AI and GPT impact

academia and libraries? Library Hi Tech News 40(3), 26–29 (2023)
15. Menéndez, H.D., Suárez-Tangil, G.: ObfSec: Measuring the security of obfuscations

from a testing perspective. Expert Systems with Applications 210, 118298 (2022)
16. Pham, V.T., Böhme, M., Roychoudhury, A.: AFLNET: A greybox fuzzer for net-

work protocols. In: ICST. pp. 460–465 (2020)
17. AFL’s’ fork for fuzzing pure Python: https://github.com/jwilk/python-afl
18. Zalewski M.: Technical “whitepaper” for afl-fuzz. http://lcamtuf.coredump.cx/

afl/technical_details.txt (Retrieved April 21, 2023)

https://github.com/agroce/afl-compiler-fuzzer
https://doi.org/10.5281/zenodo.8316685
https://github.com/google/graphicsfuzz.git
https://github.com/karineek/SearchGEM5/
https://github.com/jwilk/python-afl
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	SearchGEM5: Towards Reliable gem5 with Search Based Software Testing and Large Language Models

