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Chapter 1

Introduction

1.1 Research Perspectives
The research presented in this part of the thesis belongs to the following areas.

1. Computer-aided software engineering (CASE).
2. Machine learning.

3. Combinatorial optimization.

We will first describe what we want to accomplish from a CASE perspec-
tive. However, since we aim for a very high degree of automation, the machine
learning and combinatorial search perspectives are more important.

1.1.1 The CASE Perspective

The development of a program to solve a given problem consists of many activ-
ities. A software engineer may proceed as follows [Boehm 76].

1. Determine the requirements that the program should satisfy and write a
specification.

2. Design algorithms and data structures.
3. Implement the design in a programming language.
4. Test the implementation.

The software engineering literature contains numerous more sophisticated
development models such as the spiral model [Boehm 88]. We will use the
simple model above to explain our research goal even though it may be too



sequential, phase-oriented and crude for practical purposes. Our research goal
is to completely automate phases 2 and 3 and to partially automate phase 4.

We have developed a system, ADATE, that automatically can design, imple-
ment and test programs. The name ADATE, Automatic Design of Algorithms
Through Evolution, indicates that the goal of the research is automatic inven-
tion of new algorithms and not only automatic implementation of algorithms
that the ADATE user already knows. As we will see, this means that phase 1
1.e., specification, becomes more difficult. In particular, the ADATE user needs
to give a specification that supports automatic and incremental program devel-
opment.

1.1.2 The Machine Learning Perspective

The main part of machine learning is inductive inference, which is the process of
finding generally valid rules from a finite number of examples. When inferring
programs, the examples may be input-output pairs, which is a primitive form of
specification indeed. However, a simple input-output pair specification suffices
to illustrate inductive inference of programs.

Example. Assume that a list concatenation algorithm, implemented in
Standard ML, is to be inferred. The specification says that the type of the
function to be inferred 1s ’a list * ’a list -> ’a list and that the empty
list nil and the list constructor :: may be used in inferred programs. Also, the
specification contains the single input-output pair

( ([1,2,8,4]1,[5,6,7,8,91), [1,2,3,4,5,6,7,8,9] ).

The least complex definition that satisfies this specification 1s

fun append(Xs,Y¥Ys) =
case Xs of
nil => ¥s
| X1::Xs1 => X1::append(Xs1,Ys)

O

We formally define the complexity of a program in Subsection 3.5.1. This
formal definition approximates a programmer’s intuition regarding program sim-
plicity. There are infinitely many “undesirable” programs that satisfy the spec-
ification above e.g.



fun append(Xs,Y¥Ys) =
case Xs of
nil => nil
| X1::Xs1 =>
case Xsl1 of
nil => X1::Ys
| X2::Xs2 => X1::append(Xs1,Ys)

However, every undesirable program is more complex than the one we want.
This is no coincidence. The small-is-beautiful assumption is also inherent in
scientific theory formation. One may even argue that science as we know it today
would not exist without it. We discuss the relationship between desirability and
complexity in Section 3.2.

Note that the above program easily can be made “desirable” by substituting
Ys for nil. This substitution makes the second case redundant. Removing this
redundancy gives the simplest desirable append definition. These two transfor-
mations are actually very simple illustrations of the evolutionary “replacement”
(R) transformation presented in Chapter 4.

The specifications employed by ADATE are certainly not restricted to input-
output pairs, which are inadequate for many interesting programming tasks.
Instead of outputs, ADATE uses an evaluation function, which is defined by the
specifier based on the requirements that the outputs must satisfy. For example,
the specifier may require that the output from a sorting algorithm is both

1. sorted according to some total ordering and
2. a permutation of the input.

The disadvantage of providing outputs is not evident from this simple exam-
ple, but becomes quite obvious for more complicated programming tasks e.g.
autonomous robot navigation.

1.1.3 The Perspective of Combinatorial Optimization

A combinatorial optimization problem defines a set of solutions and a cost func-
tion that determines the quality of each solution. In ADATE, the solutions are
correctly typed Standard ML programs that satisfy some additional constraints,
for example recursion restrictions. The cost function, which 1s to be minimized,
is called a program evaluation function. Program evaluation functions are auto-
matically defined by ADATE using universal program quality measures such as
time complexity and syntactic complexity together with the output evaluation
function provided by the specifier.

The search employed by ADATE is a form of local optimization. Given an
initial solution, local optimization finds better and better solutions through a



fun local_search(S : solution) : solution =

let

val N = A minimum cost neighbour of S
in

if cost N < cost S then local_search Nl else S
end

Figure 1.1: Basic local search.

series of incremental changes. In ADATE, these changes are called program
transformations. The set of all solutions that can be obtained from a given
solution S using only one transformation is called the neighbourhood of S. Local
search moves from neighbour to neighbour as long as the cost decreases. When
no neighbour of the current solution has lower cost, we are at a local optimum,
which of course is not guaranteed to be a global optimum. Figure 1.1 shows one
version of local search, where S is the current solution. Another version just
picks a neighbour of lower, but not necessarily minimal, cost. We employ the
former version, which means that the entire neighbourhood is examined before
moving to a neighbour.

Most, but not all, “good” transformations yield an increase in program com-
plexity, which means that the search in ADATE usually performs successive
augmentation. The following example shows how the append program above
may be produced using incremental transformations.

Example. Assume that there are two input-output pairs, namely

1. ¢(3,0,2,3,4,51), [1,2,3,4,5]1 )
2. ( ([1,2,3,4]1,[5,6,7,81), [1,2,3,4,5,6,7,8] )

ADATE uses a special constant, ?, which means “don’t-know”. Intuitively,
it is better to say “don’t-know” than give a wrong answer. In this example,
we will only employ the replacement (R) transformation, which replaces an
expression in a program with a new, small synthesized expression or inserts
such an expression into a program. Thus, the neighbourhood of a program is
the set of all programs that can be obtained from it using R transformations with
a transformation complexity that does not exceed the current transformation
complexity limit, which is iteratively deepened by ADATE. The initial program
is

fun append(Xs,¥s) = ?

This program gives a “don’t-know” answer for all inputs. It is improved by
replacing the ? with Ys, which yields

10



fun append(Xs,¥Ys) = Vs

This program is an improvement since it correctly handles input number 1.
The next transformation is an insertion that gives

fun append(Xs,Ys) = case Xs of nil => ¥s | X1::Xs1 => ?

The reason this program is better is that it does not give a wrong output
for input number 2 while still being able to handle input number 1. The final
and desirable list concatenation program is obtained by replacing the ? with
the synthesized expression X1::append(Xs1,Y¥s).

Note that we used three transformations and a search space trajectory con-
taining four programs even for this very simple sample inference. However, the
search algorithms in ADATE are powerful enough to find the final program
using only one single R transformation applied to the initial program. Also,
ADATE manages fine without input-output pair number 1. O

The point with the example above is to show that even very simple pro-
grams have many better-and-better intermediate forms. For more complicated
programs, we do need specifications that give smooth search spaces with chains
of gradually improving programs such that there are no weak links requiring
too big neighbourhoods.

The search in ADATE is a heavily modified form of the traditional local
search algorithms for problems such as graph partitioning, graph colouring, bin
packing etc. Some important modifications are

1. Tterative-deepening [Korf 85, Olsson 93] of neighbourhood cardinality.

2. Using three multiple-valued cost functions instead of only one cost function
that returns only one numerical value.

3. Maintaining a structured so-called population of programs instead of just
one single current program.

The Traveling Salesman problem (TSP) is often considered to be the pro-
totypical “hard” combinatorial optimization problem [Johnson 90]. However,
even very large instances of this problem, e.g. one million cities, can be solved
within 2% of the optimum with high probability in a few hours of CPU time
[Johnson 94]. Therefore, we hope not to scare the reader by saying that the
search problem in ADATE is much harder than the TSP. Even though the TSP
1s very well studied in complexity theory, the practical, experimental results are
more significant and not well described by theory. Since it is so difficult to find
reasonably exact theoretical bounds on the average time complexity of TSP al-
gorithms, we cannot expect to find such theoretical complexity results for the
much more complicated problem of program synthesis as in ADATE. Therefore,
our general methodology is empirical end experimental.

11



The development, debugging and evaluation of ADATE has consumed about
4000 hours of CPU time on an IBM RS6000-590. In spite of careful program-
ming, the debugging phase has consumed more than 80% of this time. We feel
that our experimental activity is on the limit between the feasible and the unfea-
sible using a modern workstation. However, given massively parallel computers
and further research and development, it 1s impossible to tell where this limit

will be.

1.2 Design Challenges and Choices

The most important overall design choice in ADATE is the high degree of au-
tomation, which is related to the amount of information in ADATE specifica-
tions. If a specification contains much explicit information or if system-user
interaction is allowed, the system does not need to be particularly autonomous.
We will use the explicit information contents in specifications to briefly compare
inductive inference systems.

At one end of the spectrum of explicit information contents are systems that
use traces of computations [Biermann and Krishnaswamy 76]. At the same end
of the spectrum are systems requiring specifications that consist of input-output
pairs [Biermann 78, Smith 82, Summers 77] or positive and negative examples
as in inductive logic programming [Muggleton and Buntine 88, Muggleton 92
Stahl et. al. 93, Wirth and O’Rorke 92]. In such systems, the input-output
pairs or the examples must have a structure that corresponds to a specific algo-
rithm.

At the other end of the spectrum are genetic algorithm (GA) systems [Koza 92]
and ADATE, which use specifications such that the ratio between the difficulty
of writing a desirable program and the difficulty of specification may be enor-
mous. An important difference between ADATE and GA systems is that the
latter are very poor at inferring recursive programs since they use primitive
program transformations and an unsystematic search of the program space.
ADATE uses specifications that contain few constraints on the programs to be
synthesized and that allow a wide range of correct programs.

Of course, there are many design choices other than the degree of automation
and the amount of explicit information in specifications. For each relevant
chapter in this part of the thesis, the following listing shows the design choices
that are discussed in the chapter. We also give a brief general introduction to
each chapter.

Chapter 2. A difficult choice is which language to use for expressing the al-
gorithms that are inferred. We started our program synthesis research
believing that the simplest possible language would be most suitable for
automatic programming. We looked at polycephalic Turing machines,
finite state automatons (sequential nets) and subsets of LISP and PRO-
LOG. Due to lack of time and knowledge, we omitted several candidates

12



such as Kolmogorov graph machines and neural nets. However, it is now
clear that we do not need a simple language, but instead a language that
allows simple algorithm formulations that are easy to transform and suit-
able for combinatorial search.

After many time-consuming bad starts concerning the choice of language,
we have found that a subset of Standard ML, which we call ADATE-ML,
is superior to the other candidates that we have tried. However, the choice
of language depends on the class of algorithms to be inferred. For example,
we cannot be sure that ADATE-ML is better than neural nets for pattern
recognition applications.

ADATE is also implemented in Standard ML. Additionally, Chapter 2
contains some ML definitions that this implementation employs when ma-
nipulating ML programs.

Chapter 3. The form of specifications should be general enough to allow basi-
cally any kind of requirement to be formulated. It should also enable the
inference system to recognize microscopic program improvements. Tra-
ditional predicate logic specifications do not satisfy this last requirement
since they are often either “false” or “true”, i.e., give an extremely rough
search space topography even if they are supplemented with additional
measures such as time complexity and syntactic program complexity.

The choice of sample inputs and an output evaluation function as in
ADATE is much better than using input-output pairs. For example, the
ADATE specification form is easy to adapt to the sort of “environment”
simulation employed in artificial life research, but ADATE has primar-
ily been used for the type of problems found in text-books on algorithm
design and analysis.

Chapter 4. This chapter presents so-called atomic transformations. The pro-
grams in the neighbourhood of the program to be transformed are pro-
duced using so-called compound transformations as presented in Chap-
ter 6. A compound transformation is a sequence of one or more “related”
atomic transformations.

The choice of atomic transformations was made empirically. We started
with the replacement (R) transformation and looked at sample infer-
ences using only this transformation. We also implemented a precursor
of ADATE that only employed a limited form of R transformations. The
experimental results obtained using this precursor showed the need for
a transformation that rearranges case-expressions, which is the so-called
case-distribution (CASE-DIST) transformation. The next step in the
evolution of ADATE was the observation that auxiliary functions could
be extracted from already synthesized program fragments, which is done
by the abstraction (ABSTR) transformation. We then noted that some

13



of th

ese invented functions could be generalized by adding parameters or

changing parameter types, which yielded the embedding (EMB) transfor-
mation.

A particularly difficult stage in this gradual evolution of the ADATE trans-

form

ations was how to introduce recursive auxiliary functions. However,

the current design is both simple and effective.

Am

ajor omission in ADATE is the ability to invent and utilize higher

order functions. There are no principal problems with these, but they

seeln

to have bad combinatorial properties if used without restrictions

and heuristic guidance.

Chapter 5. The R transformation requires the synthesis of new expressions.

The
the r
grow

choice of expression synthesis techniques has a strong influence on
un times of ADATE since the number of expressions to be examined
s exponentially with expression size i.e., complexity. Therefore, the

expression synthesis problem is intractable for large sizes. One may deal

with

1.

this combinatorial explosion in the following three ways.

By ensuring that the size of synthesized expressions is always quite
small.

2. By avoiding the synthesis of equivalent expressions.

3. By employing heuristics in order to try the “best” expressions first.

From the very beginning of the research presented in this thesis, we have
focussed on ensuring that only very small expressions need to be synthe-

sized

Infor

mally, we will now try to explain how this is possible by presenting an

idealized program induction scenario. Let us define a grain to be a subex-

press

ion of the program to be inferred. Additionally, a grain is required

not to contain any case and to have a case or a let as parent. This
means that the grains are the biggest possible case-free subexpressions of
a prograimn.

Example. Consider the program

fun
ca

I
le

in

en

sort Xs =

se Xs of nil => Xs
X1::Xs1 =>

t fun g V1 =

case V1 of nil => X1::nil
| X2::Xs2 => case X2<X1 of true => X1::g Xs2 | false => X1::V1

g(sort Xsi1)
d

14



The grains are Xs, Xs, V1, X1::nil, X2<X1, X1::g Xs2, X1::V1 and
g(sort Xs1). Note that the biggest grain is X1::g Xs2 which means
that the maximum grain size is 4. O

Let us define the resolution of an inference as the maximum number of
grains that need to be added to any program P; in order to improve the
value of at least one program evaluation function. We require that each
P; is a program in a suitable “genealogical path” that leads to a final and
desirable program. In the ideal scenario, the resolution is one grain. This
means that there is a permutation of grains G'1, Ga, ..., Gx¢ such that we
can obtain successively better programs by adding one grain G; at a time
with ¢ taking the values 1,2,...,#G. Each added grain G; is assumed
to improve the value of at least one program evaluation function. The
following three observations are crucial.

1. Empirically, we have found that many, perhaps even most, functional
programs can be written in a form with a very small maximum grain
size.

2. It is frequently possible to provide sample inputs and an output eval-
uation function that give a resolution of one or a few grains.

3. The product of the maximum grain size and the resolution gives an
approximate upper bound on the total size of the expressions that
need to be synthesized in any compound transformation.

Unfortunately, it is difficult to substantiate these claims by means other
than empiricism. The examples in Chapter 8 will give at least some em-
pirical motivation for the claims.

Even though our expression synthesis techniques and heuristics are rea-
sonably simple, they were difficult to implement. Chapter 5 also presents
alternative, unimplemented methods, but full exploration of all possible
designs would require several additional Ph.D. theses.

Chapter 6. When having chosen atomic transformations, we need to choose
how to combine them. For example, after introducing a new function using
abstraction (ABSTR), this new function should be used immediately in
a subsequent replacement (R). The reason is simply that a function must
be used i.e., formally called, at least twice in order to serve any purpose.
We define this coupling between atomic transformations using so-called
coupling rules, similar to rewrite and production rules;, which ADATE
employs to automatically generate all possible compound transformations.

Chapter 7. The final choice in the design of ADATE is the overall combi-
natorial search technique that navigates through the program space by
jumping from neighbour to neighbour using compound transformations.
There are several combinatorial “meta-heuristics” that may be used as

15



templates for the overall search. Two such methods are simulated an-
nealing [Kirkpatrick et. al. 83] and tabu search [Glover 89], both of which
are based on local optimization. In comparison with plain local optimiza-
tion methods, both simulated annealing and tabu search are substantially
better at escaping from local optima but require much more execution
time. Since we already are on the limit of the computationally feasible,
we chose a special-designed overall search, which is likely to be at least two
orders of magnitude faster than simulated annealing. Unfortunately, we
have to sacrifice general and robust search performance in order to reduce
the number of examined neighbourhoods and achieve this speed increase.
When 10 to 100 times more computing power is available, we will use a
randomized search that is better at escaping from local optima. How-
ever, the basic population structure and sophisticated iterative-deepening
search presented in Chapter 7 will also be needed in future implementa-
tions. Therefore, there is practically no material in Chapter 7 that is likely
to become obsolete in new versions of ADATE.

Chapter 8. This chapter contains examples of specifications and inferred pro-
grams. We used 10 sample specifications to evaluate ADATE. The inferred
programs typically consist of less than 30 lines of ADATE-ML code, but
are nevertheless mostly non-trivial. As far as we know, there is no other
inference system in the literature that can infer even one single of these
programs using specifications that contain as little explicit information as
ours.

Desirable, non-trivial and unexpected programs were found surprisingly
often. One reason is that recursive calls were employed in ways we could
not anticipate. Our general impression is that the results of grand scale
combinatorial search as in ADATE are unpredictable and that they would
be less interesting if they were not.

Some of the 10 specifications, in particular BST deletion and permutation
generation, were not easy to write since we had to change them several
times in order to enable the overall search method to escape from local
optima.

Appendix B shows a “raw” log file from the inference of a list sorting
program.

Chapter 9. This chapter discusses categories of inductive inference systems
that are related to ADATE, namely inductive logic programming, genetic
algorithms (programming) and program transformation. We evaluate each
of these categories with respect to seven common criteria.

Chapter 10. This chapter contains merits and drawbacks with ADATE and
directions for future research.

16



Chapter 2

The Language in Which
Synthesized Programs are
Written

Synthesized programs are written in a purely functional subset, ADATE-ML, of
Standard ML. We will first motivate the choice of ML, then compare ADATE-
ML with Standard ML and finally explain how ADATE-ML programs are rep-
resented using algebraic data types. This explanation lays the ground for the
algorithms that transform ADATE-ML programs.

2.1 Advantages of Functional Languages for In-
ductive Inference

We will first discuss the advantages of ADATE-ML in comparison with lan-
guages from the ALGOL family e.g. SIMULA, ADA, MODULA .... Then, we
will compare ADATE-ML with PROLOG and LISP.

For expressing inferred programs, a purely functional language has the fol-
lowing advantages in comparison with ALGOL-like languages.

1. A purely functional language is referentially transparent and has no notion
of state nor destructive assignment. Consequently, it 1s relatively easy to
define general, semantics preserving transformations of purely functional
programs. Helmut Partsch [Partsch 90, page 263] writes that “experience
has shown that it is advisable to do these manipulations on the applicative
level as far as possible, thus profiting from the obvious advantages (such
as referential transparency) of this level of formulation”.

17



2. Another advantage of a functional language is that a functional program
is often much smaller than the corresponding ALGOL-like program. This
is particularly important when using search strategies that, in principle,
exhaustively search subsets of the space of all programs. The cardinality
of such a subset is often much lower for a purely functional language than
for practically any other language.

3. ALGOL-like languages have type systems that are rigid and primitive in
comparison with algebraic data types and Hindley-Milner polymorphic
typing as in ML.

4. A purely functional language uses recursion instead of while-loops. Tt
is easy to reformulate any program that contains while-loops using only
recursion, but there are many recursive programs that require clumsy,
unnatural formulations if only while-loops are allowed.

5. Most languages in the ALGOL family do not have automatic garbage col-
lection, which necessitates arduous, explicit storage allocation and deallo-
cation.

6. Functions are first-class citizens in functional languages i.e., may be used
just like other values. Higher-order functions and A-expressions provide
excellent abstraction facilities, but ADATE-ML does not contain them.
However, they may be useful in future versions and certainly are employed
over and over again in the ML source code of ADATE itself.

7. Some functional languages, e.g. MIRANDA and HASKELL, have lazy
evaluation, which allows more expressive formulations. However, we do
not exploit lazy evaluation and use strict evaluation only.

Undoubtedly, LISP and PROLOG are the most popular high level languages
for expressing programs that are synthesized by inductive inference systems.
The comparison with these languages is more interesting since the advantages
of ADATE-ML may be less obvious. Here are some problems with LISP and
PROLOG.

1. Both LISP and PROLOG suffer from extremely poor type systems, which
might lead to unnecessarily high cardinalities for the program space sub-
sets that are searched. The combinatorial advantage of typing is illustrated
by the following example.

Example. Assume that a syntactically correct programis a string, ajas . .
of terminal symbols produced by a context-free grammar (CFG). Assume
that the a;’s are drawn from sets of terminals that have cardinalities with
the geometric average B for large #a. The CFG normally constrains these
terminal sets so that B is only a fraction of the total number of different
terminals. There are ©(B#®) programs of size #a. Type constraints may
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be taken into consideration by assuming that ¢ different types reduce B
to B/t. Thus, the number of programs of size #a may be reduced from
O(B#%) to ©((B/t)#%) through typing.

For example, consider the CFG
F—al|b|fF | F|gF|g E

with the terminal symbols a, b, £, £’, g, g’ and the non-terminal
symbol E. There are ©(4#¢) syntactically correct strings of length #a,
i.e., B = 4 asymptotically. Assume that an F-string i1s a preorder listing
of an expression and that the functions are typed as follows.

a:S f£:5>T g : T->S
b: T f£°:8->T g’: T->5

There are two types, S and T, i.e., t = 2. There are O((B/t)#)= O(2#%)
expressions of size F#£a that are both syntactically correct and correctly
typed. Of course, there are many grammars and type assignments such
that typing does not reduce B to B/t. O

. PROLOG, but not LISP, lacks scoping and modularization facilities e.g.
predicate definitions inside other definitions. Neither does PROLOG have
higher order predicates as first class citizens.

. LISP, but not PROLOG, lacks pattern-matching constructs and relies on
test predicates and selectors instead e.g. null, car, cdr. The attempts to
rectify this in for example COMMON LISP are quite primitive.

Since language advantages often are hard to prove with mathematical rigour,

language discussions are often fruitless. The reader who still feels that SIMULA |
ADA, COMMON LISP, SCHEME or PROLOG 1is superior for inductive infer-
ence may want to try to show this by replacing ADATE-ML and reimplementing
ADATE. However, we believe that this endeavour would be much more difficult
than our own implementation effort.

2.2 The Design of ADATE-ML

One design goal was to remove redundancy from Standard ML, which has many
equivalent constructs. Normally, these constructs give programmers freedom of
choice, but ADATE-ML should not contain “syntactic sugar” since this may lead
to unnecessarily large search spaces. For example, the Standard ML expression

let val V = £ in E5 end
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is equivalent to

(fn V => FEy) [y

and to

case Iy of V => FE,.

ADATE-ML only allows the last form of this expression. ADATE-ML uses
case F of true => RHS] | false => RHS,

instead of

if F then RHS, else RHS-.

ADATE-ML also uses case-expressions and pattern-matching instead of dis-
criminators and selectors, e.g.

case Xs of nil => nil | X1::Xs1 => Xs1
1s used instead of
case null Xs of true => nil | false => tl Xs.

Boolean operators can be replaced with case-expressions without any significant
increase in code size or execution time. They are therefore superfluous and not
allowed in ADATE-ML. The boolean expression Ey andalso F5 can be replaced
with

case | of true => £ | false => false.
Similarly, £ orelse E5 may be replaced with
case F| of true => true | false => F-.
and not F can be replaced with

case F of true => false | false => true.

ADATE-ML uses case-expressions instead of alternative left hand sides in fun-
definitions. For example, the definition

fun 1 nil = 0
| 1 (X1::Xs1) =1 + 1 Xs1

1s written as

fun 1 Xs = case Xs of nil => 0 | X1::Xs1 => 1 + 1 Xs1.
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ADATE-ML does not contain curried functions. The pattern in the left hand
side of a fun-definition is required to be an n-tuple pattern with n > 1. A
tuple pattern is always required to be fully layered which means that names
are introduced for all possible parts of a tuple pattern. For example, the type
((int*int)*int)*int corresponds to a pattern like (A as (B as (C,D),E),F).
Requiring tuple patterns to be fully layered often leads to the introduction of
superfluous names. This problem is more aesthetic than practical.
ADATE-ML contains datatype-definitions of the following form.

datatype ("ai,’as, ... agq) Type_constructor =
C1 of Tl,l * lez * .. 'Tl,#Tl
| C5 of T2,1 * szz * .. .TZV#T2

| Cyc of Tyon * Tyco* .. . Tao #T40

Each 'a; is a type variable, each C; is a constructor and each 7} ; is the type
of argument number & of constructor Cj.

If the type of a case-analyzed expression E is defined by a datatype-
definition, the patterns in the left hand sides of case-rules must correspond to
the alternatives in the datatype-definition as follows. Let the case-expression

be
case F of Maitchy => RHS, | ... | Match, => RHS,

and assume that the datatype-definition for the type of E has the form given
above. ADATE-ML requires n = #C and Match; = C;(Tuple-pat;) where
Tuple-pat; is the fully layered tuple pattern for the tuple type 15 1 * ...+ T; »7,.

The language restrictions presented so far do not significantly reduce the
expressiveness of ADATE-ML. However, as mentioned above, the current ver-
sion of ADATE-ML contains neither A-expressions nor higher order functions,
both of which are important ingredients of functional programming languages.
These ingredients were omitted from ADATE-ML since more complicated pro-
gram transformations would be required to utilize them effectively. Since these
ingredients were omitted, each application of an expression E; to an expression
FEs,1.e., B4 F5, is such that £y is a function symbol.

The basic syntax of ADATE-ML expressions is specified by the grammar rule
for the non-terminal Fzp in Figure 2.1. In order to keep the grammar simple,
1t does not describe infix function applications even though these are allowed in

ADATE-ML.
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Frp —
Id
| ¢ Exp_list)
| Id ( Fzp_list )
| case Fzp of Rule list
| let Dec_list in Exp end

Id — All valid alphanumeric identifiers.

Erp_list —
Ezp
| Fzp , Euxp_list

Rule_list —
Pat => FExp
| Pat=> Exp | Rule_list

Pat —
Id
| € Pat_list)
| Id ( Pat list )
| Id as Pat

Pat_list —
Pat
| Pat , Pallist
Dec_list — fun Decs
Decs —

Id Pat = Fxp
| Id Pat = FEzp and Decs

Figure 2.1: The syntax of ADATE-ML expressions.
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datatype (’a,’ble =
app_exp of { func : symbol, args : (’a,’b)e list, exp_info : ’a }
| case_exp of { exp : (’a,’b)e,
rules : {pat:(’a,’b)e,exp:(’a,’b)e} list,
exp_info : ’a }
| let_exp of {
dec_list :
{func:symbol,pat:(’a,’b)e,exp:(’a,’b)e,dec_info:’b} list,
exp : (’a,’ble,
exp_info : ’a }
| as_exp of { var : symbol, pat : (’a,’b)e, exp_info : ’a }

type (Pa,’bl)d =
{ func : symbol, pat : (’a,’b)e, exp : (’a,’b)e, dec_info : ’b }

Figure 2.2: The data types for expressions and fun-declarations.

2.3 Basic Definitions for the Manipulation of
ADATE-ML Programs

ADATE is implemented in Standard ML. We will also use Standard ML to
present algorithms that manipulate ADATE-ML programs. Standard ML was
chosen as a presentation language instead of pseudo-notation since the “level”
of Standard ML is almost as high as the level of pseudo-notation and since
Standard ML has precise and well-defined semantics.

ADATE-ML expressions and fun-declarations are represented using the data
types (’a,’b)e and (’a,’b)d respectively. The type variable ’a is the type of
information that is associated with each expression. The type variable ’b is the
type of information that is associated with each fun-declaration. For example
this information can be the types of expressions and functions. Since fun-
declarations can occur in expressions and vice versa, both the type constructor
e and the type constructor d need (’a,’b) as argument.

The definitions of e and d are shown in Figure 2.2. These data types are
simple and easy to use when defining program manipulation functions, but may
not be theoretically appealing since some values can be constructed in many
different ways and since illegal values can be constructed. This is illustrated by
the following two examples.

Example. The expression f(X1,X2) has at least two representations. The
two representations below correspond to the expressions £ (X1,X2) and £((X1,X2)).
Assume that we have the binding

Args = [ app_exp{func="X1",args=nil,exp_info=NONE},
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app_exp{func="X2",args=nil, exp_info=NONE} ]
The two representations are then
app_exp{func="1",args=Args, exp_info=NONE}
and

app_expil
func="1f",
args=app_exp{func="tuple",args=Args,exp_info=NONE}::nil,
exp_info=NONE}.

We always assume that the first form of representation is used. O

Example. The definition of e in Figure 2.2 regards patterns as expressions.
For example, this means that the data type (’a,’b)e allows as-bindings in
places where the grammar in Figure 2.1 does not allow them, e.g. in

fun £ A = g(A as (B,C)).

This as-binding is illegal in ML and does not make sense but can still be rep-
resented using the data type. O

When manipulating ADATE-ML expressions, it is frequently necessary to
specify the positions of subexpressions. The position of a subexpression is a
list [ Py, Ps,..., P, ] of natural numbers that correspond to the expression
tree path that leads to the subexpression. Number P; corresponds to going to
child number P;. The left-most child has number 0. The higher order function
pos_foldshown in Figure 2.3 may be used to define many functions that employ
positions. A function pos_to_sub that returns the subexpression Sub at position
Pos in an expression E can be defined as

fun pos_to_sub(E,Pos) = pos_fold( #1, fn Sub => Sub, Pos, E ).

In order to produce names for functions and parameters, ADATE maintains
a counter that is increased by one each time a new name is needed. If this
counter has the value N, a function is called g/N whereas a parameter is called
VN. Since the counter contains 60 bits (two int values in Standard ML of New
Jersey), the name supply is large enough for all practical purposes.
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fun pos_fold( f : ’c * (’a,’b)e * pos -> ’c, g : (’a,’b)e > ’c,
Pos : pos, E : (Pa,’ble ) : ’¢c =
case Pos of
nil => g E
| P::Ps =>
case E of
app_exp{args,...} =>
f( pos_fold(f,g,Ps,nth(args,P)), E, Pos )
| case_exp{exp,rules,...} =>
if P=0 then
f( pos_fold(f,g,Ps,exp), E, Pos )
else
f( pos_fold(f,g,Ps,#exp(nth(rules,P-1))), E, Pos )
| let_exp{dec_list,exp,...} =>
if P < length dec_list then
f( pos_fold(f,g,Ps,#exp(nth(dec_list,P))), E, Pos )
else
f( pos_fold(f,g,Ps,exp), E, Pos )

Figure 2.3: The definition of pos_fold.
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Chapter 3

Specification and Selection
of Programs

3.1 Basic Properties of Specifications

A specification implicitly defines a set C' of correct programs. A program is
correct if and only if it satisfies the specification. The person(s), who wrote the
specification, want a program chosen from a set D of desirable programs. The
software engineering discipline distinguishes between validation and verification.
Validation of a program P means to check if P € D whereas verification checks
itPedC.

Ideally, a specification should be such that

1. C' # 0 (consistency),
2. D C C (necessity) and
3. C' C D (sufficiency).

The ideal ' = D is rarely achieved. A specification that is necessary is
sometimes also called “loose” since 1t does not unnecessarily restrict the set of
programs that may be inferred. Many inductive inference systems use specifica-
tions that are not necessary, which means that one or more desirable programs
are not allowed by the specifications. Usually, such specifications contain extra
information that facilitate efficient inference by constraining the search. The ba-
sic philosophy of our work is to maximize the ease of specification by minimizing
the amount of extra information. ADATE specifications are always necessary.

A major potential problem with practically all specifications employed in
inductive inference is that they are not sufficient.

26



3.2 Attempts to Deal with Lack of Sufficiency

Lack of sufficiency is a fundamental problem that arises in practically all kinds
of scientific theory formation and inductive inference. A thorough theoretical
treatment of the problem is given by Li and Vitanyi in their book on Kol-
mogorov complexity [Li and Vitanyi 93]. They provide an illustration similar
to the following. “If a man has seen the sun rise on the eastern side of his house
every morning in his entire life, can he use these examples of sunrise to conclude
that the sun will rise on the eastern side of the house the next morning?” If one
requires examples to be absolutely sufficient, the answer is no, which indicates
that it sometimes 1s unreasonable to insist on sufficiency.

Li and Vitanyi discuss Occam’s razor principle at length, giving many his-
torical accounts of its importance. They cite many different formulations of this
principle. For our purposes, the following version is the most suitable.

Compute the set of hypotheses that agree as well as possible with
the observations. Choose the simplest hypothesis in this set.

For example, they write that Albert Einstein developed his general theory of
relativity because he was convinced that the special theory was not the simplest
that can explain all observed facts.

In machine learning, there are several interesting theoretical approaches to
the problem of constructing highly probable hypotheses, in particular Valiant’s
model of learning [Valiant 84] and the so-called Occam’s razor theorem as stated
in [Blumer et. al. 86]. This theorem is based on Valiant’s model and Occam’s
razgor principle.

The problem of finding a program Pp,, that satisfies the specification and
has minimum syntactic complexity, is NP-hard even for very simple languages
such as regular expressions [Angluin 78]. Occam’s razor theorem says that a
program P with reasonably small but not necessarily minimal syntactic com-
plexity still is correct with high probability. The theorem is useful since it
does not require minimization of syntactic complexity, which means that worst-
case polynomial time learning methods are more likely to exist. An interesting
question is which languages that may be used to formulate P. Blumer et. al.
considers restricted languages such as geometric concepts and Boolean expres-
sions. For the latter language, their result may be described as follows. Assume
that the syntactic complexity s(P) is the minimum number of bits required to
encode the program P and that n is the number of examples. The theorem as-
sumes that s(P) is O(s(Pumin)*n®), where k and « are constants such that & > 1
and 0 < a < 1. It is normally assumed that « is substantially less than one so
that n® rapidly becomes much smaller than n. Note that P 1s assumed to have
a reasonably small, but not necessarily minimal, syntactic complexity. Occam’s
razor theorem says that P still is correct with high probability. The probability
of correctness depends on k, o and n as described in [Blumer et. al. 86].
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Even if this result is not directly applicable to the inference of general func-
tional programs, it indicates that reasonably small syntactic complexity in com-
bination with well chosen examples can achieve sufficiency with a high proba-
bility.

3.3 Specification Form
Some additional requirements for a specification are:

1. The specification should be as easy as possible to write and preferably be
much simpler than any desirable program.

2. The specification should facilitate efficient inference.

3. A computer should reasonably quickly be able to decide if a given program
is correct.

Requirements 1 and 2 are often in conflict. One main goal of the research
presented in this thesis was to allow specifications to be as simple as possible.
The only efficiency goal was that many interesting inferences should be possible
using computers that were generally available in 1993.

Even if requirement 3 is satisfied, there are still many specifications that
are very simple in comparison with the programs that satisfy them. For exam-
ple, most of the well-known NP-hard problems can be used to construct such
specifications, which employ sample inputs and an output evaluation function.

Example. Assume that [ is a large instance of the traveling salesman
problem and that the specification writer knows the minimum length L, of a
Hamiltonian cycle on I. It is easy to construct such an instance in time O(n?),
where n 1s the total number of nodes. Here is a simple specification of a program

P.

Given input I, P is required to output a Hamiltonian cycle ' of
length Ly, in less than 712/106 CPU seconds.

Note that it takes time O(n) to check if C'is a Hamiltonian cycle of length Ly .
Thus, the correctness of P is decidable in time O(n?/10%) + O(n) = O(n?) even
though P may be extremely difficult to find. O

The Journal of Algorithms maintains a list with hundreds of NP-complete
problems that can be used to construct similar specifications.

Assume that a specification is to be used to check a synthesized ML program
P. P is a definition of a function f which is an approximation of a desirable
function. An ADATE specification consists of

1. A set of algebraic data types.

2. The primitive functions that are to be used in inferred programs.
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3. The type of f.
4. A set of sample inputs { L1, I», ..., Igr }.

5. An output evaluation function oe, which uses the set

{(Il’ f(Il))’ RS (I#I’ f(I#I))}
to rate P.

The sample inputs need to be chosen so that incremental inference is fa-
cilitated. This means that the inputs should contain sufficiently many special
cases. The sample inputs in the specification of a list sorting program may
for example include an empty list, a singleton list, a sorted list and a few ran-
dom lists. One interesting progression of more and more difficult sample inputs
would be the problems in mathematics textbooks, ranging from first grade in
elementary school up to university level. Even if the specification writer may
not need to be as “pedagogical” as the authors of such textbooks, the sample
inputs still need to be carefully chosen.

It is important that specifications are not required to be based on input-
output pairs. We have identified the following four problems with input-output
pair specifications.

1. The choice of output sometimes reflects the particular algorithm that was
used to construct it. The specification writer may need to know this
algorithm to be able to provide appropriate output. An inference system
naturally becomes much less useful if the writer is required to know the
algorithm to be inferred.

2. Looseness is lost if the pairs do not include all possible outputs for a given
input.

3. An input-output pair specification grades an output as correct or wrong.
It is often desirable to use more than two grades. For example, the grades
can be all real numbers in some interval.

4. It may be too difficult for the user to provide optimal outputs.

Here are four examples such that example number ¢ illustrates problem num-
ber <.

1. Consider the specification of a function
split : ‘’a list -> ’a list * ’a list
that splits a list Xs into a pair of lists (Ys,Zs) such that the lengths

of Ys and Zs differ by at most one. The split function is useful when
implementing merge sort. The input-output pair
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( [t,2,3,4,5,6,7,8], ([1,2,3,4]1,05,6,7,8]) )

obviously reflects the particular algorithm that chooses Ys to the first half
of Xs and Zs to the second half. However, the following split algorithm is
both simpler and faster.

fun split nil = (nil,nil)
| split (X1::Xs1) = case split Xs1l of (¥s,Zs) => (X1::Zs,Ys)

An input-output pair that reflects this algorithm is
(01,2,3,4,5,6,7,8], ([1,3,5,7]1,[2,4,6,8]) ).

Instead of giving outputs, it is much better to provide an output eval-
uation function. Assume that the function is_perm is defined so that
is_perm(As,Bs) means that Bs is a permutation of As. Given input Xs
and output (Ys,Zs), the output evaluation function computes

is_perm(Xs,Ys@Zs) andalso abs(length Ys - length Zs) <= 1,

where @ 1s the ML operator for list concatenation.

. Problem 2 can be exemplified using the above TSP specification. If
the specification only allowed programs that produce a particular pre-
determined tour of length L., a program that produces another tour
of length L., would be regarded as incorrect. The specification would
therefore not be loose if such a tour exists.

. This example illustrates the usefulness of grades. Consider navigation
of a polygon among polygonal obstacles. When computing the output
evaluation function one might check if a given path, represented by a
series of points and angles of rotation, intersects any obstacle, compute
the length and curvature of the path, the amount of rotation along the
path and its safety 1.e., margin to obstacles.

. In order to illustrate that it may be problematic to provide optimal out-
puts, consider choosing random graphs as inputs in the TSP specification.
It would then be difficult for the specification writer to provide optimal
outputs i.e., Hamiltonian cycles of minimum length.
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3.4 The Output Evaluation Function

Since the output evaluation function oe is of fundamental importance in ADATE,
the exact form of oe is described below. An inferred program may contain a
special constant, 7, that needs to be considered when defining oe. A ? constant
means “don’t-know”. A correct output is better than a don’t-know output
which in turn is better than a wrong output. Let the type of f be input_type
-> output_type. The domain type of oe is

(input_type * output_type exec_result) list,
where exec_result is defined as
datatype ’a exec_result = ? | too_many_calls | some of ’a
The outcome of the computation of f(I;) is
e 7 if any ?-constant was evaluated,

e toomany_calls if the call count limit, which is discussed in Subsec-
tion 3.5.2, was exceeded and

e some O; otherwise.

ADATE calls oe with an argument Execute result which is a list of the form
[(Lh,R1),...,(Igr, Rer)], where each R; is the outcome of the computation of
f(I;). The range type of oe is cwd list * real list where cwd is defined as

datatype cwd = correct | wrong | dont_know

If the call oe Execute_result returns (Cs,Grades), element number ¢ in Cs
corresponds to (I;, R;) in Execute result. Grades is a list of floating point
numbers which 1s to be minimized according to the usual lexicographic ordering
on lists. For example, Grades may have the form [Grade_1,Grade 2], where
Grade_1 is more important than Grade 2.

Example. Consider the specification of a program that simplifies polyno-
mials. Assume that simplification of a polynomial Xs, e.g. 3X? 44X + 8X? —
5X 4+ 4 — X? + 8, yields a polynomial Ys, e.g. 12 4+ 10X? — X. For a given
polynomial Xs the user may need to determine how good an output Ys is with-
out knowing any optimal output nor any way of computing one. Assume that
the function eval_pol is defined so that the call eval pol(Pol,Z) evaluates the
polynomial Pol with the integer Z substituted for the variable in the polynomial,
e.g. eval pol(X3+ X? +1,3) = 37. Note that eval_pol is easier to define than
a function that simplifies polynomials. Grades is a singleton list [Grade] such
that Grade is the sum of the lengths of all correct output polynomials.

If M and N are the number of terms in Xs and Ys respectively, oe checks
that eval pol(Xs,X) = eval pol(Ys,X) for all integers Xin 1,..., M+ N. This
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fun eval_pol(Pol,Z) =
case Pol of
nil => 0
| (Coeff,Exponent)::Pol =>
Coeff*int_pow(Z,Exponent) + eval_pol(Pol,Z) handle _ => 0

fun oe(Execute_result : (input_type * output_type exec_result ) list)
cwd list * real list =
let
val Zs = map( fn(Xs,R) =>
case R of
? => (dont_know,0)
| too_many_calls => (wrong,0)
| some Ys =>
let val M = length Xs val N = length Ys in
if (N<=1 orelse N<M) andalso
forall(fn X => eval_pol(Xs,X)=eval_pol(Ys,X),
fromto(1,M+N))
then
(correct,ll)
else
(wrong,0)
end,
Execute_result)
in
( map(#1,Zs), [real(int_sum(map(#2,Zs)))] )
end

Figure 3.1: The output evaluation function for polynomial simplification.
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check suffices to ensure that Xs and Ys are equivalent since Xs@Ys cannot contain
terms of more than M+ N different degrees. A polynomial is represented as a
list of (coefficient,exponent) pairs. The complete definition of oe, including
the auxiliary eval_pol definition, is shown in Figure 3.1. This definition looks
complicated in comparison with a polynomial simplification program. However,
the structure of oe-definitions is basically the same for all specifications, even if
much more complicated programs are specified. O

3.5 The Program Evaluation Functions

ADATE uses the sample inputs 1, ..., Ixr and the output evaluation function
oe to compute three program evaluation functions pe;, pes and pes that supple-
ment the program rating provided by oe with measures of syntactic complexity,
time complexity, error locality and lineage.

3.5.1 Syntactic Complexity

We define the syntactic complexity of a program P as —log, Pr(§é = P) bits,
where the random variable ¢ is defined on a program space ®. Let ¢(P) =
Pr(é = P) be a predetermined distribution on ®. Intuitively, the distribution ¢
should be such that ¢(P) > (@) holds for all programs P and ) in ® such that
P is “ssimpler” than ). In order to ensure that ¢ is a probability distribution,
we should also have 0 < ¢(P) < 1for all P in ® and ) 5 4 ¢(P) = 1.

Here are three ways of choosing ®.

e ®; = The set of all lexically correct programs.
e &5 = The set of all syntactically correct programs.
e &3 = The set of all type correct programs.

It is assumed that &3 C &5 C ®;. The traditional choice when performing
data compression is ® = ®,. For example, using the so-called universal prior dis-
tribution for positive integers [Rissanen 82], we could define ¢(P) = K2~log™n,
where the positive integer n is the number of lexemes in P and K is a nor-
malizing constant such that 3", 4 ¢(P) = 1. The function log™ is defined
as

log" n = logn +loglogn +logloglogn + . ..

where the sum only includes the positive terms.

When performing data compression, Robert Cameron [Cameron 88] showed
that ® = &5 gives better compression than ® = ®;. Since the choice ¢ = P3
gives unnecessarily complicated and slow computation of syntactic complexity,
we will choose & = ®,.

Cameron’s encoding is lossless, which means that an encoded program can
be decoded so that an exact copy of the original program is obtained. The
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syntactic complexity estimate used by ADATE 1s based on lossy encoding. In
particular, the exact choice of variable names is neglected. For example, the
expressions

case Xs of Al::As1 => RHS]
and
case Xs of B1l::Bsl => RHS,

are viewed as having the same encoding if the substitution { 41=B1, As1=Bsi1 }
unifies RHS; and RHS,.

The complexity estimation algorithm partitions the nodes in expression trees
into four classes namely let-nodes, case-nodes, other internal nodes and leaves.
The complexity of an expression is computed by a preorder traversal of the
expression tree. Let Pr. be the probability that the next node to be encoded
during such a traversal belongs to class ¢. Usually, ADATE employs the ad
hoc choices Pr., = 0.025, Pr.... = 0.15 Prigema = 0.325 and Pr... = 0.5.
High confidence estimation of these probabilities would require a rather large
sample of typical inferred programs. Since it was difficult to find such a sample
before ADATE was implemented, the ad hoc probabilities above were chosen.
Experimentally, these probabilities have led to adequate syntactic complexity
based differentiation of programs. Therefore, there is no compelling reason to
change them in accordance with the sample of synthesized programs that now
are available. Additionally, this sample is still too small to allow statistically
justifiable estimation of universal probabilities since estimation using a small
sample will yield estimates that are too tailored to the sample.

The scope rules of ML determine the set of symbols that may occur in a
node. It is assumed that all symbols in the set have the same probability of
occurring in the node. This means that —log,(1/N)= log, N bits are required
to encode a symbol if the symbol set has cardinality N. Let

Ninternas = The number of different symbols that may occur in an internal node.
Nieaves = The number of different symbols that may occur in a leaf.
s(E) = The syntactic complexity of an expression E.
In principle, syntactic complexity is defined as follows.
S(E) = —logy Pricas + 1083 Niaee. if F is a leaf.
S((E1, ..., En)) = — 1085 Phiscernn 4 1085 Ninternais + D _i=y S(Ei).
s(h E) = —10gy Prierna + 1083 Ninternars + S(F).
s(case E of Matchy => Ey | ... | Match, => E,)= —log, Pr...+ s(F)+
>z s(Ei).
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s(let fun g(Vy,Va,...,V,) = E; in By end)= —log, Pri.+ s(E1)+ s(Ea).

Note that neither the number of components in a tuple nor the number of
rules in a case-expression are encoded. It is assumed that these numbers can
be determined using type information or, alternatively, that their contribution
to the syntactic complexity is negligible.

The actual definition of syntactic complexity is somewhat more complicated
than the one above. The expression F that is analyzed in a case-expression

case F of Maichy => Ey | ... | Match, => FE,

very rarely contains let-expressions or other case-expressions when n is two
or more. Therefore, we have chosen Pry., = 0.0025 and Pr... = 0.015 inside
case-analyzed expressions when n is two or more.

The exact definition of syntactic complexity is shown in Appendix A.

3.5.2 Time Complexity

A natural measure of time complexity i1s the total execution time required to
compute f(I1),..., f(Ixr). In practice, it is difficult to measure this time with
sufficient accuracy since few computers have timers with sufficiently high reso-
lution, e.g. 1 microsecond or less.

Another time complexity measure is the total number of function calls that
are made during the computation of f(I1),..., f(Ixr). This measure is also
somewhat 1mpractical since it would require much time to increase a counter
each time a function is called. Therefore, ADATE only keeps track of the number
of calls to the function f and the let-functions that are defined in a program
P. Thus, the time complexity measure for P is the total number of such calls.

Since an inferred program P may have very bad time complexity, the number
of calls to functions defined in P needs to be limited. The current version of
ADATE uses a call count limit of 200 when computing f(I;). Thus, the upper
limit on the total number of calls is 200#7. The fixed 200 limit is somewhat
arbitrary and may in the future need to be replaced by an iterative-deepening
scheme.

3.5.3 Error Locality

We will first define the problem of computing error locality, then show that this
problem is NP-hard and finally present a simple approximation algorithm that
works well in practice.

For a given program P, let

N. = The number of correct outputs.

Ny = The number of wrong outputs.
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Ng = The number of don’t-know outputs.

Naturally, the sum N. 4+ N, + Ng equals the number #I of sample inputs.
By replacing subexpressions of P with ?-constants, we can decrease N, and
increase Ng. Usually, such replacements also decrease N.. The error locality
measure only considers replacements that give N, = 0. Such replacements
are assumed to eliminate all errors in the program P. Out of all replacements
that give N, = 0, the best replacements are the ones that maximize N.. Let
N! be the maximum. Intuitively, the difference #I — N/ indicates how much
transformation work that remains to be done in order to obtain a completely
correct program. Therefore, this difference should be as small as possible.

Example. Consider a list sorting program sort. Assume that the sample
inputs are I; = [1, I, = [10], I3 = [10,20,30,40]1, I, = [50,20,60,20,40]
and Is = [10,20,50,40]. Both of the following two programs have N, = 3 and
Ny = 2.

P, = fun sort Xs Xs

Py = fun sort Xs =
case Xs of
nil => Xs
| X1::Xs1 =>
case Xs1 of
nil => Xs
| X2::X82 => Xs

However, P is better than P; since P; has N! = 2 whereas P; has N, = (0. O.

Since the semantics of the ?-constant is such that A(?) = ? for all functions
h, it is only necessary to consider replacing right hand sides of case-rules and
fun-definitions with ?-constants. Let

Correct = The set of all correct outputs.
Locations = The set of all right hand sides of case-rules and fun-definitions.
Wrong = The set of all wrong outputs.

Assume that Correct, Locations and Wrong are the three node partitions in a
tripartite graph. There is an edge between an output R and a location RHAS if
and only if R changes to ? when RHS is replaced by a ?.

Example. The program P, above contains b right hand sides, namely

RHS] = case Xs of nil => Xs | X1::Xs1 =>
case Xs1 of nil => Xs | X2::Xs2 => Xs.

RHS; = Xs (position [11).

RHS3; = case Xs1 of nil => Xs | X2::Xs2 => Xs.
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Ry RHS; Ry
RHS

Ry RHS;
RHS,

R; RHS; Rs

Figure 3.2: The tripartite graph for Ps.

RHS4 = Xs (position [2,1]).

RHS5; = Xs (position [2,2]).

Assume that output R; corresponds to input ;. The three node partitions are
Correct = {Ry, Ro, Rs}.

Locations = { RHSy, RHSy, RHS3, RHSs, RHSs }.

Wrong = {Ra4, R5}.

The tripartite graph is shown in Figure 3.2. N/ can be computed by finding
a subset of Locations that 1s connected to all nodes in Wrong and to a minimum
number of nodes in Correct. N[ is then N, minus this minimum number. In
the sort example, such a subset is {RHS5} which gives

N'=N,—#{Rs} =3-1=2.

We will now show that the problem of computing N/ unfortunately is NP-
hard. Using the style of [Garey and Johnson 79], we state the decision version
of this problem as follows.
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INSTANCE: An undirected tripartite graph G = (V, ) and a positive inte-
ger K. Let Correct, Locations and Wrong be the three node partitions.
QUESTION: Is there a subset L of Locations such that

(Vw € Wrong.3l € L{w, [} € EYA|{c:c € CorrectAIl € L{c,l} € E}| < K?

We prove that this problem is NP-complete by a reduction from the NP-
complete MINIMUM COVER problem in [Garey and Johnson 79]. The MIN-
IMUM COVER problem is

INSTANCE: A collection C' of subsets of a finite set S and a positive integer
K.

QUESTION: Is there a collection C’ such that

C'COCA|IC|<KAVYseSTe e Clsea'?

Given an instance of MINIMUM COVER, the corresponding instance of our
problem is constructed as follows. Choose Locations so that there is a bijection
between Locations and C i.e., each location [ corresponds to one and only one
subset ¢ € C'. Choose Correct so that there is a bijection between Correct and
Locations. The edges between Correct and Locations are given by this bijection.
Choose Wrong so that there is a bijection between S and Wrong. There 1s an
edge between w € Wrong and [ € Locations if and only if the element s € S that
corresponds to w is in the subset o € (' that corresponds to [. It is now easy to
see that the question for MINIMUM COVER, has the answer ‘yes’ if and only
if the question for our problem has the answer ‘yes’.

Ideally, the computation of the error locality measure should take only a
small fraction of the time required to compute {f(I1),..., f(I#I)}. Since f is
often reasonably efficient, e.g. linear in the size of its input, we want to compute
error locality in linear time. Most likely, there is no worst-case polynomial time
algorithm for computing error locality since this problem is NP-hard. The pro-
gram evaluation functions employ many measures other than the error locality
measure, which only occasionally is needed in order to differentiate programs.
Therefore, it is not necessary to choose an algorithm that always gives the “best”
error locality measure.

All the errors in a synthesized program are often located in a single RHS
that does not contain any other RHS. For such a program, the best error locality
measure is obtained by replacing this single RHS with a ?-constant. Therefore,
ADATE uses an algorithm that approximates N/ by

Ne — [{e:c € CorrectA {e,l} € EY|,

where [ is chosen to a member of Locations such that the approximation is
maximized and such that [ is connected to all nodes in Wrong. In the sort
example, we obviously have [ = RHS5. This algorithm is very efficient and gives
sufficiently good approximations sufficiently often for all inferences that have
been run.
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? Value returned by pe;

1|—-N., :: Grades @ N,, :: —N/ :: S :: Lineage @ [T]
2| =N, :: Grades @ Ny, :: —N! :: T :: Lineage @ [S]
3| Ny :: =N, :: Grades @ —N! :: S :: [Lineage @ [T]

Table 3.1: The definitions of pe;, pes and pes.

3.5.4 Lineage

The lineage measure for a program P considers the parent, say P, of P. Intu-
itively, a program with a good parent is preferable to a program with a poor
parent. Let

. = The number of correct outputs produced by P.

=

w = The number of wrong outputs produced by P.

=

Grades = The grades produced by the output evaluation oe when applied to
the outputs produced by P.

The lineage measure Lineage is simply defined as
—N,::Grades @ [N,].

A typical inference proceeds by adding one case-expression at a time, which
means that cc(P) =1+ cc(P), where the function cc counts the number of case-
expressions. If an identity transformation is employed to produce P from P,
we will get P = P, N. = N., N, = N,, and Grades =Grades. Therefore, an
identity transformation (or one that makes a small trivial change) will make the
lineage measure meaningless. This is avoided by choosing N,., N,, and Grades
to the N., N, and Grades values of the initial program if cc(P) > ce(P). Thus,
the lineage measure gives preference to “genealogies” with strictly increasing cc
values.

3.5.5 The Definitions of pe;, pe; and pes
Let

S = The syntactic complexity.
T' = The total call count.

The three program evaluation functions are defined in table 3.1. A program
P is considered to be better than a program () according to pe; if and only if
pe;(P) comes before pe;(Q) in the lexicographic ordering of lists. For exam-
ple, the program evaluation function pe; prefers correctness to small syntactic
complexity which in turn is preferred to low call count.

39



Chapter 4

The Atomic
Transformations

We will first explain the concepts atomic transformations, compound transfor-
mations and expression synthesis.

A compound transformation is the composition of a sequence of atomic trans-
formations. The program evaluation functions pe;, pes and pes, which are used
to determine whether a program is to be kept or discarded, are only applied to
programs resulting from compound transformations. Assume that program P; 1
is produced from program F; with an atomic transformation ¢;. A compound
transformation that produces Py;41 from P will be written ¢ .. . 24;.

The initial program only consists of a single ? and thus gives a don’t-know
output for all inputs. The final program is evolved from the initial program
through a sequence of compound transformations.

A simple form of expression synthesis is enumerative and exhaustive pro-
duction of type correct expressions containing a fixed set of function symbols.
Expressions are synthesized in order of increasing size. The size of an expression
is the number of nodes in the tree representation of the expression. The most
frequently used atomic transformation, replacement, employs expression syn-
thesis. Since the requirements for expression synthesis are determined by this
and other atomic transformations, we will wait with a more detailed discussion
of expression synthesis until all atomic transformations have been presented.
Expression synthesis i1s so important and complicated that the entire Chapter 5
is dedicated to it. Chapter 6 explains how to build compound transformations
from atomic transformations.

Section 4.1 gives schemas for each of the atomic transformations which are

R. Replacement.

REQ. Replacement that does not make the program “worse”.
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ABSTR. Abstraction.
CASE-DIST. case-distribution.
EMB. Embedding.

Since REQ is a special case of R, it may seem to be superfluous. However,
REQ transformations are so common that an enormous reduction in synthesis
time usually is achieved by identifying them as special cases. The most difficult
atomic transformation to design is EMB. Our choices of schemas and algorithms
for EMB are open in the respect that they may be substantially changed in the
future.

Section 4.2 deals with algorithms that perform atomic transformations. This
section 1s more mathematical and technical than Section 4.1.

4.1 Atomic Transformation Schemas

The schemas are presented in a form that relies on higher order matching, which
is a special case of higher order unification. The difference between matching
and unification is as follows. When unifying two terms 77 and 75, both 77 and
T5 may contain variables. When matching 77 against 75, only 75 may contain
variables.

Example. Assume

Ty =a( b(gld),e), ¢ )

and

Ty = H(Ey, Es).

Matching 77 against Ty yields 12 unifiers if we assume that each argument of
H must occur in the A-body of H. If the order of the arguments of H does not
matter, there are only 6 non-equivalent unifiers, namely

1. {H=XX,Y)a(X,Y), F1 =b(g(d),e), B2=c }

2. { H=MX,Y)a((X,Y),c), B =g(d), By = e }
3. [ H=XX,Y)a(®(X,e),Y) E, = g(d), By = c }
4. { H=XX,Y)a(b(gX),Y),c) By =d Fy=e}
5. { H=AX,Y).a(b(g(X),e),Y) By =d, By =c }

6. { H=AX,Y).a(b(g(d),X),Y), E1=e, Fy=c }

A schema has the form

LHS — RHS,

where a subexpression of the program to be transformed is matched against

LHS.
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4.1.1 Replacement

Replacement is the only transformation that may change the semantics of a
program. The general replacement schema is

H(El,Ez, .. ,En) e G(El,Ez, .. .,En),

where (G is an expression that is synthesized as a part of a replacement trans-
formation. The special case n = 0 simply means that an entire subexpression of
the program is replaced with a newly synthesized expression. The special case
n =1 and H = AX.X may be viewed as an insertion of a newly synthesized
expression. These two special cases are the most common forms of replacement.
Here is an example that illustrates the special case n = 0.

Example. Consider the inference of a list sorting program. Assume that
the sample inputs are
L=1
I, = [10]
I3 = [10,20,30,40]
I, = [50,20,60,20,40]
Is = [10,20,50,40]

In one out of many possible inferences of sort, each compound transformation
except the last consists of a single replacement with n = 0. For each compound
transformation, we will give the position Pos of H, the synthesized expression
G, the resulting program and its N. and N, values. Program number 1 is the
initial program.

1. fun sort Xs = 7

N, =0N, =0
2. Pos = []
(G = case Xs of nil => Xs | X1::Xs1 => 7
fun sort Xs = case Xs of nil => Xs | X1::Xs1 => ?
N,=1N, =0
3. Pos = [2]
(G = case Xs1 of nil => Xs | X2::Xs2 => ?
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fun sort Xs =
case Xs of
nil => Xs
| X1::Xs1 =>
case Xs1 of
nil => Xs
| X2::X82 => 7

N.=2N, =0

4. Pos = [2,2]
G = case X2<X1 of true => ? | false => Xs

fun sort Xs =
case Xs of

nil => Xs
| X1::Xs1 =>
case Xs1 of
nil => Xs
| X2::X82 =>
case X2<X1 of
true => 7

| false => Xs

N.=3 N, =1

5. Pos = [2,0]
G = sort Xs1

fun sort Xs =
case Xs of

nil => Xs
| X1::Xs1 =>
case sort Xsl1l of
nil => Xs
| X2::X82 =>
case X2<X1 of
true => 7

| false => Xs

N, =3 N, =0
The final compound transformation is shown in Subsection 4.1.2. O
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In order to discriminate between replacements, ADATE employs a special
program evaluation function peppq which returns —N,. :: Grades @ [N,]. A
replacement that does not increase the pegppq value is denoted by REQ whereas
an ordinary replacement is denoted by R. If a compound transformation con-
tains several replacements, ADATE usually requires that one or more of the
replacements are REQ’s. REQ’s are found by trying R’s and selecting the ones
that do not increase the pegpgq value. Normally, only a small fraction of the R’s
meet this requirement. The REQ’s are sorted according to the pegrpq value to
give preference to the best REQ’s.

4.1.2 Abstraction

An abstraction introduces a let-function with a definition based on a subex-
pression E of the program to be transformed. The transformation schema is

H(El,Ez,...,En)—>
let fun g(Vi,Va,..., V) = H(V,Va,..., V) in g(Fy, By, ..., Ey) end,

where g is a new function.

Example. The last compound transformation in the inference of sort has
the form ABSTR REQ REQ R. Consider the last sort program given above.
The ABSTR has n =1, 'y = sort Xs1 and H(FEy) =

case sort Xs1 of nil => Xs
| X2::X82 => case X2<X1 of true => ? | false => Xs

Thus, the program produced by the ABSTR is

fun sort Xs =
case Xs of nil => Xs
| X1::Xs1 =>
let fun g V1 =
case V1 of nil => Xs
| X2::X82 => case X2<X1 of true => ? | false => Xs
in
g(sort Xsi)
end

The first REQ replaces the second occurrence of Xs. The second REQ re-
places the third occurrence of Xs. Assume that these occurrences for pedagogical
reasons are labeled Xs’ and Xs’’. The program above is then written as
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fun sort Xs =
case Xs of nil => Xs
| X1::Xs1 =>
let fun g V1 =
case V1 of nil => Xs’
| X2::X82 => case X2<X1 of true => 7 | false => Xs’’
in
g(sort Xsi)
end

The first REQ replaces Xs’ with the synthesized expression X1::nil. This
preserves equivalence since Xs’ always is a singleton. The second REQ replaces
Xs’? with the synthesized expression X1::V1. Equivalence is preserved since
Xs?’ always 1s sorted. The R then finally replaces the ? with the synthesized
expression X2::g Xs2 which yields a correct sorting program i.e.,

fun sort Xs =
case Xs of nil => Xs
| X1::Xs1 =>
let fun g V1 =
case V1 of nil => X1::nil
| X2::Xs2 => case X2<X1 of true => X2::g Xs2 | false => X1::V1
in
g(sort Xsi)
end

O

4.1.3 case-distribution
This transformation is based on the following schema.

H( case F of Matchy => Fy | Matchs => F5 | ... | Match, => E, ) «—
case E of Matchy => H(Fy) | Matchy => H(E2) | ... | Match, => H(E,).

Note that the schema may be used both left-to-right and right-to-left. If it
is used left to right and some E; is ?, an expression H(?) is produced. Such an
expression is immediately replaced by ?.

Example. Consider the inference of a function bst_del that deletes an
element from a binary search tree (BST). Binary trees are represented with the
the following data type

datatype ’a bin_tree =
bt_nil | bt_cons of ’a * ’a bin_tree * ’a bin_tree

45



We will exemplify case-distribution using the final compound transformation in
one of many possible inferences of a correct bst_del program. This compound
transformation, which has the form CASE-DIST ABSTR REQ R, starts with

the following program.

fun bst_del(I as (X,Xs)) =
case Xs of
bt_nil => Xs
| bt_cons(RoXs,LeXs,RiXs) =>
case RoXs<X of
true => bt_cons(RoXs,LeXs,bst_del(X,RiXs))
| false =>
case X<RoXs of
true => bt_cons(RoXs,bst_del(X,LeXs),RiXs)
| false =>
case LeXs of
bt_nil => RiXs
| bt_cons(RoLeXs,LeLeXs,RilLeXs) =>
case RiXs of
bt_nil => LeXs
| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>
bt_cons(
case LeRiXs of
bt_nil => RoRiXs
| bt_cons(RoLeRiXs,LeLeRiXs,RiLeRiXs) => 7,
LeXs,
RiRiXs )

The CASE-DIST moves the last occurrence of case outwards, which yields
the program

fun bst_del(I as (X,Xs)) =
case Xs of
bt_nil => Xs
| bt_cons(RoXs,LeXs,RiXs) =>
case RoXs<X of
true => bt_cons(RoXs,LeXs,bst_del(X,RiXs))
| false =>
case X<RoXs of
true => bt_cons(RoXs,bst_del(X,LeXs),RiXs)
| false =>
case LeXs of
bt_nil => RiXs
| bt_cons(RoLeXs,LeLeXs,RilLeXs) =>
case RiXs of
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bt_nil => LeXs
| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>
case LeRiXs of
bt_nil => bt_cons(RoRiXs,LeXs,RiRiXs)
| bt_cons(RoLeRiXs,LelLeRiXs,RiLeRiXs) => ?

The ABSTR has n = 2 and H(FE1, E2) equal to the last case-expression.
The following program is produced by the ABSTR.

fun bst_del(I as (X,Xs)) =

case RiXs of

bt_nil => LeXs
| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>
let fun g(Ys,Y) =

case Ys of

bt_nil => bt_cons(Y,LeXs,RiRiXs)

| bt_cons(RoLeRiXs,LeLeRiXs,RilLeRiXs) => ?
in

g(LeRiXs,RoRiXs)
end

The REQ changes the last occurrence of RiRiXs to bst_del(Y,RiXs), which
gives the program

fun bst_del(I as (X,Xs)) =

case RiXs of
bt_nil => LeXs
| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>
let fun g(Ys,Y) =
case Ys of
bt_nil => bt_cons(Y,LeXs,bst_del(Y,RiXs))
| bt_cons(RoLeRiXs,LeLeRiXs,RilLeRiXs) => ?
in
g(LeRiXs,RoRiXs)
end

Finally, the R produces a correct bst_del program by replacing the ? with
g(LeLeRiXs,RoLeRiXs).

Note that the retention of “old” variable names in H(FE7, F3) means that the
variables that designate the root and the left and the right subtrees of Ys have
misleading names i.e., RoLeRiXs, LeLeRiXs and RiLeRiXs instead of RoYs, LeY¥s
and Ri¥s. O
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4.1.4 Embedding

An embedding generalizes the type of a let-function. Two examples of embed-
dings are to add an argument to the function or to change an argument of type
’a to one of type *a list. Assume that the let-function to be embedded has
the definition

let fun g(Vi,Va,...,V,) = RHS in Fzp end.

In its most general form, an embedding inserts a synthesized type expression
into the type expression for g. When the type of g changes, the types of functions
occurring in RHS and Ezp may need to change too. Changing these types
may make it necessary to change other types and so on. Since this “chain
reaction” makes it a bit difficult to choose which types to change, a simplified
form of embedding that avoids chain reactions is described below. However,
this design is not as complete and definitive as the designs of the other atomic
transformations.

The data type definitions provided by the specification writer are used for
embedding. The allowed data type definitions are a subset of ML data type
definitions and have the following form.

datatype ("ai,’as, ... agq) Type_constructor =
C1 of Tl,l * lez * .. 'Tl,#Tl |
Cy of T2,1 * szz * .. .TZV#T2 |

Cyc of Tyca*Tycpo .. Tgc gTyc

Each 'a; is a type variable, each C; is a constructor and each 7} ; is the type
of argument number & of constructor Cj.

A given datatype-definition may be used to embed a type T only if T
matches some T; ;. The types T" and T} ; are considered to match only if a
function with domain type 7; ; may be applied to an object of type T" according
to the typing rules of ML.

Example. The datatype-definition for lists is

datatype ’a list = nil | :: of ’a * ’a list

Since 75 is the type variable ’a, which matches any type, this definition
may be used to embed any type. For example, embedding the type b bin_tree
yields the type (°b bin_tree) list. O

Tuple types are predefined and given special treatment. A tuple type 71 * ... % T,
can be embedded in two ways.

1. The new type is T} * ...* T, *'a, where 'a is a fresh type variable.
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2. An index ¢ is chosen and the type 7; is embedded using a datatype-
definition as described above.

The embedding of a proper subtree of some T; is not allowed. For example,
using the type constructor bin_tree the tuple type int list # bool may be
embedded to (int 1list) bin_tree * bool but notto (int bin_tree) list #* bool.
This restriction simplifies the translation between an expression of the old type
and the corresponding expression of the new type as described below.

The only tuple types that may be embedded are the domain and the range
of g. Note that all embeddings given below preserve semantics and completely
avoid chain reactions. The following schemas use a special constant, ?_emb, to
denote an expression to be synthesized as part of an embedding transformation.

Embedding the domain of g. Assume that the domain type of gis 71 * ... * 7T,
and that the datatype-definition for lists is to be used. The two ways of em-
bedding tuple types given above are now used as follows.

1. Ty % ... Ty to Ty + ...+ T, « a. Each call of the form g(Fy,..., E,) is
changed to g(FEy,..., Fp, ?_emb)

2. . .« *x. . o xT, tody *...xT; 1ist * ... 1},

(a) Eachcallg(Ey, ..., B, ..., By)ischanged tog(Ey, ..., E;::7_emb, ..., Ey,).

(b) RHSisreplaced by case V; of nil => ?_emb | X::Xs => ( RHS
with X substituted for V; ), where X and Xs are fresh variables.

Embedding the range of g. Assume that the range type of gis 71 % ... % T},
and that the datatype-definition for lists is to be used. The two ways of em-
bedding tuple types given above are now used as follows.

1. Ty« «T, toTy ... .+xT), ' a.

(a) Each call g(...) is changed to
case g(...) of X as (Xy,..., Xy, Xpnt1) => (X1,..., Xp).

(b) The RHS, which in this case is assumed to have the form (Fy, ..., Ey,),
is changed to (E1, ..., By, ?7_emb). If n = 1 and E is a case-expression,
case-distribution is used to move ?_emb downwards until no ?_emb
has a case-expression as sibling. This is illustrated by the del min
example below.

2. . .« *x. . o xT, tody *...xT; 1ist * ... 1},

(a) If n =1, each call g(...) is changed to
case g(...) of nil => 7_emb | X::Xs => X.
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If n > 2, each call g(...) i1s changed to
case g(...) of X as (Xy1,...,X;,..., X,) =>

case X; of nil => 7_emb | Y::¥s => (Xy,...,X;—1,Y, Xiy1,. ..

(b) The RHS, which in this case is assumed to have the form
(Biy.o Fyoo By,

is changed to
(Ey,...,E;::7emb, ... Fy).

If F; is a case-expression, case-distribution is invoked to move the
?_emb downwards until no ?_emb has a case-expression as sibling.

The datatype-definition for lists was used above in order to make the pre-
sentation less abstract. In case 2.(a) for embedding of the domain and in case
2.(b) for embedding of the range, the constructor :: was used to translate
an expression E; of type T; to an expression of type 7; list. In general, the
datatype-definition may contain several types T} that match 7;. For each
such Tj , E; may be translated to C;(?_emb, ..., E;, ..., 7_emb) where Ej is ar-
gument number k. Tt is of course also straightforward to generalize case-analysis
to datatype-definitions other than the one for lists. The same (j, k) must be
used for all translations in the same embedding. This restriction ensures that
the system knows which case-alternative to use for translation in case 2.(b) for
embedding of the domain and in case 2.(a) for embedding of the range.

Example. Consider the inference of a program delmin : int list ->
int list that deletes one occurrence of the smallest integer in a list. Since an
empty list does not have a smallest element, it is natural for del min nil to
evaluate to ?. If ADATE was given a function min that finds the smallest element
in a list or a function delete_one that deletes one occurrence of an element
from a list, the inference would be trivial. An important point is that ADATE
is given neither of these functions, which means that it is required to invent
corresponding “auxiliary functionality”. The sample inputs are Iy = [10],
I, = [1,2,3,4,5,6,7,8,9,10] and I3 = [5,9,45,46,28,3,11,10,30,23].
Here is one of many possible inferences of del min. The initial program is
fun delmin Xs = 7.

1. The first compound transformation is a single R which gives

fun del_min Xs =
case Xs of nil => 7
| X1::Xs1 =>
case Xs1l of nil => nil | X2::Xs2 => ?
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2. The second compound transformation has the form ABSTR EMB REQ
R. The ABSTR gives

fun del_min Xs
let fun g Vs
case Ys of nil => 7

| X1::Xs1 =>

case Xs1 of nil => nil | X2::Xs2 => 7
in

g Xs
end

The range of g is then embedded so that the type of g is changed from
int list -> int list to int list -> int list * int. Application
of schema 1 for embedding of the range and the accompanying case-
distribution gives

fun del_min Xs =
let fun g Vs
case Ys of nil => 7

| X1::Xs1 =>

case Xs1 of nil => (nil,?_emb) | X2::Xs2 => ?
in

case g Xs of V as (Zs,Z) => Zs
end

Note that the case-distribution changes each of the two occurrences of
? to (7,7_emb) which in turn immediately is replaced by ?. The type
of each of the two occurrences of ? naturally changes from int list
to int list * int. The EMB is then finished by replacing the single
occurrence of ?_emb with X1. Note that this program still has N, = 1 and
Ny = 0. The REQ yields a program with N, = 2 and N,, = 0, namely

fun del_min Xs
let fun g Vs
case Ys of nil => 7
| X1::Xs1 =>
case Xs1 of nil => (nil,X1) | X2::Xs2 =>
case g Xs1 of V as (Ws,W) =>
case X1<W of true => (Xs1,X1) | false => ?
in
case g Xs of V as (Zs,Z) => Zs
end

51



Note that the REQ is facilitated by input I>. The R then produces the
final program by replacing the last ? with (X1::Ws,W). The final program
has N. =3 and N,, = 0.

This inference is unusually short since it only consists of two compound
transformations. O

4.2 Atomic Transformation Algorithms

The transformation algorithms operate with two concepts, work and combina-
torial cost. The work s the approximate number of programs to be produced.
The cost is a measure of transformation complexity.

The cost of a transformation is the reciprocal probability of the transforma-
tion as determined by some prior probability distribution. Intuitively, this prior
distribution specifies the probability that a transformation produces a “good”
program. Assume that the program to be transformed is a declaration D and
that the transformation of D produces declarations Dq, D3, ..., D,. The cost-
probability relationship is

Pr(D;) - cost(D;) = 1,

where each D; has probability Pr(D;) and cost cost(D;).

A proper probability distribution on the set { Dy, Ds, ..., D, } must satisfy
0 < Pr(D;) < 1and ., Pr(D;) = 1. We assume that each D; has posi-
tive probability, which means that each cost is well-defined. The requirement
Yor_ i 1/cost(D;) = 1 is not only motivated by the desire to have a proper prob-
ability distribution, but also by the need to ensure that the costs of different
types of atomic transformations can be directly compared. For example, an
ABSTR transformation with a cost of 200 should be as “complex” as a REQ
transformation with a cost of 200. We assume that probability is inversely pro-
portional to transformation complexity. When an algorithm needs to make m
sequential choices, i.e., choose a path of length m in a decision tree, we assume
that the total probability is the product of the probabilities of each choice.

Each type of transformation 7" in { R, REQ, ABSTR, CASE_DIST, EMB }
could be implemented in a purely functional language using a function that re-
turns a list of produced programs. Since very many programs may be produced,
such lists may require unreasonably much space. Therefore, we have chosen an
implementation style that is not purely functional but still rather elegant. Each
type of transformation 7" is implemented by a function with a declaration of the
basic form

fun 7T trfs( D : dec, Cost_limit : real,
emit : dec * atomic_trf record list * real -> unit
) : unit = ...
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datatype ty_exp =
ty_var_exp of ty_var
| ty_con_exp of symbol * ty_exp list

type ty_schema = { schematic_vars : ty_var list, ty_exp : ty_exp
type ty_env = (symbol * ty_schema) list

type exp = (ty_exp option,ty_schema option)e
type dec = (ty_exp option,ty_schema option)d

Figure 4.1: The ML representation of typed expressions and declarations.

The declaration D is to be transformed using a cost that does not exceed
Cost limit. The type dec is the type of typed declarations. Similarly, exp is
the type of typed expressions. These types are specializations of the polymor-
phic types (’a,’b)d and (’a,’b)e that were given in Figure 2.2. Following
[Peyton Jones 87], the type of the function introduced by a fun-declaration
is described using a type schema that contains so-called schematic variables.
Please see [Peyton Jones 87] for more details concerning the representation and
inference of types. Figure 4.1 shows the ML declarations of dec and exp. It
1s necessary to use the types dec and exp instead of the types (’a,’b)d and
(’a,’b)e since the atomic transformation algorithms need to know the types
of expressions and functions.

For each produced declaration D;, T _trfs makes the call emit (D;,Records,Cost).
Records is a list that describes the atomic transformation that transformed D
to D;. Cost is the cost of this transformation. Note that the emit function is
called only because of its side-effects, which are unacceptable in purely func-
tional programming.

An implementation of T'_trfs should normalize costs, i.e., ensure that

n

> (1/cost(Dy)) = 1.

i=1

The ADATE implementation uses a fixed, unnormalized cost measure, say cost’.
The normalized cost is determined by finding a normalizing factor K and choos-
ing cost(D;) =K -cost’(D;) foreach ¢in 1, ... n. For some types of atomic trans-
formations, the normalization problem is non-trivial. Here is a simple example
that exhibits the difficulty of computing the normalizing factor K.

Example. Assume that cost’(D;) =107, which gives cost(D;) =10K4. For a
given Cost_limit, we want to find n and K such that Cost 1imit =10Kn and
St (1/(10Kd)) =1ie., > i (1/i) =10K. A simple integration approximation
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gives Inn =10K. Thus, we need to solve the equation nlnn =Cost_limit for
n, which is difficult to do analytically. O.

In general, K cannot be computed analytically. Therefore, we sometimes
employ a simple numerical equation solver in order to find K. The difficulty of
computing K depends on the type of atomic transformation that is under con-
sideration. Normalization is further discussed in conjunction with each atomic
transformation algorithm that is presented below.

4.2.1 The R Transformation Algorithm

This algorithm needs to choose the number n of reused expressions £, ..., E,,
the synthesized expression (G, the position of H and the position of each FEj.
ADATE uses only the following three kinds of replacements.

1. n=0.
2.n=1and H =X X.
3. n=1and H # AX.X.
Therefore, the R transformation algorithm needs to make the following choices.
1. The kind of replacement, i.e., 1, 2 or 3.

2. The position of H. For replacement of kind 3, it is also necessary to choose
the position of F;.

3. The synthesized expression G.

We will now discuss the (unnormalized) costs associated with each of these
three choices.

1. We have chosen costs 1, 1 and 2 for replacements of kinds 1, 2 and 3
respectively. These cost choices have been found empirically, but we have
too limited transformation statistics to claim that they are not “ad hoc”.
Unfortunately, this holds for most prior choices of costs in ADATE.

2. Let Top_pos be the position of H, which is of course the same as the
position of H(FEy,..., FEy). The set of all possible values of Top_pos is
partitioned into the following three classes.

(a) H(EL,...,EBp)isa?.
(b) H(Fy,...,Ey) is the right hand side of a case-rule.

(¢) H(Fy,...,Ey) is some other expression.
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A Top_pos in class (a) is more likely to lead to a “good” replacement than
a Top_pos in class (b), which in turn is more likely than a Top_pos in class
(c). Therefore, we have chosen the costs 1, 5 and 25 for classes (a), (b)
and (c) respectively.

For replacements with n = 1, i.e.; replacements of kinds 2 or 3, we do
not allow F; to be a leaf in the expression tree. The reason is that a
leaf 1s considered too small to be worth reusing. Let Bottom_pos be the
position of £y. For replacements of kind 2, we obviously have Bottom_pos
= Top_pos. For replacements of kind 3, we require that Top_pos is a proper
prefix of Bottom_pos, i.e., a prefix such that Bottom_pos # Top_pos. Each
Bottom_pos is assigned the same cost.

3. Synthesized expressions are numbered in the order in which they are syn-
thesized, which is in order of increasing size. The cost of expression num-
ber 7 is 1.

Figure 4.2 shows the ML definition of a function R_trfs that implements
the R transformation. We will now explain this implementation. In addition to
the parameters D, Cost _1limit and emit, which were discussed above, R_trfs
has the parameters poses_ok and Min_once.

The function parameter poses_ok is used to impose additional constraints
on positions. For replacements with n = 0, we must have poses_ok( Top_pos,
nil ). If n = 1, we require poses_ok( Top_pos, [Bottom_pos] ).

The parameter Min_once specifies symbols that are required to occur at
least once in the synthesized expression (. For example, when having done an
ABSTR transformation, we require that the introduced let-function is used at
least once in some G. It is, after all, rather meaningless to have a let-function
that is used only once. Min_once is a list of lists of symbols

L 0S1,1,51,2,..d, [891,5%2,...0, ..., LSas1,S%s2,..1 1

For each ¢in 1,2,..., 45, at least one S5; ; in Min_once must occur in G.

Before starting to find R transformations of D, D is executed for all sample
inputs {I1,..., Ixr} that are given in the specification. A subexpression of D is
said to be activated if and only if it was evaluated during this execution. An R
transformation, that replaces a subexpression that i1s not activated, is pointless.
The call add not_activated_exps_dec D executes D for all sample inputs and
replaces each non-activated subexpression with a special Not_activated constant.

We first normalize the costs of positions. The normalized cost of an R trans-
formation is obtained by multiplying the normalized cost of the positions with
the normalized cost of . The local variable Interval width is the normaliza-
tion factor for position costs. This factor is computed by simulating a “dry”
run of the R transformation algorithm before doing the “real” run. The dry run
does not synthesize expressions. Its only purpose is to find the normalization
factor.
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fun R_trfs( D : dec, Cost_limit : real,
poses_ok : pos*pos list —> bool, Min_once : symbol list list,
emit : dec*atomic_trf_record list*real->unit ) : unit =
let
val D as {func,pat,exp,dec_info} = add_not_activated_exps_dec D
val Interval_width = ref 0.0
fun run(Dry_run:bool) =
let
fun replace’(Top_pos,Bottom_poses,Cost) =
if Dry_run then
Interval_width := !Interval_width + 1.0/Cost
else
let
val Cost = Cost * !Interval_width
fun emit’(New_D,G_cost,Not_activated_syms) =
emit( New_D, R{top_pos=Top_pos,bottom_poses=Bottom_poses,
not_activated_syms=Not_activated_syms}::nil,
Cost*G_cost )
in
Replace.replace( D, Top_pos, Bottom_poses,
Cost_limit/Cost, Min_once, emit’)
end
val All_poses = all_poses_in_preorder exp
val RO_top_poses =
filter( fn Top_pos => poses_ok(Top_pos,nil), All_poses )
in
(* Replacement of kind 0. *)
map( fn Top_pos =>
replace’ (Top_pos,nil,
real(length RO_top_poses)*top_pos_class_cost(exp,Top_pos) ),
RO_top_poses );
(* Code for replacements of kinds 1 and 2 has been omitted here. *)
end
in
run true;
run false; ()
end (* fun R_trfs *)

Figure 4.2: The ML implementation of R transformations.
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A run calls the function replace’ with all allowed Top_pos and Bottom_poses
values. If a real run is in progress, the function replace’ in turn calls the aux-
iliary function Replace.replace, which synthesizes G expressions and inserts
them into D. The implementation of this auxiliary function is discussed together
with expression synthesis in Chapter 5.

The local variable A11 _poses is the list of all positions in D, excluding posi-
tions of Not_activated constants.

Figure 4.2 contains code for replacement of kind 0 but not for kinds 1 and
2. The code for kind 1 is straightforward. The code for kind 2 i1s complicated
by scope checking, which is necessary since symbols that occur in F; may be
defined in H. Since H is removed, there may be “illegal” occurrences in F;
of symbols defined in H. The scope checking code is straightforward but long-
winded. Therefore, we have omitted it in Figure 4.2.

4.2.2 The REQ Transformation Algorithm

The most common form of REQ is a semantics preserving replacement of a small
subexpression with a small, synthesized expression. All replacements that are
employed when trying to find REQs have n = 0, 1.e., do not reuse any E;’s.
This is motivated by the empirical observation that other kinds of replacements
only rarely are useful REQs.

REQs are implemented by a function N_REQ_trfs which has parameters as
follows.

fun N_REQ_trfs( No_of_REQs : int, D : dec, Cost_limit : real,
REQ_cost_limit : real, top_pos_ok : pos->bool,
emit : dec*atomic_trf_record list*real->unit ) : unit = ...

The parameters D, Cost_1imit and emit have already been described.

Sometimes, ADATE needs to apply a sequence of REQs to a program. The
parameter No_of _REQs specifies how many REQs that are to be applied in se-
quence. For example, if No_of REQs = 2, the initial declaration D is transformed
to another declaration, say D?, by the first REQ. The second REQ then trans-
forms D’ to yet another declaration which is emitted.

The parameter REQ_cost 1limit says how complex replacements that are to
be employed in order to find REQs. Usually, REQ_cost_limit is many times
greater than Cost limit.

The function parameter top_pos_ok is such that top_pos_ok Top_pos holds
if and only if the expression at position Top_pos should be allowed to be replaced
when trying to find REQs.

We will now discuss the implementation of N_REQ_trfs. Assume that Enumeration
is a list of (position, expression) pairs [ (Pos;,F1), (Posy,BE2), ... 1 such
that the replacement of the expression at position Pos; with E; is a REQ. Also
assume that Enumeration is sorted in order of increasing peppq values, i.e.; with
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the best REQs first. There are two main problems to solve, namely
1. How to find an appropriate value of Enumeration.
2. How to use Enumeration to compute sequences of REQs.

We will first attack problem 1 and then problem 2.

Computing Enumeration
Problem 1 is solved using the following function.

fun find_REQs( D : dec, REQ_cost_limit : real,
top_pos_ok : pos -> bool,
emit : pos*exp*real list->unit ) : unit =...

This function makes the call
emit( Pos;, Fi, perpq-value; )

for all REQs found using a cost that does exceed REQ_cost_limit. The emitted
triples are inserted into a priority queue that is sorted according to the pegpq-
value with the size of E; appended. The size is appended in order to give
preference to small REQs if the pegpq-values are equal. Since the queue is
implemented as a heap, each insertion takes time O(log N), where N is the heap
cardinality. ADATE has a predetermined, fixed upper limit on heap cardinality.
This limit should be set as high as the amount of memory in the computer
allows. An upper limit of 1000 is actually more than enough for all examples
that have been run so far. When the upper limit i1s exceeded, the worst REQ
is deleted from the heap, which takes time O(log N). When the heap has been
constructed, it is very simple to convert it to Enumeration in time O(N log V).

The implementation of £ind REQs is somewhat more complicated. One com-
plication 1s that different REQs may yield identical programs. Naturally, only
one of these identical programs should be emitted. Here is an example with
REQs that produce identical programs.

Example. Assume that the following program is to be transformed.

fun £ X = gi1(g2(g3(X,a)))

Also assume that the (position,expression) pair ([0,0,1],b) describes a REQ),
1.e., that replacement of a with b does not increase pegppg. This REQ yields the
program

fun £ X = g1(g2(g3(X,b)))
There are three other REQs that produce the same program, namely
1. ([0,0],83(x,b)),
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2. ([0],g2(g3(x,b))) and
3. ([O,g1(g2(g3(x,b)))).

Each of these three REQs is more complex than ([0,0,1],b). O

ADATE finds the least complex REQ first in a class of REQs that produce
identical programs by trying positions in postorder.

A simple way to avoid the emission of identical programs is to store each
produced program in a hash table and immediately discard a new program if it
occurs 1n the table. This method requires too much space since each program
may require 10 or more times as much space as a (position,expression) pair
that specifies a REQ. Instead of storing programs in the hash table, we store
fingerprints of the right hand sides of programs. A fingerprint is an integer
computed by a hash function exp_ hash of type (’a,’b)e -> int.

Since ADATE uses this technique for other purposes as well, it is important
enough to be worth analyzing. Two expressions E£; and E; are assumed to
be identical if and only if exp hash(FE;) =exp hash(F>). This assumption is
invalid if and only if exp hash(F;) =exp_hash(Fs) and F; # F3. We will now
show that the probability that the assumption is invalid can be made negligibly
small. Let n be the cardinality of the range of exp hash. Using b bits to
represent fingerprints gives n = 2°. Assume that exp_hash has such a good
spread that every fingerprint is equally probable. It is then reasonable to assume
that two different expressions have the same fingerprint with probability 1/n.
For example, choosing b to 64 bits means that this probability is 27%* which is
negligibly small.

Another issue in the implementation of £ind REQ is how to distribute REQ_-
cost1limit on the allowed positions i.e.; the positions specified by the top_-
pos_ok predicate. We have chosen to use a five times higher cost limit for
positions of ?-constants than for other positions. Assume that n is the total
number of allowed positions and that ne of these positions specify ?-constants.
The requirement that costs are normalized then gives a cost limit of

HREQ_cost_limit
n+4n-

for positions of ?-constants and a cost limit of

REQ_cost_1limit
n+4n-

for other positions.

Using Enumeration to Compute Sequences of REQs

We are now ready to tackle problem 2, i.e., the construction of REQ sequences
and their normalized costs. Let
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(POSIaEl)a (POSZaEZ)a B (POSNo_of_REQsaENo_of_REQs)

be a REQ sequence i.e., a sequence of (position, expression) pairs such that
the perpq value does not increase when all expressions at positions Posy, ...,
PoSy,.sreq. have been replaced with the corresponding E;’s. Note that one or
more (Pos;,F;) replacements might increase pegpq even though all No_of REQs
replacements taken together do not increase peppg. As illustrated by the fol-
lowing example, the assumption that each replacement in a REQ sequence is a
REQ may lead to an enormous reduction of the number of combinations that
need to be checked for REQ-hood.

Example. For illustration purposes only, assume that Ng replacements are
to be tried for each element in a REQ sequence of length No_of REQs. If we had

to try all combinations of Ng replacements for each element, there would be

Ngo‘Of‘REQS replacement sequences that would need to be checked for REQ-

hood. Sometimes, about one of every one hundred replacements is a REQ),
which means that the probability Prggpq that a replacement is a REQ is about

102, The assumption that each replacement in a REQ sequence can be required

to be a REQ reduces the total number of combinations from N}go‘Of‘REQS to

(NRPTREQ)NO—Of-REQS. Note that we usually have No_of _REQs < 2 and that the
probability Prggq depends on the position, the program and the specification.
O

We assume that each (Pos;,E;) is a REQ. This means that a sequence
(Pos1,Eq1), (Posg,Ea),. .., (POSNo_of_REQs s ENo_of_REQs)

can be constructed by choosing each (Pos;, E;) from the list Enumeration.

There are some obvious constraints on positions. If Pos; is the next position
to be added to the sequence, the sequence must not contain any position Pos;
such that

1. Pos; is a prefix of Pos; or
2. Pos; comes before Pos; in preorder, which will be written Pos; </Pos;.

The second condition only allows one permutation of a sequence.

The last topic in the implementation of N REQ_trfs is the computation of the
normalized cost of a sequence. Let x(Pos;, E;) be the order number of (Pos;, E;)
in Enumeration. The unnormalized cost of the sequence

(Pos1,Eq1), (Posg,Ea),. .., (POSNo_of_REQs ’ENo_of_REQs)

1s chosen to
No_of_REQs

I (x(Posi, i)+ 4),

i=1
where A is a constant factor that is chosen to 3 in the current implementation.
The purpose of A is, for example, to say that a REQ with order number 1 is not
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5 times as cheap as a REQ with order number 5 but (5 + 3)/(1 + 3) =2 times
as cheap.
Normalization is somewhat complicated. We use the following abbreviations.

n = No_of REQs = The number of REQs to be applied in sequence.

N = The cardinality of Enumeration.

Using simplified constraints on positions, we will first quickly compute two ap-
proximations of the normalizing factor K and then choose the best of these as
the initial value of K in a more time consuming and precise iterative search that
employs the two position constraints given above.

The Two Approximations of K. The two approximations are computed
as follows. Let (z1,...,2,) be the order numbers of the REQs in a sequence of
length n. The position constraints are approximated by requiring #; < x;41 for
t=1,...,n—1. We want to find a normalizing factor K such that

1
> =K,
(21,20 )EDR(Cost_1imit/K) (@A) (on 4

where the summation domain 1s
Dp(e)={(z1,...,2n) | 1 <y <K Nyoy < g1, (k1 + A) - (mp + A) < e}

The sum is approximated using the n-dimensional integral

RIS [ R S

We will now relax constraints in D,(c) in order to simplify the integration.
Let 71 ...m, be a permutation of z;...xz,. Consider the integration domain
obtained by requiring m <2 < ... < 7, instead of 1 <zy < ... < z,. Due to
symmetry, the integral over this domain has the value I,,(¢). Since there are n!

different permutations of 1 ...x,, there are n! such domains that are disjoint.
If we remove the constraints #; <w2 < ... < &, from D,(c), we multiply the
integral by n!. Therefore, it is sufficient to consider integration over the domain

{(rr, .. xn) |1 <ay <K Nj(e1+A) - (2 + A) < ¢}

It is straightforward to integrate over this domain for n = 1 and n = 2. For
n > 3, we get problems with overlapping sub-domains under the hyperbolic
surface
(t14+A) ... (2 +A)=c¢,

which seems to require the use of a so-called “inclusion-exclusion” formula that
is quite complicated for large n. Since we only want to quickly compute an initial
approximation of K, we choose to further simplify the domain. The following
two simplifications are used
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Di(e) ={(z1,...,2n) | 1 <2y < N}
Dli(e)y = {(z1,...,en) | 1 <y, (21 +A) ... (2 + A) < ¢}

Let I’ and I"” be the integrals over the domains D' and D’ respectively. Both
I! (¢) and Il/(¢) are overestimates of I,(¢), which means that the corresponding
values of K, say K’ and K”, also are overestimates. We choose to initially
approximate K with the smallest of these factors i.e.,

K min(K', K").

initial =
The next issue is the computation of I’ and I". Using repeated one-dimensional
integration we get

/ N N N Ny
I = dx, ...drodxy,
n(0) /1 xl—i—A/l xz—i—A/l /1 z,+ A v r2ar

which equals

N+A
] n
(In377)

The computation of I' is more difficult. The definition is

1
(¢ :// dry...dz,.
() Dty (x1+ A) (g + A

Since 1 < @; and (1 + A) - ... - (z, + 4) < ¢, we have

1<z, < — A

¢
(1+ Ayt ’

where the upper limit is obtained by setting each z; to 1 for e = 1,...,n — 1.
For a fixed value of z,, the upper limit on the other variables is given by

C

This means that I/'(¢) equals

/(HAC)n_I_A ! (/ / ! dey ... den_1)d
. 2, + A ey @A) (o A) !

TntAa

We obtain the following recurrence relation.

e _4
(1+ayn—1 1 c

I// — I// d .

n(€) /1 z+ A ”‘1(x+A) v

The base case 1s

I”(c)—/c_A ! dr =1n ¢
e i N Y
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We employed this recurrence relation to compute I5(¢) and I§(e), which lead
to the induction hypothesis

1 c
() = =(ln ——)".
1) = 2500 50
Assuming that this equality holds for n, we want to prove that it holds for n+1.
The recurrence relation gives

e ___ 4
a+a™ 1 c
I// — I// d .
n-I-l(c) /1 l‘—i—A n(l‘—i—A) z

The induction hypothesis yields

aFo= 4 c n
Le) = [i°FY qu-A oi(In (x+A)(1+A)_n) dz

=L |- (ln —~&—)" 1 a4
— n! n+1 (z4+A4)(1+A)" 1

= —(n-ll—l)!(_(ln 1)+ 4 (In W)n+l)

_ 1 . "
- (n+1)!(1n (1+A)n+1) +1 Q.E.D.
In order to find K’ and K”, we need to solve the equations

14 NA+A4
T A

)n — I{/
and
1 ( Cost_limit )
n
(n1)2Y K"(14 A)n
The first equation is already solved. The second equation can be solved very
quickly using Newton-Raphson iteration. In order to do this, we define

= K"

1 Cost_limit .,
v = e )

which means that we want to find K such that y(K") = 0. Let z; be the K"
approximation produced after iteration number i. Newton-Raphsons’ formula
is

— z,

y(2i)
Zi4l = & — 4 .
a(z)

Computing the derivative and simplifying yields

(In Cost_limit)"

. A+A)" =,
“ (n)?
Zitl = 2 — )
i+l it n (In Cos'c_17§|.m1'c)"‘1
—1- A+A)™ z;

zi (n!)?
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To prevent some floating point overflows, we want an initial approximation zg
that is a lower bound on K”. Since we must have

Cost_limit S
z(14+ A)n ’

we choose o
Cost limit

(L4 e)(1+ A’

where ¢ 1s chosen to 0.1. The search 1s terminated when

0 =

|+ )< 1073,

The Exact Search for K. Starting from

K min(K’, K"),

initial =
we now want to do a computation of K that does not use approximations such
as the ones that were employed to find K, ;4 .s. Since this exact search may
be quite time consuming if we employ a poor initial approximation of K, we do
need an initial approximation that is as good as K, 447

Figure 4.3 shows the definition of a function choose_order nos which first is
employed to compute the sum of cost reciprocals with the parameter Dry_run =
true and then to emit programs resulting from REQ sequences with Dry run =
false. In the ADATE source code the definition of choose_order nos occurs
inside the definition of N.REQ_trfs. Therefore, Figure 4.3 contains variables
that are parameters to N REQ_trfs, namely Cost_1limit, No_of REQs and emit.
There are also some other variables that are global with respect to Figure 4.3,
namely Enumeration and pe REQ.D. The latter is the pergq value of the program
D that is to be transformed. No_of REQs_left is the number of REQs that
remain to be determined, which initially is No_of REQs. So_far is the partial
REQ sequence that has been chosen so far. D_so_far is the result of applying
So_far to D. Cost_so_far is the unnormalized cost of So_far. K is a tentative
normalizing factor. The REQ-hood of So_far is checked if and only if Evaluate
= true. For a given candidate K-value, choose_order nos accumulates cost
reciprocals in the reference variable Interval width. In particular, note that
the search is cut off as soon as K * Cost_so_far exceeds Cost_limit.

To simplify the usage of choose_order nos, we define

fun choose(K,Evaluate,Dry_run) =
choose_order_nos(No_of_REQs,nil,D,1.0,K,Evaluate,Dry_run)
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fun choose_order_nos( No_of_REQs_left : int, So_far : (pos*exp) list,
D_so_far : dec, Cost_so_far : real, K : real, Evaluate : bool,
Dry_run : bool ) =
if K*#Cost_so_far > Cost_limit then
O
else if No_of_REQs_left = O then
if No_of_REQs>=2 andalso Evaluate andalso
not(better_or_equal( pe_REQ D_so_far, pe_REQ_D ))

then

O
else if Dry_run then

Interval_width := !Interval_width + 1.0/(K*Cost_so_far)
else

emit( D_so_far, map(fn(Pos,_) => REQ{top_pos=Pos},So_far),
K*Cost_so_far * !Interval_width )
else (
map( fn(X, (Pos,E)) =>
if exists( fn(Pos’,_) =>
pos_less(Pos,Pos’) orelse is_prefix(Pos’,Pos),
So_far )
then
O
else
choose_order_nos( No_of_REQs_left-1, (Pos,E)::So_far,
if Dry_run andalso not Evaluate then D_so_far else
pos_replace_dec(D_so_far,Pos,fn _ => E),
Cost_so_far*(real X + A),K,Evaluate,Dry_run ),
combine(fromto(1,N),Enumeration) ); () )

Figure 4.3: Finding the sum of cost reciprocals for a given K.
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The sum of the cost reciprocals is computed by the following function.

fun sum K = (
Interval_width := 0.0;
choose(K,false,true);
!'Interval_width
)

First, N REQ_trfs employs a binary search to find a K such that
0.9 <sum K<1.1.

We allow a 10% deviation from 1.0 to reduce the number of calls to sum that
are needed to find K. Note that K was found with Evaluate = false. Since a
REQ sequence may increase pe_REQ even though each individual REQ in the
sequence does not increase pe REQ, N_REQ_trfs executes the following code.

Interval_width := 0.0;
choose(K,true,true);

This sets Interval width to the fraction of the sequences that do not in-
crease the pe REQ value. This fraction is then used for normalization together
with K in the final call to choose, which 1is

choose(K,true,false)

This is the first call that has Dry_run = false, which means that the produced
declarations are emitted from N_REQ_trfs.

4.2.3 The ABSTR Transformation Algorithm

This algorithm needs to choose

1. The arity n of the let-function g that is to be created.

2. Top_pos which is the position of H(E1,..., Ey).

3. Bottom_poses which is the list of the positions of E1,... E,.
We will now discuss each of these three choices.

1. The arity n is chosen to 1 or 2. However, an EMB transformation may be
applied immediately after an ABSTR transformation in order to increase
the arity. Both the choice n = 1 and the choice n = 2 have the normalized
cost 2.
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Figure 4.4: An expression tree.

2. Top_pos is chosen so that the size of H(Ey, ..., Ey) is 2+ 2n or greater.
The reason is that it, in principle, should be possible to choose the expres-
sions H,F1, ..., F/, so that each expression contains at least two expression
tree nodes that also occur in the program to be transformed. We assume
that leaf subexpressions of this program are often too small to be worth
“reusing”. The 24 2n minimum size restriction means that there are fewer
choices of Top_pos values.

Example. Assume that Top_pos is to be chosen in an expression tree that
is binary and complete, which means that the tree has 2¢ nodes at each
depth din {0, 1, ..., dimax}. Consider n = 1 only. Without any restriction,
there are 2%msxt1 _ | choices of Top_pos. With the 2 + 2n minimum size
restriction, there are 2%max=1 _ 1 choices of Top_pos, which means that
this restriction reduces the number of choices by about four times. O

Each choice of Top_pos is assigned a normalized cost equal to the number
of possible Top_pos choices.

3. Each position P in Bottom_poses must be such that Top_pos is a proper
prefix of P. We also require that Bottom_poses does not contain any two
positions P and P’ such that P is a prefix of P/. We eliminate equivalent
permutations of Bottom_poses by requiring that it is sorted according to
the relation < on positions. Yet another requirement on Bottom poses is
that the reused part of H must have size 2 or more. However, we allow
Ey’s of size 1 provided that the size constraints given above are satisfied.
For a given choice of Top_pos, each possible choice of Bottom poses is
assigned a normalized cost equal to the number of possible choices.

Here is an example that shows the computation of the normalized cost of an
ABSTR transformation.

Example. Assume that an ABSTR with arity 2 is to be applied to the
expression tree in Figure 4.4. Since n = 2, the size of H(F, E5) is required to
be 6 or more. This means that there are three choices of Top_pos, namely

1. 0
2. [0]
3. [1]
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Assume that we choose Toppos = [1]. Since the reused part of H is not
allowed to have size 1, we cannot have

Bottom poses = {[1,0], [1,1]1}.

Therefore, Bottom_poses may only be chosen to one of the following alterna-
tives.

1. {[1,01,[1,1,01}
2. {[1,0,0],[1,0,11}
3. {[1,0,0],[1,1]}
4. {[1,0,0]1,[1,1,01}
5. {[1,0,1],[1,1]}
6. {[1,0,1],[1,1,0]}

The cost of the arity choice is 2. The Top_pos choice has cost 3. Each of the
6 choices of Bottom_poses has cost 6. Thus, the normalized cost of an ABSTR
with arity 2 and Toppos = [1]182-3-6 =36. O

In general, the cost of an ABSTR depends on the structure of the expression
tree. Since this structure varies from program to program, it is difficult to do
an exact analysis of the cost. However, we will now derive an upper limit on
the cost. Let

Nmax = The maximum allowed arity i.e., 2 in the current implementation.
Niot = The size of the expression tree.
NABSTR = The size of H(Ey, ..., Ey).

The cost of the choice of arity is of course nyax. Top_pos may be chosen in
no more than Ny different ways. The constraint NypgTR >2 + 2n means
that the number of choices is normally much less than Ny, but it is difficult
to provide a much tighter bound without further assumptions about the tree
structure. If we ignore the prefix constraints on positions and the size constraint

on H, there are
( NABSTR )

n

possible choices of Ey, ..., E,. Therefore, the cost of an ABSTR, is bounded by

N NABST
Nmax NtOt ’ ( A]?lSTR ) < Mmax * NtOt : %
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For fixed npax, the interesting question is how this expression depends on n,
Ntot and NpapgTR- If n and NpypggTR also are fixed, the cost bound is obvi-
ously proportional to Ntnt. For varying n and N ggTR, there is a tug-of-war
between the increasing factor N} pepg and the decreasing factor 1/(n!). Ex-
perimental results are more usefﬁ]Bt%nan the formula above. The reason is that
it 1s important to consider the statistical properties, e.g. tree structure, of the
programs and ABSTR, transformations that arise in practice.
ABSTR transformations are implemented by the following function.

fun ABSTR_trfs( D : dec, Cost_limit : real, top_pos_ok : pos—->bool,
bottom_poses_ok : pos list -> bool,
emit : dec*atomic_trf_record list*real->unit ) : unit = ...

This function is rather simple to implement. Therefore, we omit a more
detailed discussion of the implementation. However, it is worth noting that no
FE; may contain a symbol declared in H since this would lead to a violation of
the scope rules of ML.

4.2.4 The CASE-DIST Transformation Algorithm

A CASE-DIST transformation consists of a sequence of moves. Each move cor-
responds to one of the following schemas in which h denotes a function symbol.

1. (a) h(Ay,..., A;_1, case F of Matchy => Ey | ... | Match, => Ep,Aiy1,..., 4m )
—
case F of

Match, => h(Al, .. ~,Ai—1aE1aAi+1; . ,Am)

| Match, => h(Al,...,Ai_l,En,Ai+1,...,Am)

(b) case F of
Match, => h(Al,...,Ai_l,El,Ai+1,...,Am)

| Match, => h(Al,...,Ai_l,En,Ai+1,...,Am)

—
h(Ay,..., A;_1, case E of Matchy => FEy | ... | Match, => Ep,Aig1, ..., Am)
2. (a) case F' of
Match’y => Ay
| Match’; => ( case E of Matchy => FEy | ... | Match, => E, )

| Match’,, => A,
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.
case F of
Match, => (
case I’ of
Match’y => Ay

| Match’; => E;
| Match’,, => A, )

| Match, => (
case £’ of
Match’y => Ay

| Match’; => F,

| Match’,, => A, )

(b) case F of
Match, => (
case I’ of
Match’y => Ay

| Match’; => E;
| Match’,, => A, )

| Match, => (
case £’ of
Match’y => Ay

| Match’; => F,

| Match’,, => A, )
.
case I’ of
Match’y => Ay
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| Match’; => ( case E of Matchy => FEy | ... | Match, => E, )

| Match’,, => A,

3. (a) let
Declarations
in
case F of Maichy => E1 | ... | Match, => FE,
end
.
case F of
Match, => let Declarations in F; end

| Match, => let Declarations in F, end

(b) case F of
Matchy => E;

| Match; => let Declarations in E; end

| Match, => E,
.
let
Declarations
in
case F of
Match, => E;

| Match; => E;

| Match, => E,

end

Note that the schemas la, 1b and the schemas 2a, 2b are inverses of each
other whereas the schemas 3a, 3b are not. FEach a-schema moves the case
outwards whereas each b-schema moves the case inwards.

A move according to schema 2a frequently leads to the introduction of dead
code. Therefore, each such move is immediately followed by dead code elimina-
tion, which, for example, is capable of replacing an expression

case F' of
Match’y => Ay
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| Match’; => E]'

| Match’,, => A,

with some Ay if only the alternative Maich’; 1s activated during execution
for all sample inputs in the specification.

A move according to schema 3a frequently leads to the introduction of un-
necessary declarations. These are removed by occurrence checking that does
not require program execution. For example, the expression

let fun g Xs = £(XsQXs@Xs) in Ys@Xs end

is replaced by Ys@Xs since g does not occur in Ys@Xs.

Schema 2b is rarely used in practice. The experimental experience has shown
that it is very difficult to anticipate which schemas that are needed and which
are not. This means that it makes sense to also include schemas that seem to be
theoretical artifice since they may be employed in unexpected and useful ways.

In order to explain how move sequences are generated, we need the concept of
a move graph. Each node D in a move graph is a program. If there is an allowed
move M that transforms D to D', there is a directed edge, labelled with M,
from node D to node D’. The program to which a CASE-DIST transformation
is to be applied corresponds to the start node.

A marking scheme is employed to ensure that the moves in a move sequence
are “related”. Marking will be explained with respect to the roots of the left and
the right hand sides of the schemas. Note that the RHS root of each a-schema
is a case. When an a-schema is applied, the RHS root and its children are
marked. Similarly, when a b-schema is applied, the LHS root and its children
are marked. The ML type of marked expressions is

(bool*’a,’b)e,

where the Boolean value is true if and only if the node is marked. The expression
type constructor e was defined in Figure 2.2. The moves emanating from the
start node may use any subexpression of the program that corresponds to the
start node as the LHS root. Other moves are only allowed if the LHS root is
marked or has at least one marked child or parent in the expression tree.

The move graph may contain very many nodes, each of which is a program
that requires rather much space to store. Therefore, explicit construction of
the move graph is too space consuming, which means that we should not use
breadth-first search of the graph to find move sequences. Since we want to
find move sequences in order of increasing length, we use iterative-deepening to
search the graph. It is important to avoid visiting the same node more than
once. This is achieved by storing the fingerprint of each visited node in a hash
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table. Fingerprinting was discussed in Subsection 4.2.2. Of course, a fingerprint
usually requires many orders of magnitude less storage space than a program
e.g. 8 bytes versus 10* bytes.

Before presenting the ML implementation of the iterative-deepening search,
we need a few auxiliary functions. The first auxiliary function is

fun find_children( E : (bool*’a,’b)e, Mark_enable : bool,
emit : bool*(bool*’a,’b)e -> unit ) : unit = ...

The marked expression E is the right hand side of a program. The function
find_children makes the call

emit(Dead_code_elim,New_E)

for each New E such that there is an edge from the move graph node, that
corresponds to E, to the node that corresponds to New_E. Dead_code_elim is
true if and only if dead code elimination should be applied to New_E.

We use a hash table Table. Fach entry in Table stores the fingerprint
of an expression together with a pair of the form ( No_of moves, Found ).
No_of moves is the length of the shortest path, that has been found so far, from
the start node to the node corresponding to the fingerprinted expression. Found
is true if and only if the expression has been produced earlier during the current
iteration.

We also need the auxiliary function iterate shown in Figure 4.5. The
parameter Move_count is the length of the move graph path from the start
node to the node corresponding to D. The parameter Move_count _limit is the
maximum path length, which is deepened iteratively. The rest of the definition
of iterate is self-explanatory. It is now easy to define a function iteration
that performs one iteration. This function is called with Move_count limit=
1,2,3,.... Since the limit is increased by one from one iteration to the next,
Table always contains the length of the shortest path from the start node to
the node corresponding to a fingerprint. Therefore, the test

Move_count+1l < No_of_moves

in Figure 4.5 actually never becomes true, but it is still wise to include it in
anticipation of future implementation changes. One such change would be to use
iterative-deepening with extrapolation as in [Olsson 93], which would reduce the
time wasted on re-expansion. The definition of iteration shown in Figure 4.6
is easy to understand without any further explanation.

In order to determine the normalized costs of CASE-DIST transformations,
we first do a “dry” iterative-deepening search that does not emit any pro-
grams. This dry search is terminated when all allowed move sequences have
been found or when a search time limit Max_time has been exceeded. The func-
tion dry_search shown in Figure 4.7 returns a pair of the form (N,Cs), where
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fun iterate( D as {func,pat,exp,dec_info} : (bool*’a,’b)d, Move_count,
Move_count_limit, emit : (bool*’a,’b)e —> unit ) : unit =
if Move_count = Move_count_limit then
emit exp
else
let fun emit’(Dead_code_elim,New_exp) =
if not(scope_check(New_exp,func::nil,vars_in_pat pat)) then
O
else
let
val New_ D = { func=func, pat=pat, exp=New_exp,
dec_info=dec_info }
val New_ D as {exp=New_exp,...} =
if Dead_code_elim then dead_code_elim’ New_D else New_D
val Fingerprint = exp_hash(rename(New_exp,true))
in
case H.peek (!Table) Fingerprint of
NONE => (
H.insert (!Table) (Fingerprint,(Move_count+1,true));
iterate(New_D,Move_count+1,Move_count_limit,emit)
)
| SOME(No_of_moves,Found) =>
if Move_count+l < No_of_moves orelse
(Move_count+1=No_of_moves andalso not Found) then (
H.remove (!Table) Fingerprint;
H.insert (!Table) (Fingerprint,(Move_count+1,true));
iterate(llew_D,Move_count+1,Move_count_limit,emit)
)
else
O
end
in
find_children(exp,true,emit’)
end (* fun iterate *)

Figure 4.5: A help function for iterative-deepening.
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fun iteration( D as {func,pat,exp,dec_info} : (’a,’b)d,
Move_count_limit : int,
emit : (’a,’b)d * pos list -> unit ) : unit =
let
val All_case_poses = all_poses_filter(is_case_exp,#exp D)
val exp = to_marked exp
val pat = to_marked pat
in
Table := H.transform( fn(Move_count,_) => (Move_count,false))
(1Table);
map( fn Case_pos => iterate(
{func=func,pat=pat,exp=mark_exp_at_pos(exp,Case_pos),
dec_info=dec_info} :(bool*’a,’b)d,
0,
Move_count_limit,
fn New_exp => emit( {func=func,pat=from_marked pat,
exp=from_marked New_exp, dec_info=dec_info} : (’a,’b)d,
marked_poses New_exp)),
A1l case_poses );
O

end

Figure 4.6: Performing one iteration.
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fun dry_search( D : (’a,’b)d, Max_time : real ) : int #* array =
let
val Class_cardinalities = array(50,0)
val Max_move_count_limit = ref O
val Emitted = ref true
fun emit(New_D,_) = (
update(Class_cardinalities, !'Max_move_count_limit,
sub(Class_cardinalities, 'Max_move_count_limit)+1);
Emitted := true
)
fun run() = if not(!Emitted) then () else (
Emitted := false;
inc Max_move_count_limit;
iteration(D, 'Max_move_count_limit,emit);
run()
)
in
init_hash_table(#exp D);
timeLimit (real_to_time Max_time) run ()
handle Time_out => ();
('Max_move_count_limit - 1, Class_cardinalities)
end

Figure 4.7: Dry search that is needed to determine costs.
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the dynamic array Cs contains the number of nodes at distance ¢ from the start
node for each ¢ in {1,2,... N}.

A so-called class consists of all nodes at the same distance from the start
node. All programs in a given class are assigned the same cost, which increases

with the distance from the start node. Let ¢1,...,cny be the elements in the
dynamic array Cs. Let o1,...,0n5 be the sequence of cumulative sums of Cs
le.,

k
T = E C;.
i=1

The cost of each program in class number & is chosen to be proportional to oy.
In practice, it is common that ¢; grows exponentially with k. If we assume
¢x = b* for some branching factor b, we have

bR+t — 1
op = ———1

b—1 ’
which gives oj41/0) mb. However, it may occasionally happen that ¢j decreases
with k. If we chose the program cost of class number k£ to be proportional to ¢,
decreasing c; would mean that programs produced with long move sequences
would be cheaper than programs produced with short move sequences. Since
this is undesirable, we use proportionality to oj instead of proportionality to
Cp.
Assuming that K is the normalizing factor, we require

m

> =1

\O;
i=1 t

where m is the greatest class index such that
Ko, < Cost limit.

As for all other transformations, Cost_1imit is the specified maximum cost of a
CASE-DIST transformation. Cost computation is implemented by the following
function.

fun cost_comp( Cost_limit : real, Max_move_count_limit : int,
Class_cards : array ) : int * (int->real) = ...

This function returns the pair (m, ), where the cost function ¢ is such that
(i) =Ko; for each class index i. We now have all auxiliary functions that
are needed to implement the CASE DIST trfs function, which is shown in Fig-
ure 4.8. The only parameter to CASE DIST trfs that has not been discussed is
CASEDIST cost_1limit, which says how much work that is to be expended on
finding move sequences.
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fun CASE_DIST_trfs( D : (’a,’b)d, Cost_limit : real,
CASE_DIST_cost_limit : real,
emit : (’a,’b)d * atomic_trf_record list * real —-> unit )
T unit =
let
val (Max_move_count_limit,Class_cards) =
dry_search( D,
0.4*%CASE_DIST_cost_limit*synt_and_eval_time_per_exp() )
val (Max_move_count_limit,Cost_comp) =
cost_comp(Cost_limit,Max_move_count_limit,Class_cards)
in
init_hash_table(#exp D);
map(fn Move_count_limit =>
let fun emit’(New_D,Active_poses) =
emit(New_D, CASE_DIST{activated_poses=Active_poses}::nil,
Cost_comp Move_count_limit)

in
iteration(D,Move_count_limit,emit’)
end,
fromto(1,Max_move_count_limit)
);
O

end

Figure 4.8: The implementation of the CASE-DIST transformation.
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fun zeroth_order_ground_types(
ty_con_exp( "->", Domain::Range::nil ) ) =

zeroth_order_ground_types Domain @
zeroth_order_ground_types Range

| zeroth_order_ground_types( ty_con_exp( "tuple", Comp_types ) ) =
flat_map( zeroth_order_ground_types, Comp_types )

| zeroth_order_ground_types( T as ty_con_exp(_,Comp_types) ) =
T :: flat_map( zeroth_order_ground_types, Comp_types )

| zeroth_order_ground_types _ = nil

Figure 4.9: The ML definition of zeroth order ground types.

4.2.5 The EMB Transformation Algorithm
This algorithm needs to make the following choices.

1. The let-function that is to be embedded.

2. If the domain or the range is to be embedded.

3. Whether to use way 1 or way 2 of embedding tuple types.

4. If way 1 was chosen, the algorithm chooses ’a to a so-called zeroth order
ground type that occurs in the program to be transformed. This concept
is defined below. If way 2 was chosen, the algorithm chooses the index ¢
of the tuple type component T;, the data type definition to be used and
also a Tj 1, in the RHS of that definition.

5. One newly synthesized expression for each ?_emb constant.
We will now discuss each of these choices.

1. If there are [ let-functions that may be embedded, each let-function is
assigned the normalized cost .

2. Both choices are assigned the normalized cost 2.
3. Both choices are assigned the normalized cost 2.

4. Way 1. The concept “zeroth order ground type” is defined by the func-
tion shown in Figure 4.9, which extracts the zeroth order ground
types that occur in a type expression. Recall that the representation
of types was shown in Figure 4.1. The auxiliary flat map function
is defined as usual in functional programmingi.e.,

fun flat_map( £, Xs ) =
case Xs of nil => nil | X1::Xs1 => f£(X1)@flat_map(f,Xs1)
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Assume that RHS is the right hand side of the program to be trans-
formed. The set of allowed ’a choices is given by

hash_make_set( exp_flat_map(
zeroth_order_ground_types o type_of_exp, RHS ) )

The auxiliary exp_flat map function is analogous to flat map but
defined on the type (’b,’c)e instead of the type ’d list. Each
allowed choice of ?a 1s assigned a normalized cost equal to the number
of allowed choices.

Way 2. Given that the tuple type is 1} * ... % 1,,, the normalized cost
of choosing T; is n. Each choice of a data type definition, that may
be employed to embed 7;, is assigned a normalized cost equal to the
number of choices, which usually is only 1 or 2. Similarly, each T} ;.
in the RHS of the definition is assigned a normalized cost equal to
the number of 7} ;’s in the RHS that match 7;.

. This part of the implementation is somewhat more complicated than the
four parts above. There are two issues, namely

(a) How to find a list of candidate expressions for each ?_emb constant.
Assume that there are m ?_emb constants i.e., that m lists are to be
found.

(b) How to combine the expressions in the m lists to expression sequences
of length m and how to define the costs of these sequences.

We first consider issue a and then 1ssue b.

Issue a is solved using the expression synthesizing Replace.replace func-
tion that also was used in the implementation of R_trfs in Figure 4.2.
Figure 4.10 shows the implementation of a function find_emb_expss that
returns a list containing the m lists that are to be found. The parame-
ter EMB_cost 1imit, that says how much work that i1s to be expended on
expression synthesis, is uniformly distributed on the m ?_emb positions in
the parameter Q_emb_poses. A priority queue, implemented as a heap, is
employed to ensure that each of the m lists are sorted in order of increasing
syntactic complexity. In order to save memory space, the current imple-
mentation has an upper limit of 500 on the cardinality (Max_ heap_size)
of the heap.

We now turn to issue b. Empirically, we have noted that the synthesized
expressions that are needed usually are very small. For example, if the
domain of g is embedded in way 1, each call g(F1,..., Ey,) is changed to
g(Fq, ..., FE,,7 emb), where the expression that is to replace the ?_emb
usually 1s very small. The synthesized expressions that are needed for R
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exception Find_emb_expss
fun find_emb_expss( D : dec, EMB_cost_limit : real,
Q_emb_poses : pos list ) : exp list list =
if null Q_emb_poses then raise Find_emb_expss else
let
val Cost_limit = EMB_cost_limit / real(length Q_emb_poses)
fun find_emb_exps( Q_emb_pos : pos ) : exp list
let
val Es = ref( Heap.heap_nil )
fun emit(New_D:dec,Cost,Not_activated_syms)
let
val E = pos_to_sub(#exp New_D,Q_emb_pos)
val Complexity = Evaluate.syntactic_complexity New_D
in
Es := Heap.heap_insert( (E,Complexity), 'Es);
if Heap.heap_size(!Es) > Max_heap_size then
Es := (case Heap.heap_delete_min(!Es) of
SOME(_,New) => New)

else
O
end
in
Replace.replace( D, Q_emb_pos, nil,
Cost_limit, nil, emit );
rev( map(#1,Heap.heap_report( !'Es )) )
end
in
map( find_emb_exps, Q_emb_poses )
end

Figure 4.10: Finding a list of lists of candidate expressions.
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and REQ transformations are generally bigger. Recall that the unnormal-
ized cost of a REQ sequence of length n was chosen to

n

[IGxi+3),

i=1

where z; is the order number of REQ number ¢ in the sequence. The
unnormalized cost of an EMB expression sequence of length m 1is chosen

to
m

H($z + B)za

i=1
where B is a constant that is chosen to 7 in the current implementation.
Thus, the EMB cost measure penalizes high order numbers more than the
REQ cost measure. This is illustrated by the following example.

Example. Assume n = m = 2. Since z; > 1, the lowest unnormalized
REQ cost is 4% and the lowest unnormalized EMB cost is 8*. Let us define

CreQ(e1,22) = (212 e £9) 331(2962 3

and
CpMB(e1,22) = (it 7)8(52 o

The functions CREQ and Cpp g give the ratio between the current cost
and the lowest cost. Therefore, they are useful for illustrating the penal-
ization of high order numbers. Note that CREQ and Cppp would not
change if we used normalized costs since the normalization factor would
be cancelled out by the division. For example, since

CREQ(lo, 10) ~ 10.6

and

CEMB(lo, 10) =~ 20.4,

we can say that the EMB cost measure penalizes the order numbers
x1 =x2 = 10 about twice as much as the REQ cost measure.

Figures 4.11 and 4.12 show contour curves for CREQ and Cp\ B respec-
tively. There are 15 units between two neighbouring curves in each figure.
The bottommost curve in each figure is for CREQ and Cpyp equal to
16. For example, it is easy to see that curve number 3 from the bottom in
Figure 4.11 approximately corresponds to curve number 15 in Figure 4.12.
This means that the order number values, that make CREQ =143-15= 46,

make Cpyg =1+ 15 - 15=226. Also note that both figures show a small
cost ratio if one order number is large and the other small. O
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Figure 4.11: Contour curves for CREQ

Given that Exp_counts is a list containing the lengths of the expression
lists returned by find_emb_expss, the following function returns the nor-
malizing factor.

fun compute_factor( EMB_cost_limit : real, Cost_limit : real,
Exp_counts : int list ) : real = ...

The parameter EMB_cost 1imit says how much work that should be spent
on finding an accurate normalizing factor.

Figure 4.13 shows the definition of a function replace_g_embs that re-
places the ?7_embs at the positions given by the parameter Q_emb_poses
with newly synthesized expressions. The auxiliary replace_q_embs’ func-
tion is defined in Figure 4.14.

EMB transformations are implemented by the function EMB_trfs, which has
a straightforward but long-winded definition. The LHS of the definition is

fun EMB_trfs( D : dec, Cost_limit : real, EMB_cost_limit : real,
top_pos_ok : pos -> bool,
emit : dec * atomic_trf_record list * real -> unit )
:ounit = ...
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Figure 4.12: Contour curves for CpypB

fun replace_q_embs( D : dec, Cost_limit : real, EMB_cost_limit : real,
Q_emb_poses : pos list, emit : dec*real -> unit ) : unit =
let
val Ess = find_emb_expss( D, EMB_cost_limit*0.75, Q_emb_poses )
val Factor = compute_factor( EMB_cost_limit*0.25, Cost_limit,
map(length,Ess) )
in
replace_q_embs’( D, Cost_limit, Q_emb_poses, Ess, Factor, emit )
end

Figure 4.13: Replacing ?_embs.

84



fun replace_q_embs’( D : dec, Cost_limit : real,
Q_emb_poses : pos list, Ess : exp list list,
Cost_so_far : real, emit : dec*real -> unit ) =
if Cost_so_far *
real_pow( order_no_cost 1, real(length Q_emb_poses) ) >
Cost_limit
then
O
else
case Q_emb_poses of
nil => emit(D,Cost_so_far)
| Pos::Poses =>
case Ess of Es::Ess =>
let
val N = length Es
val Cost_left = Cost_limit/Cost_so_far
val Max_TI =
if null Poses then
min2( op<, N, order_no_cost_inverse Cost_left )
else
N
in
map( fn(I,E) =>
replace_q_embs’ ( pos_replace_dec(D,Pos, fn _ => E),
Cost_limit, Poses, Ess, Cost_so_far*order_no_cost I,

emit ),
combine(fromto(1,Max_I),take(Max_I,Es)) );
O
end

Figure 4.14: The auxiliary replace_q_embs’ function.
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Chapter 5

Expression Synthesis

5.1 Description of the Expression Synthesis Prob-
lem and Its Complexity

The problem of synthesizing expressions may be defined as follows. Given a type
T and a set of components, consisting of variables, functions and their types, we
want to produce N expressions of type T'. We require that the expressions are
produced in order of increasing syntactic complexity and that they are typed
in accordance with the components. Since it would be quite complicated to
accomplish this using the syntactic complexity measure specified in Appendix A,
which was discussed in Subsection 3.5.1, we use expression size, 1.e., the number
of nodes in the expression tree, as the syntactic complexity measure. Thus, we
first generate all expressions of size 1, then all expressions of size 2 and so forth.

The set of all expressions of size less than or equal to some maximum size
Smax 18 partitioned into equivalence classes such that all expressions in a class
have the same semantics. The difference between the total number of expressions
in this set and the number of classes may be enormous as illustrated by the
following example.

Example. Assume that expressions of type ’a list are to be produced
using the components

Xs : ’a list
nil : ’a list
@ : ’a list * ’a list -> ’a list

The component Xs is a variable. The other two components are functions that
are predefined in Standard ML. Let T;(smax) be the total number of expressions
of size Smax or less. Let T, (smax) be the number of non-equivalent expressions
of size smax or less. Obviously, an expression tree of size s has (s + 1)/2 leaves
and (s — 1)/2 internal nodes. Each leaf is either nil or Xs which gives 2(s+1)/2
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possible choices of leaves. The number of binary trees with ¢ internal nodes 1s
a well-known combinatorial function, the so-called ¢’th Catalan number, which
equals

I ( 2i ) S
i+1\ )T i+ )i

where we obtained the right hand side using Stirling’s approximation of the
factorial function. Summing for each number of internal nodes yields

(smax—1)/2 (smax—1)/2

21+141 2.8
E Smax ) &~ N = T N

( ) ZZ:; (i+ D)v/mi ZZ:; (i+ D)v/mi

It is easy to see that Ti(Smax)/Tt(Smax — 2) = 8 for large smax 1.€., exponential
growth with a branching factor of /8 ~ 2.8. However, all expressions that
contain the same number of occurrences of Xs are equivalent. Therefore,

Tn(smax) = (Smax + 1)/2 + 1a

which 1s one more than the maximum number of occurrences of Xs in an ex-
pression tree of size Sy ax.

In practice, we usually find it acceptable to try about 10° expressions. If
we manage to synthesize one and only one expression per equivalence class, we
would, in this example, be able to synthesize expressions of size up to about
2. 10°. However, if we need to synthesize all expressions of size sma, or less,
there is an upper size limit of about 15 as can be seen in Figure 5.1 which shows

(smax—1)/2 1 9
1 T max ) — 1 2i+1— .
0810 Tt (Smax) Of10 ZZ:; P11 ( i )

O
In the example above, T;(s) is exponential in s whereas T, (s) is linear in s.
It is much more common that both T;(s) and T, (s) grow exponentially with s.

5.2 Expression Synthesis in ADATE

This section discusses methods and heuristics for expression synthesis that have
been implemented in ADATE. The next section presents alternatives and ex-
tensions to these methods.

5.2.1 The Interface to Expression Synthesis

We will first describe the top level interface of the expression synthesis imple-
mentation, which is the following function.
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Figure 5.1: The logarithm of expression space cardinality as a function of size.

fun replace( D : dec, Top_pos : pos, Bottom_poses : pos list,
Cost_limit : real, Min_once : symbol list list,
emit : dec*real*symbol list->unit ) : unit = ...

This function was used under the name Replace.replacein the implementation
of R transformations in Figure 4.2 and in the implementation of replacement
of ?_emb constants in Figure 4.10. It is also employed in the implementation
of the £ind REQs function mentioned in Subsection 4.2.2. The parameters of
replace were described in Subsection 4.2.1. To begin with, we need to compute
the components that may be used at position Top_pos in the program D. These
components are computed by the call comps_at_pos( D, Top_pos ). The im-
plementation of comps_at_pos shown in Figure 5.2 uses the following global
variables and functions.

comps_in_pat Returns the components in a pattern.

pos_fold The implementation of this higher order function was given in Fig-
ure 2.3.

Comps_to_use Contains the components listed in the specification.

Recall that Bottom poses specifies the positions of the F;’s that occur in
the general replacement transformation schema

H(El,,En)—>G(E1,,En)

We require that each E; occurs exactly once in G(Fy,...,E,). The expres-
sions F1q,..., F, are represented by special components which we will denote

by X1y--s Xn-
We will now present variable bindings made by the implementation of replace.
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fun comps_at_pos( {func,pat,exp,dec_info=SOME Sch}, Pos : pos )
. ty_env =
let fun g _ = nil
fun f(Comps,E,P::_) =
case E of
case_exp{rules,...} =>
if P = O then
Comps
else
comps_in_pat (#pat(nth(rules,P-1))) @ Comps
| let_exp{dec_list,...} =>
if P < length dec_list then
let val {func,pat,exp,dec_info=SOME Sch} = nth(dec_list,P)
in
(func,Sch) :: comps_in_pat pat @ Comps
end
else
Comps
| _ => Comps
in
(func,Sch) :: comps_in_pat pat @
pos_fold(f,g,Pos,exp) @ Comps_to_use
end

Figure 5.2: Finding the components at a given position.
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Components The list comps_at _pos( D, Top_pos ) concatenated with the list
of all pairs consisting of y; and its type schema.

subst_fun A substitution function of type exp -> exp that replaces each y;
with the corresponding Ej.

Max_once Symbols that only are allowed to occur 0 or 1 times in each synthe-
sized expression. Is bound to [x1,...,xn].

Min_once’ Symbols that must occur at least once. Is bound to [[yi1, ...,
[x»,]] @ Min_once.

emit_synted_exp A function that takes a synthesized expression G, transforms
D and calls emit with the resulting program.

With these bindings, the implementation of replace calls a more pure ex-
pression synthesis function synt n as follows.

synt_n( type_of_exp(pos_to_sub(exp,Top_pos)), Components,
subst_fun, D, Top_pos, Max_once, Min_once’, emit_synted_exp,
Cost_limit )

Note that the requirement that each y; occurs exactly once is implemented
by putting x; in both Max_ once and Min_once’. The definition of synt_n has
the following form.

fun synt_n( Type : ty_exp, Components : ty_env, subst_fun : exp->exp,
Current_prog : dec, Pos : pos, Max_once : symbol list,
Min_once : symbol list list, emit : exp*real*symbol list->unit,
N :real ) = ...

Expressions may be synthesized bottom-up or top-down. Bottom-up syn-
thesis determines all the subtrees of a node before the node itself. Top-down
synthesis determines the node before any of its subtrees. Of course, there are
many possible bottom-up and top-down orders of the nodes in a tree. Postorder
is an example of a bottom-up order. Preorder is an example of a top-down
order.

The function synt_n synthesizes expressions top-down since this is easier to
implement than bottom-up. The implementation of syntn and its auxiliary
functions consists of about 1100 lines of Standard ML code. Therefore, we
will not present the complete implementation, but try to give a comprehensible
overview. We start by giving a complete but highly simplified implementation
of syntn. Then, we describe additional techniques and heuristics that are
employed in the real implementation.
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fun exp_size( app_exp{args,...} ) =
1+int_sum(map( exp_size, args ))

fun while_list( continue : unit -> bool, Xs, £ ) : unit =
case Xs of
nil => ()
| X1::Xs1 =>
if continue() then
( £(X1); while_list(continue,Xs1,f) )
else

O

Figure 5.3: Computing expression size and iterating over lists.

5.2.2 A Simplified Implementation of synt n

In order to obtain a simplified implementation, assume that expressions of type
T are to be synthesized and that all components have types of the form

T*T %...xT=->T

where the left hand side contains 0, 1, 2 or more occurrences of the type 7.
This means that the only difference between component types is their arity.
The type of a component of arity n is represented as a unit list of length
n. The synt_n parameter Components is a list of ( symbol, type ) pairs. For
example, the components Xs, nil and @, that were used in the first example in
Section 5.1, correspond to

Components = [ ("Xs",[1), ("nil",[1), ("e",[O,0O1) 1.

We also assume that the only parameters of synt_n are Components, an emit
function and N, 1.e., the number of expressions to be synthesized.

The implementation uses the auxiliary functions exp_size and while list
shown in Figure 5.3. The former returns the size of an expression. The latter
is a list iteration “function” that makes the call £ X for each element X in Xs as
long as continue() is true.

Given that S_max is the maximum size of expressions to be synthesized, the
auxiliary function synt, shown in Figure 5.4, makes the call emit E for each
expression E such that exp_size E <= S_max.

The implementation of synt_n shown in Figure 5.5 calls synt with S_max =
1,2,3,... until N expressions have been emitted. The total number of synthe-
sized expressions is

T +T@) +TG) + ...,
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fun synt( S_max : int, Components : (symbol * unit list) list,
emit : exp -> unit, continue : unit -> bool ) =

if S_max <= 0 then
O
else
while_list(
continue,
Components,
fn (F,Domain_type) =>
synt_list( Domain_type, S_max-1, Components,
fn Es => emit(app_exp{ func=F, args=Es, exp_info=NONE }),
continue

)

and synt_list(Types,S_max,Components,emit,continue) =

case Types of
nil => emit nil

| T1::Ts1 =>
synt( S_max-length(Ts1), Components,
fn E =>

synt_list( Ts1l, S_max-exp_size(E), Components,
fn Es => emit(E::Es),
continue

),

continue

)

Figure 5.4: Synthesizing all expressions of size S_max or less.
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fun synt_n( Components : (symbol * unit list) list, emit : exp -> unit,
N : int ) : unit =

let
val So_far = ref O
fun continue() = !So_far < N
in
while_list(
continue,

fromto(1,1000),
fn S => synt( S, Components,
fn E => if S = exp_size E then
(inc So_far; emit E )
else
O,
continue ))
end

Figure 5.5: A highly simplified definition of synt n.

where T'(s) is the number of expressions of size s or less. We assume that 7'
grows exponentially with s, which implies that this total number is O(N).
We will now present some aspects of the “real” implementation of synt n.

5.2.3 Restrictions on the Synthesis of Recursive Calls

In the literature, the goal with recursion restrictions is often to guarantee ter-
mination. Our primary goal, on the other hand, is to reduce the number of
expressions that need to be synthesized.

To say that a function is terminating or non-terminating is a vague and rough
characterization of its time complexity. For most purposes, super-exponential
time complexity is practically as bad as non-termination. Synthesized programs
with such bad time complexity do occasionally arise during an inference. It
would be quite difficult to do automatic syntactic time complexity analysis of
synthesized programs. Therefore, we employ a call count limit as discussed in
Subsection 3.5.2.

One possible restriction on recursive calls would be to only allow primitively
recursive definitions. However, there are many algorithms, for example Quick-
sort, that are difficult to define in a primitively recursive way without major
loss of efficiency. We view primitive recursion as being too restrictive to be
compulsory, but it could be used as a heuristic guide.

The discussion of so-called terminating generator inductive (T'GI) definitions
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fun f(Xs:int list,Ys) =
case Xs of
nil => Xs
| X1::Xs1 =>
case Ys of
nil => Ys
| Y1::Ys1 =>
case Y1<X1 of
true => f(Xs1,Xs@Y¥s)
| false => f(Xs@Xs,Ysl)

Figure 5.6: A partially non-terminating definition.

in [Dahl 92] inspired the following requirement on recursive calls, which is used
in the “real” implementation of synt n. Consider the synthesis of a recursive
call g(Aq, Aa, ..., Ay) occurring in the declaration fun g(Vy, Vo, ..., V) = ...
. At least one A; is required to be “smaller” than the corresponding V;. A; is

“smaller” than V; if and only if A; occurs in an RHS), in a case-expression
case V; of Matchy => RHS, | ... | Match,, => RHS,, and

1. A; is a proper subexpression of Matchy or
2. Matchy contains a variable W such that A; is “smaller” than W.

Like primitive recursion, this requirement is too restrictive to allow efficient
formulation of many interesting algorithms. Future versions of ADATE will
use it only as a guide, for example by allowing up to 50% of the synthesized
expressions to contain recursive calls that violate the requirement.

Note that the requirement does not guarantee termination since it only looks
at one recursive call at a time. This is illustrated by the following example.

Example. Assume that £ : int list * int list -> int list is de-
fined as in Figure 5.6 The call £( [2,2], [1,3] ) is non-terminating even
though each recursive call in the definition of £ satisfies the requirement. How-
ever, this is no problem since ADATE employs a call count limit. O

Also note that the requirement is purely syntactic. A less restrictive require-
ment would be to evaluate A; and check if the evaluation result has a smaller
size than the value of V;. Of course, this check would be more time consuming
than the purely syntactic check currently employed by ADATE.

5.2.4 Restrictions on the Synthesis of case-expressions

Assuming that no A or E contains any case, only the following three forms of
expressions are synthesized.
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1. E.

2. case A of Matchy => FE1 | ... | Match, => F,
3. case A of
Matchy => E;
| Match; => case A’ of Matchy => E{ | ... | Match’y => E/,
| Match, => FE,

Thus, a synthesized expression contains 0, 1 or 2 cases such that each case
occurrence either is the root or a child of the root of the expression. If N
expressions are to be synthesized, N/3 expressions are chosen according to form
1, N/3 according to form 2 and N/3 according to form 3.

A case-analyzed expression A is sometimes such that the values of A cannot
match one or more alternatives in the datatype definition of A. This means that
one or more case-rules are redundant. The implementation of synt_n avoids
such redundancy as follows.

Assume that case A of Matchy => Unknowny | ... | Match, => Unknown,
is a partially synthesized case-expression where each Unknown; is a “dummy”
constant that later is to be replaced with a synthesized expression.

The program to be transformed contains a subexpression Sub = H(FEy,..., Ey)
that is to be replaced by a finished synthesized expression. In order to check if
the incomplete case-expression should be discarded, Sub is replaced with the ex-
pression (case A of Matchy => Unknowny | ... | Match, => Unknowny; Sub
). The resulting program is then executed for all sample inputs. Recall that
an expression is said to be activated if and only if it was evaluated during this
execution. The entire case-expression is discarded if only one Unknown; was ac-
tivated and the corresponding Match; does not contain any variable. Otherwise,
the finished case-expression is produced by replacing each activated Unknown;
with a synthesized expression and each non-activated Unknown; with the special
Not_activated constant.

This activation requirement is supplemented by requiring that the root of A
is not a data type constructor e.g., false, true, nil or ::.

5.3 Alternative Strategies for Expression Syn-
thesis

5.3.1 Equivalence Checking

The problem of equivalence checking may be stated as follows. Given n synthe-
sized expressions E, ..., F, and a newly synthesized expression E’, is there any
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E; such that E’ and E; are equivalent in a given environment according to the
semantics of Standard ML? In general, this question is undecidable. However,
an equivalence checking algorithm may be quite useful even if it errs occasion-
ally.

Equivalence checking is primarily useful if expressions are synthesized bottom-
up and in order of increasing size. Let the order <synt be such that E; <synt £j
holds for any two expressions F; and E; if and only if F; is synthesized before
FE; by the synthesis algorithm. Bottom-up is preferable to top-down since we
can discard each partially synthesized subexpression that is equivalent to some
other expression that precedes it in the <Synt—order. Thus, bottom-up synthesis
allows earlier cut-off than top-down synthesis. This shallow backtracking may
lead to substantial reductions of the effort spent on searching for non-equivalent
expressions.

An algorithm that needs to ask the question “Is E’ equivalent to E;?” for
each ¢in {1,2,...,n} would take time Q(n) to determine if there is any equiva-
lent E;. If we ran this algorithm for each newly synthesized expression, the total
time required for equivalence checking would be Q(n?). Since n may be large,
e.g. greater than 10°, this quadratic time complexity is unacceptable. There-
fore, methods such as inductive Knuth-Bendix completion [Kirkerud 92] seem
to be fairly useless for equivalence checking.

Another possibility is to use a set of rewrite rules to try to obtain a canonical
form for each newly synthesized expression. We could then use a hash table to
determine if this form has been seen before, thus avoiding (n) equivalence
checks.

Alternatively, we could employ rewrite rules to try to simplify a newly syn-
thesized expression. Assuming that simplification implies size reduction and
that expressions are synthesized in order of increasing size, we can discard each
expression that can be simplified.

A major problem is to find suitable rewrite rules. Since synthesized ex-
pressions may contain occurrences of let-functions that have been defined by
ADATE, the rewrite rules should be determined by ADATE based on the defini-
tions of these 1let-functions, which may be rather arbitrary and general recursive
functions. With the current state-of-the-art in rewrite systems research, this is
unfeasible. Therefore, we do not consider employing rewrite rules or other purely
deductive methods for equivalence checking.

We will now discuss a heuristic and more feasible equivalence checking method.
Assume that the free variables, that may occur in a synthesized expression, are
Xi1,...,Xm. Also assume that we have a set of sample values {J1,..., Jus},
where each J; is an m-tuple that is to be substituted for (X1,..., Xy,). The
newly synthesized expression E’ is considered to be equivalent to a previously
synthesized expression E; if and only if E'(J;) = E;(Ji) for all kin {1, ... #J}.

Example. Consider the expression synthesis problem in Section 5.1, where
the components were the variable Xs and the functions nil and @. Obviously,
m=1and X; = Xs. Let #J = 1 and J; = [10]. It is easy to see that two
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expressions E’ and E; are equivalent if and only if
E'([10]) = E;([101 ).

For example, (Xs@Xs)@Xs is equivalent to Xs@(Xs@Xs) since both expressions
evaluate to [10,10,10] with Xs = [10]. O
An implementation should compare the fingerprints of

{E'(J1),...,E'(Jgs)}

and
{E:(1), . Ei(Jga)}

instead of comparing the two sets directly since it would require too much space
to store n expression sets for large n. By storing the n fingerprints in a hash
table, it is easy to compare the fingerprint of the first set with the fingerprints
of all the n sets of the second form in time O(1).

There are two reasons why this sample value based equivalence checking may
err.

1. The fingerprinting may err.

2. The set of sample values {J1,..., Jgs} may not contain any Jj such that
E'(J;) # Ei(Jg) even though E' and F; are non-equivalent.

In Subsection 4.2.2, we have seen that the first cause of failure is extremely
unlikely. The probability of the second cause may be reduced by a careful choice
of sample values.

Assume that each synthesized expression is to be used at position Pos in
the program to be transformed. The variables X1, ..., X,,, that may occur free
in synthesized expressions, depend on Pos. We can use each value of the tuple
(X1,...,Xm), that arises during execution of the program for all sample inputs
in the specification, as a Ji. Additionally, we may add a few random values to
the set of sample values. Then, we need a probability distribution on the set
of values given by the type of (X1,..., X»). An example of such a distribution
is to say that each sample value size s not exceeding some maximum Sy 18
equally likely and that all values of size s also are equally likely.

However, the current implementation does not employ any of the equivalence
checking methods discussed in this subsection. The reason is the following gen-
eral problem with equivalence checking of synthesized expressions that are to
appear in an “unfinished” program. Since the program is unfinished, the func-
tion f, which is the function to be inferred, and the let-functions defined in the
program may have incomplete definitions. Since one or more of these functions
usually may occur in a synthesized expression E, the values E(J1),..., E(Jgr)
may be quite different for the final program and the current, unfinished pro-
gram. The most common case is that there is a k such that E'(J;) = E;(Jy) for
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fun v_count nil = O
| v_count(Sub::Subs) =
if Sub is canonical then
v_count Subs
else
1 + v_count( Subs with all occurrences of Sub replaced
by the canonical form of Sub )

Figure 5.7: An operational definition of the number of violations.

the unfinished program whereas E'(Ji) # E;(J;) for the final program. This is
illustrated by the following example, where f = sort.

Example. Consider the following unfinished program, which appeared in
Subsection 3.5.3 where we showed why this program is better than the identity
function.

fun sort Xs =
case Xs of
nil => Xs
| X1::Xs1 =>
case Xs1 of
nil => Xs
| X2::Xs2 => Xs

No matter how we choose the values Jy,..., Jz7, a call of the form sort A
would be considered to be equivalent to A for all expressions A. O

In spite of this problem, there are many situations where equivalence check-
ing based on sample values would be useful, but it is difficult for ADATE to
recognize these situations.

A rather straightforward heuristic i1s to allow a controlled number of viola-
tions of the non-equivalence requirement as follows. We say that an expression
is canonical if and only if 1t is the first synthesized expression in its equivalence
class, 1.e.; the least class element according to the total order <synt- Assume
that Subs is a bottom-up listing of the subexpressions of a synthesized expres-
sion /. The number of violations in £ is v_count Subs, where v_count may
be defined as shown in Figure 5.7. Note that the substitution in the last call to
v_count also includes subexpressions of the subexpressions in Subs. The pur-
pose of this substitution is to count a violation only once. Also note that it is
easy to count the number of violations produced thus far during the bottom-up
synthesis of an expression and to cut off when this number becomes too big. The
number of expressions of size s that contain at most v violations often grows
rapidly with v.

98



Example. Assume that expressions are synthesized using the components
{ Xs, g1, g2, g3, g4 }, that the type of Xs is int and that the type of each
giis int —> int. Also assume g1=g3 and g2=g4. The number of expressions of
size s with 0 violations is 2°~! whereas the number of expressions with at most
1 violation is 2571 4+ (s — 1) - 271 = 5. 271, The number of expressions with
at most v violations is 257! ~Z§:0(s;1). O

An empirical observation is that the best synthesized expressions normally
contain no more than a few violations, which means that the number of ex-
pressions, that need to be synthesized and examined, can be greatly reduced by
focussing on expressions with few violations. Recall that N is the number of
expressions to be synthesized. For example, the synthesis algorithm could strive
to produce 0.25N expressions with 0 violations, 0.15N expressions with exactly
1 violation and 0.1N expressions with exactly 2, 3, 4, 5, 6 or 7 violations.

Another problem with equivalence checking is that it requires too much time
per synthesized expression. For example, we expect that the average synthesis
time per expression would increase at least 10 times for the current implementa-
tion of ADATE if we employed sample value based equivalence checking. Since
synthesized expressions typically are very small, the reduced branching factor
would not compensate this increase, at least not for the inferences tried so far.
However, we may choose to include such equivalence checking in future versions
of ADATE, particularly if the ability of searching large expression spaces is to
be improved.

5.3.2 Randomization

The goal with randomized expression synthesis is to pick only one or a few
expressions in each equivalence class. For example, assume that N expressions
are to be chosen from an expression space with total cardinality 7. Let D
be the cardinality of the equivalence class that contains desirable expressions.
Randomized expression synthesis is primarily useful for big D. Assume that we
choose expressions according to a uniform distribution on the expression space.
For each random choice, the probability of choosing a desirable expression is
D/T. If we make N choices, the probability that we choose at least one desirable
expression is one minus the probability that we do not choose any desirable
expression 1.e.,

D
1—(1—-=)
(1-2)
. Let us define k so that N = kT/D and assume that T/D is large, which means

that the probability is

L= (1= 2B =1 ((1-

- )P) sl — ek

U|’ﬂ| —

For example, if we choose N so that N = 5T/ D, we will try at least one desirable
expression with a probability greater than 99.3%.
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Assume that a finished program is built from n different synthesized expres-
sions and that we need to make n sequential choices of synthesized expressions
to obtain this program. Also assume that an appropriate choice of each one of
these expressions is found by random expression synthesis with the probability
1 — e™* and that the choices are so independent that the the probability of
finding n appropriate choices is (1 — e~*)". If we want this overall probability
to exceed a confidence limit p, we have

eTh<1— u%,
which gives
k> —1In(l-— u%).

Assume that n is large and that p is close to 1, which means that 1 — u% is
close to 0. A first order Maclaurin series expansion gives

Ly

n?
Ignoring O(1/n?) yields

1
k> —ln(—%) =Inn—In(—Inpu).

For example, with ¢ = 0.95, we have & > Inn+2.97. Even for very big programs
i.e., large values of n, we can choose reasonably small k. For example, if the
final program consists of one million synthesized expressions, we obtain 95%
confidence with £ = 16.8.

The ratio T/D indicates the hardness of an expression synthesis problem.
In practice, this ratio varies widely.

Example. Let us add the *a 1list variable ¥s to the components in the first
example in Section 5.1 in order to obtain a more realistic expression synthesis
problem. Thus, the components are Xs, Ys, nil and @. Let the expression space
consist of all expressions of a size not exceeding sy ax. Assume that the function
[ is such that [(F) is the preorder listing of the function and variable symbols
in an expression £ with all occurrences of nil and @ removed e.g.

[(Xse(nileys)) = [Xs,Ys].
The equivalence classes are given by the equivalence relation eq defined by
6q(E1, Ez) = (Z(El) = I(Ez))

We will now examine the ratio

T(Smax)

(Smax, L) = m,
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Figure 5.8: The total cardinality as a function of size.

where L is the length of the [-value of the class of desirable expressions.
It is easy to see that

(5max—1)/2 _; .
3itt 21
Tloma) = 2 i+1<i)'
i=0

For a given expression size s such that the number of leaves, (s 4+ 1)/2,
is greater than or equal to L, the number of combinations of the leaves of a

desirable expression is ( (s +L1)/2 ) The number of desirable expressions

i+1 1 24
L i+1 1 ’
which means that

(omeDI2 /i) 1 (9
s E () 1 (2)

i=L—1

with ¢ internal nodes 1s

Figure 5.8 shows log,y T'(8max ) for 1 < smax < 31. Figure 5.9 shows log; o 7(Smax, L)
for 1 < smax < 31 with one curve for each L in {1,2,..., 15}. Thus, Figure 5.8
shows the number of expressions that need to be synthesized with exhaustive
search whereas the curves in Figure 5.9 show the number of expressions gener-
ated by random search divided by a small constant. For example, for sy« = 30,
the exhaustive search would produce about 10'* expressions whereas we would
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Figure 5.9: The hardness of random synthesis as a function of size.

expect the randomized search to produce between 10* and 10® expressions de-
pending on L and k. Note that D(smax, L) varies widely with L. O

A fundamental problem with randomized expression synthesis seems to be
that we do not know D. However, using the simple strategy described below,
this lack of knowledge causes the expected run time to be multiplied by no more
than a small factor. We assume that both » = T/D and T have approximately
exponential growth i.e., r & Bi™>* and T' & B;™* for constant branching factors
B, and Bp. Practical expression synthesis problems are so hard that we can
assume B, > /2 i.e., min(B,) = V2.

Our search strategy is as follows. Given N, i.e., the number of expressions
to be synthesized, we choose spax to

ﬂogmin(Br) N—| =2 |—10g2 N—| .

We only synthesize expressions of sizes given by the set ¢ which is the set of all
sizes s such that there exists expressions of size s and 1 < s < spyax. Let v(s)
be the number of expressions of size s that are to be synthesized. Obviously,
we require N = Y _v(s). Our strategy is to distribute N uniformly on ¢ i.e.,
choose v(s) to | N/#0c] for each s in 0.

Example. If N = 10° and the components are Xs, Ys, nil and @, we obtain

o=1{1,3,57,...,2[log, 10°] — 1} = {1,3,5,7,..., 33}

and

v(s) = |10°/17] = 5882.
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Even if we actually did know D and used this knowledge to determine v(s),
we would certainly have v(s) < N for all s. Thus, no v(s) value decreases by
more than a factor 1/(2[log, N) just because we do not know D. Note that
2[log, N is an upper bound. The average performance of randomized search
is better, but difficult to determine.

Recall that the confidence interval of randomized search is determined by the
factor k, which we defined so that N = kr. The uniform distribution strategy
gives a k-value that varies with size. We “over-sample” small sizes, which gives
a high k-value and high confidence. The space of expressions of a size close to
Smax 18 sampled more sparsely, which gives low k£ and low confidence. We let k
be determined implicitly in this manner and do not try to compute k. Here 1s
an example that illustrates “over-sampling”.

Example. With N = 10° and the components Xs, Ys, nil and @, we
obtained v(1) = 5882. Assume that exactly one of the three expressions of
size 1 is desirable, which means that k = 5882/3 for size 1. The probability of
finding a desirable expression of size 1 is

O

1— (%)5882 ~1— 10—1036.

Intuitively, over-sampling provides extra insurance against extremely bad
luck. One may gain a factor of two or three by trying to avoid over-sampling.
Since the gain is small, we do not discuss how to avoid over-sampling.

The algorithm for randomized expression synthesis chooses v(s) random ex-
pressions according to a uniform distribution on the space of all expressions of
a given size s. One way of choosing a random expression is as follows.

1.

Let ¢(s) be the cardinality of the space of expressions of size s, i.e., t(s) =

T(s)—T(s—1).
Choose a random number 5 according to a uniform distribution on {1,2,...,¢(s)}.

Convert 7 to the corresponding expression according to some suitable enu-
meration of the space of expressions of size s.

The most difficult problem is how to enumerate the expression space. Here is an
example of randomized synthesis with top-down enumeration of the expression
space.

Example. We want to synthesize expressions of type (int*int) list using
the following components.

X :
Y :
+ o

Ls :
nil :

int

int

int*int -> int

(int#*int) list
’a list
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’a * ’a list -> ’a list
@ : ’a list * ’a list -> ’a list

Let t( Ty, s) be the number of expressions of type Ty and size s. We now choose
to define the size of an expression to be the number of occurrences of variables
and functions, including all occurrences of implicit tuple constructors. Thus, the
size of Xs@Xs is 4, not 3. The components above give the following definition of
t.

t(int, 1) =
t(int,s) = t(lnt*lnt s—1) when s > 4.
t(int*int,s) = > I ft(lnt i) -t(int,s — 1 — i) when s > 3.
t((int*int) list, 1) =2.
t((int*int) list,s) =) ;_ f’t(int*int i) -t((int*int) list,s —2—4)+
Sz 13 t((int*int) list,¢)-¢((int*int) list,s — 2 — )

when s > 4.

If none of these equations apply, t( Ty, s) is 0. Note that each summation corre-
sponds to a component. For example, the first summation in the last equation
corresponds to :: whereas the last summation corresponds to @.

Before starting random synthesis, we tabulate ¢ in order to allow quick com-
putation of ¢( Ty, s). The table for s < 22 is shown in Figure 5.10. Using ¢, it
is easy to convert an order number 7 to the corresponding expression. We will
now discuss the definition of a function nat_to_exp such that the value of

nat_to_exp(7y,s,n)

is the expression of type Ty and size s with order number 7. In order to simplify
the definition, we let 0 be the first order number. Assume that Ty is (int*int)
list. If s = 1, we must have n = 0 or n = 1, where we can say that n = 0
corresponds to Xs and that p = 1 corresponds to nil. If s > 4 the root is :: if

s—3
<Y t(intxint, i) {((int*int) 1list,s—2— i)
i=1

and @ otherwise. Assume that the root is @. Let 5’ be
Z int*int,¢) - ¢((int*int) list,s—2 — ).

Then, we compute the greatest size s’ such that

s'—1
W — 3 t((int*int) list,i)-{((int*int) list,s —2—i) >0
i=1
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s | t(int,s) | t(int*int,s) | ¢{((int*int) list,s)
1 2 0 2
2 0 0 0
3 0 4 0
4 4 0 4
5 0 0 0
6 0 16 8
7 16 0 16
8 0 0 0
9 0 80 80
10 80 0 80
11 0 0 32
12 0 448 672
13 448 0 448
14 0 0 640
15 0 2688 5376
16 2688 0 2816
17 0 0 8704
18 0 16896 42240
19 16896 0 20992
20 0 0 100352
21 0 109824 329984
22 109824 0 190208
Figure 5.10: Expression space cardinality as a function of size and type.
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and set 1" to this difference. Let 1 and 5, be the order numbers of the left and
the right subtree respectively. If we write 1" as

m - t((int*int) list,s —2—s') + 1,
we get
m = |7’ /t((int*int) list,s — 2 — )]

and
nr = 1 mod t((int*int) list,s —2 —s').

The left subtree is
nat_to_exp((int*int) list,s’ ).
The right subtree is
nat_to_exp((int*int) list,s —2—s' n,).

O

We have only discussed the definition of nat_to_exp for the components in
the example above. It is somewhat tedious, but not too difficult, to give an
implementation of nat_to_exp that is parameterized by the components. The
current version of ADATE does not employ random synthesis since the enumer-
ative heuristic search presented in Section 5.2 suffice for the small expression
synthesis problems that we have encountered in practice.
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Chapter 6

Synthesis of Compound
Transformations

Recall that a compound transformation is a sequence #;...%t4; where each
atomic transformation ¢; is one of the following.

R. Replacement.

REQ. Replacement that does not make the program “worse”.
ABSTR. Abstraction.

CASE-DIST. case-distribution.

EMB. Embedding.

6.1 Compound Transformation Forms

The choice of an atomic transformation ¢;, ¢ > 2, depends on the previously
chosen transformations #1...t;_1. No transformation except the first may be
chosen freely. The dependency is specified with so-called coupling rules which
are employed to produce all possible compound transformation forms.

Example. Consider the last compound transformation in the inference of
sort presented in Subsection 4.1.2. The form of this compound transformation
is ABSTR REQ REQ R where both the REQs and the R are coupled to the
ABSTR as described below. O

Assume that t;...¢;_1 have been chosen so far and that ¢; is to be chosen
next. A “weak” coupling rule ' — " means that {; may be chosen to " if
t' e {t1,...,ti_1}. A “strong” coupling rule ¢ = ¢’ means that ¢; may be
chosen to t if t' = t;_1. When a rule ¢ — t"” or t/ = t" is used with t’ equal
to some tg, t; is sald to be coupled to t;. If a ¢ is followed by an ! mark in a
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coupling rule, no subsequent transformation may be coupled to t”. No rule may
be used more than once during the production of a form, which means that there
are a finite number of possible forms. These forms are computed immediately
after system start up and remain unchanged during the entire execution.

Transformation ¢; is chosen to R, REQ, ABSTR, CASE-DIST or EMB. A
form is required to have tx; = R and t; # R for each i < #t¢. Each transfor-
mation ¢;, 7 > 2, is chosen with one of the coupling rules below. Each ¢’ in a
coupling rule is constrained by the applicability requirement listed after each
rule.

1. REQ = R. The R is applied in the expression introduced by the REQ.

2. REQ = ABSTR. The ABSTR is such that the expression introduced by
the REQ occurs in the H(Fy, ..., F,) used by the ABSTR but not entirely
in H.

3. ABSTR — R. The R is applied in the the right hand side H(V1,...,V,)
of the let-definition introduced by the ABSTR.

4. (a) ABSTR — REQ! or (b) ABSTR — REQ! REQ!. The REQ(s) are
applied in H(Vy,..., V).

5. ABSTR = EMB!. The let-function introduced by the ABSTR is embed-
ded.

6. CASE-DIST = ABSTR. The ABSTR issuch that the root of H(E1, ..., Ey)
was marked by the CASE-DIST.

7. CASE-DIST = R. The R is such that the root of the expression Sub,
which is replaced by the R, was marked by the CASE-DIST.

8. EMB — R. The R is applied in the right hand side of the definition of the
embedded function.

Combining these 8 rules in all possible ways yields the 22 forms shown in
Figure 6.1. For example, the form ABSTR REQ REQ R is produced by first
choosing #; to ABSTR and then applying coupling rules 4b and 3. The 8
coupling rules above were found empirically and may need to be extended.

Since coupling rules normally focus a compound transformation within a
small part of the program, they are particularly important for the transforma-
tion of very large programs. For example, assume that a program contains N
subexpressions and that an ABSTR is applied so that H(V1,...,V,) contains
N p g subexpressions. Consider the form ABSTR REQ REQ R. Assume that
each of the last three transformations needs to choose exactly one subexpression.
Without coupling, there would be about N3/2 such choices whereas there are
about N?BHS/Q choices with coupling, which means that coupling is particularly
important for small N prg/N ratios. The denominator 2 is used since the first
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R
EMB R

REQ ABSTR REQ R

REQ ABSTR REQ REQ R

REQ ABSTR EMB REQ R

REQ ABSTR EMB REQ REQ R
REQ ABSTR EMB R

REQ ABSTR R

REQ R

CASE-DIST ABSTR REQ R
CASE-DIST ABSTR REQ REQ R
CASE-DIST ABSTR EMB REQ R
CASE-DIST ABSTR EMB REQ REQ R
CASE-DIST ABSTR EMB R
CASE-DIST ABSTR R
CASE-DIST R

ABSTR REQ R

ABSTR REQ REQ R

ABSTR EMB REQ R

ABSTR EMB REQ REQ R
ABSTR EMB R

ABSTR R

Figure 6.1: All forms.
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REQ and the second REQ may be interchanged without changing the result of
a compound transformation. The actual number of choices is often smaller than
N?EHS/Q since REQs only are found for some of the N pfr¢ subexpressions.

6.2 Syntactic Checking and Pruning of Pro-
grams

In addition to the checks performed during the synthesis of an atomic transfor-
mation, there are heuristic checks that depend on the preceding atomic trans-
formations. We have chosen to apply these checks during the synthesis of com-
pound transformations. The current implementation of ADATE employs the
following two checks.

1. Static case checking.
2. Pattern occurrence checking.

We will now discuss these two checks.

6.2.1 Static case Checking

Consider a function defintion of the form
fun g(Vy,...,V,)=RHS.

A subexpression of RHAS that does not depend on Vi, ...V}, is said to be static.
The static case check does not allow static case-analyzed expressions since the
outcome of a static case-analysis is the same for each recursive call to g.

Example. Consider the expression X2<X1 that is case-analyzed in both of
the following two programs.

fun sort Xs =
case Xs of nil => Xs
| X1::Xs1 =>
let fun g V1 =
case sort Xsl1 of nil => V1
| X2::X82 => case X2<X1 of true => ? | false => Xs
in
g(sort Xsi)
end

fun sort Xs =
case Xs of nil => Xs
| X1::Xs1 =>
let fun g V1 =
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fun static_case_check(D as {func,pat,exp,...} : dec ) : bool =
scc(exp,vars_in_pat pat)
and scc(E,Vars) =
case E of
app_exp{args,...} => forall(fn Arg => scc(Arg,Vars), args)
| case_exp{exp,rules,...} =>
not(null(intersection(Vars,zero_arity_apps exp))) andalso
scc(exp,Vars) andalso
forall( fn{pat,exp} => scc(exp,vars_in_pat pat @ Vars), rules )
| let_exp{dec_list,exp,...} =>
scc(exp,Vars) andalso
forall(static_case_check,dec_list)

Figure 6.2: The implementation of static case checking.

case V1 of nil => Xs

| X2::X82 => case X2<X1 of true => ? | false => Xs
in

g(sort Xsi)
end

The occurrence of X2<X1 in the first program is static whereas the occurrence
in the last program is not static. O

The static case check is quite simple to implement as shown in Figure 6.2.
The auxiliary function zero_arity_apps returns the leaves in an expression.

To avoid too much pruning, the static case check is only used when the
coupling rule ABSTR — R is applied. Just before the R, ADATE requires that
the current version D of the let-definition introduced by the ABSTR is such
that

static_case_check D = true.

6.2.2 Pattern Occurrence Checking

The goal with pattern occurrence checking is to eliminate some futile REQs. A
REQ), that preserves semantics no matter what context it appears in, is rather
meaningless. For example, since addition of integers 1s commutative, it is rather
futile to replace X+Y with Y+X. Subsection 4.1.2 showed some REQs that are not
futile. For example, the REQ that replaces an occurrence of the int list
variable Xs with X1::nil, where X1 = hd Xs, makes sense since the values of
the occurrence of Xs might not remain singletons when the program is further
transformed.
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fun remove_as Pat = exp_map(
fn as_exp{var,pat,exp_info} =>
app_exp{func=var,args=nil,exp_info=exp_info}
| Sub => Sub,
Pat )

fun prohibited_exps Pat =
let val As_subs =
exp_filter(fn as_exp{...} => true |
in
map(fn as_exp{pat,...} => remove_as pat, As_subs)
end

=> false, Pat)

Figure 6.3: Two auxiliary functions for pattern occurrence checking.

Consider a case-expression of the following form.
case A of Matchy => E1 | ... | Match, => E,.

Inside Fj, it is obvious that A and Match; are equivalent. Pattern occurrence
checking only allows the smallest of the expressions A and Match; to occur in an
expression introduced by a REQ inside E;. Note that it is necessary to convert
Match; to an ordinary expression by removing as-patterns from Maich;.

In order to implement pattern occurrence checking, we need the two help
functions in Figure 6.3. Recall that exp map and exp_filter are analogous to
the functions map and filter on lists. It is easy to see that remove_as Pat
is Pat with all subpatterns of the form V as Sub replaced by V. Since the
subpattern Sub has a greater size than the variable V in an as-pattern V as
Sub, we say that Sub is prohibited. The function prohibited_exps finds all
such prohibited subpatterns in a pattern.

Assume that fun £ Pat = RHS is the program being transformed and that
Top_pos is the position of a REQ in RHS. Pattern occurrence checking is per-
formed with the call

pattern_occurrence check( RHS, prohibited_exps Pal, Top._pos )

for each REQ position Top_pos. Figure 6.4 shows the definition of pattern -
occurrence_check. Like the static case check, the pattern occurrence check is
applied just before the R in the coupling rule ABSTR — R.
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fun pattern_occurrence_check( E : exp, Prohibited : exp list,
Pos : pos ) : bool =
let
fun g _ = nil
fun f(Pats,E_sub,P::_) =
case E_sub of
case_exp{exp,rules,...} =>
if P=0 then
Pats
else
let val Pat = #pat(nth(rules,P-1))
val Stripped_pat = remove_as Pat
in
(if exp_size exp < exp_size Stripped_pat then
Stripped_pat
else
exp)
prohibited_exps Pat © Pats
end
| _ => Pats
val Pats = pos_fold(f,g,Pos,E)
val E_sub = pos_to_sub(E,Pos)
in
forall( fn Pat => null(exp_filter(fn Sub => Sub=Pat, E_sub)),
Prohibited@Pats )
end

Figure 6.4: The implementation of pattern occurrence checking.
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6.3 Using the Forms to Produce Programs

Given a current program P and a form #;...%14;, P is the input of atomic
transformation ¢;. The output program from atomic transformation ¢; is the
input of atomic transformation ¢; 41 for each 7 in {1,... #t — 1}. The output
program from ty; is sent to the “population control” algorithm described in

Chapter 7.

6.3.1 Cost Limit Computation for Forms

Assuming that the cost limit before each ¢; is Cost 1imit; and that each ¢; has
cost C;, we have Cost_limit;y; = Cost_limit;/C;. If there was no pruning
due to static case and pattern occurrence checking, it would be possible to use
the same Cost_limit; for all forms. Let Wi, be the work goal for all forms
taken together. Let Np, ., be the number of forms i.e., 22. Since pruning is
employed, we have chosen a work goal of Wyot /Ng . Programs for each form.
Thus, all forms are supposed to produce equally many programs.

The form cost limit Cost_1limit; is deepened iteratively with a branching
factor 3. The choice of branching factor i1s discussed in Chapter 7. The first
iteration has Cost_1imit; = 100. This means that iteration number ¢ has
Cost_limit; = 100-3?, where it is assumed that the first iteration has number 0.
The first iteration is run for all forms. When more than Wit /Niyppg Programs
have been produced using a specific form during some subsequent iteration, the
form is not used any more to produce children of the current program P.

Recall that t4; always is R and that there is no ¢ < #t such that #; is R.
Therefore, the expression synthesis algorithm does not need to normalize the
costs of synthesized expressions, which means that it is reasonable to choose the
actual cost of synthesized expression number i to i. As discussed in Section 4.2,
atomic transformation algorithms other than the R algorithm, that employ ex-
pression synthesis, contain their own normalization methods and do not need
normalized costs of synthesized expressions.

Since we choose the cost of synthesized expression number ¢ to ¢, a form
cost limit Cost_1imit; would normally lead to the production of Cost 1limit;
children if no pruning is used. With static case and pattern occurrence pruning,
there may be a production of only 0.1Cost_1imit; children. However, there are
combinations of current programs and forms such that the production is even
lower. For example, the form EMB R cannot be used to produce any children
at all if the current program P does not contain any let-function. Therefore,
the maximum Cost_1limit; to be used during the iterative-deepening is chosen
to QOWtOt/Nforms'
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6.3.2 Computation of REQ, EMB and CASE-DIST Cost
Limits

We only discuss the computation of REQ cost limits below, but EMB and

CASE-DIST cost limits are computed in exactly the same way. Therefore, all

occurrences of REQ in the following discussion may be replaced with EMB or

CASE-DIST as appropriate.

Recall that a REQ_cost_ 1imit determines how much work that should be
spent on finding REQ transformations. Since the cost of synthesized expression
number ¢ is ¢, the amount of work that will be spent on finding REQs equals
the REQ_cost_1imit. If the REQ_cost_ 1limit is too small, we run the risk of
missing REQs with good pepgq values. If the REQ_cost_1limit is too large, REQ
transformations will require a too large fraction of the overall execution time.

Given a form t1...t;...t4:, where t; is REQ, let w(Cost_1limit;) be the
expected work, excluding the work spent on finding REQs, that will be done
using the remaining part ¢; ...fx; of the form and cost limit Cost 1imit;. If
t1 ...ty contains only one REQ sequence, we choose REQ_cost 1imit for ¢; to
w(Cost 1imit;). Otherwise, we choose it to 0.7w(Cost 1imit;). The reason
that the latter REQ_cost_1limit is slightly lower is that we do not want the total
work spent on finding REQs for a given form to be too much greater than the
total other work for the form.

The remaining question is how to compute the expected work w(Cost_1imit;).
Let o; be the sum of the Cost_1imit; cost limits that have been used during
previous employments of the form part ¢;...%4;. Let o} be the corresponding
sum of the non-REQ work that actually was done. If ¢} < 100, we assume that
it is too small to be used for statistical forecasting and choose w(Cost 1limit;)
to a default value of 0.3Cost 1imit;. Otherwise, we choose

L o 1 L
w(Cost_1imit;) = max(—, —)Cost limit,,
a; 20
where the last argument of the max function ensures that a reasonable amount
of work will be spent on finding REQs even if ¢} /o; is quite small i.e., if pruning
has been hefty. Separate ¢} and ¢; sums are maintained for each ¢; that is a REQ
in each form. When the compound transformation algorithm is restarted with a
new current program P, all such sums are initialized to 0 in order to adapt them
individually to each program P. Also note that the iterative-deepening of the
form cost limit Cost_1imit; contributes to good estimation of w(Cost_limit;).

6.3.3 Match Error Handling

Assume that program P41 is an output from an atomic transformation ¢; in
some form ?;...tx;, where t4; always is R. The expression that is inserted
into Py, by ty; may contain special Nof_activated constants as described in
Subsection 5.2.4. These constants, however, may become activated in Pgiy;.

115



Example. Consider the synthesis of the list concatenation function @ using
the single sample input

( [1,2,3,4,5], [6,7,8,9] ).

Assume that #¢t = 1, t1 = R and that P; is fun @(Xs,Ys) = ?. The best
synthesized expression produced by syntn is

case Xs of nil => Noi_activated | X1::Xs1 => X1::0(Xs1,Ys).
This expression is produced from the following unfinished case-expression.
case Xs of nil => Unknown; | X1::Xs1 => Unknowns.
The program used for activation checking is

fun @(Xs,Ys) =
( case Xs of nil => Unknown; | X1::Xs1 => Unknowns; ? )

Unknowny will be replaced by Not_activated whereas Unknowns will be re-
placed by synthesized expressions, for example X1::0(Xs1,Ys). The resulting
program 1s

fun @(Xs,Ys) =
case Xs of nil => Not_activated | X1::Xs1 => X1::0(Xs1,Ys)

Due to recursive calls, the Not_activated constant will be activated during
the execution of this program. This is called a match error. O.

When a match error has been detected during the execution of a program,
ADATE tries to fix the error by replacing the occurrence of Noit_activated, that
caused the error, with synthesized expressions. Frequently, these expressions
are supposed to handle a recursive “base case”. The current implementation is
not able to handle more than one match error at a time.

Assume that M match errors and W programs have been produced so far.
The cost limit employed when replacing a Noi_activated constant is chosen to
0.1W/(M+100) in order to avoid spending too much time on such replacements.
For example, if we on average have one match error per five hundred programs,
the cost limit will be about fifty for large W and M. Both W and M are
initialized to 0 when the compound transformation algorithm is restarted with
a new current program P.

Since the cost limit depends only on the match error ratio W/(M + 100),
this scheme for handling match errors may not be sufficiently general. It was
primarily designed to handle quite small recursive base cases. However, there
is no general rule saying that recursive base cases have to be small, but they
do tend to be small in practice. A more general scheme would be to make the
cost limit directly dependent on Cost 1limity; and the order number of the
synthesized expression inserted by the atomic transformation £, which always

1s R.
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Chapter 7

The Overall Search for

Programs

The algorithm for overall search maintains a population of programs. It re-
peatedly selects a program from the population, sends it to the algorithm for
synthesis of compound transformations and receives transformed children pro-
grams from this algorithm. We say that such a selected program is expanded.

7.1 Population Structure

Initially, the population consists of a single copy of the initial program i.e., a pro-
gram of the form fun £ Pat = 7, where the tuple pattern Pat is automatically
constructed by ADATE using the domain type of £.

The population is partitioned into classes such that all programs in a class
contain the same number of case-expressions. Each class is partitioned into
subclasses such that all programs in a subclass contain the same number of
let-expressions. The purpose of this partitioning is to maintain diversity by
ensuring that programs with low case or let counts are not “killed” by superior
programs with higher case or let counts.

Each subclass contains three programs. Program number ¢ in subclass num-
ber ! of class number ¢ is the best program found so far according to program
evaluation function pe; that contains exactly ¢ case-expressions and [ let-
expressions.
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7.2 Selection and Insertion of Programs

7.2.1 Selection

Let (¢p,lp) be the case and let counts of a program P in the population. Let
II(P) be the set of all programs in the population with (e, () values such that

e<cpV(e=ecp Al <lp).

The program to be expanded next i1s chosen to a program P with a minimum
(¢p,lp) value such that P is better than all programs in II(P) according to at
least one program evaluation function pe;. Of course, P is expanded only once
using the same Wi work goal.

Assume that Chest, is the case count of the best program found so far as
judged by pe;. ADATE tries to avoid futile expansions by only expanding
programs with a case count that does not exceed

fmax(l.?cbestl, 1'26b65t3)-|'

The case count Chest, i1s omitted since pes prefers low call count to small syn-
tactic complexity. If the arguments of the max function above also included
L.2¢pegq, this preference may lead to very big programs through sequences of
R-transformations that unfold function calls.

7.2.2 Insertion

Let @ be a program that is a candidate for insertion into the population i.e.,
that has been received from the compound transformation algorithm. First, we
apply a quick rejection test to ). This test is meant to quickly determine if )
is good enough to be worth further and more time consuming processing.
fails the quick rejection test if and only if it is worse than all programs in the
subclass (cqg,lg) according to the program evaluation function peppq.

If ) passes the test, it is subjected to dead code elimination and elimination
of redundant definitions of let-functions, which yields a program Q’. A let-
function g is considered to be redundant if and only if it is non-recursive and if
unfolding of all calls to g and removal of the definition of g does not increase
the syntactic complexity of the program.

We choose to discard @’ if it is not better than all its proper ancestors
according to at least one program evaluation function pe;. The concept proper
ancestor is defined as follows. If @) is produced from P using a compound
transformation, P is the parent of (). A proper ancestor of () is either P or one
of P’s proper ancestors.

The next question is if any of the three programs in the subclass (cqr, o)
should be replaced by @’. If there is any 7 such that @’ is better than program
number ¢ in the subclass according to program evaluation function pe;; ADATE
replaces program number 7 with @’.
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7.3 Iterative-Deepening Search

The work goal Wit 1s deepened iteratively using a branching factor «. Iteration
number 0 has Wiot = 10000. Iteration number i has Wiot = 10000a’. During
an iteration, programs are selected from the population and inserted into the
population as described above. An iteration terminates when no program in the
population is eligible for expansion.

Recall that the algorithm for synthesis of compound transformations uses
iterative-deepening of the initial cost limit Cost 1imit;. An “overall” iteration
with a given work goal Wi, will be called a primary iteration whereas an
iteration made by the algorithm for synthesis of compound transformations will
be called a secondary iteration. Note that many secondary iterations are made
during one primary iteration.

We will now discuss the choice of the primary branching factor « and the
secondary branching factor . We assume that there is a minimum cost C'
such that a desirable program certainly will be found if Wit is so large that
secondary iterations with Cost 1imit; > C' are run completely. Remember that
a secondary iteration using a given form is terminated 1.e., not run completely,
when the number of programs that have been produced with the form exceeds
Wiot/Niorms: Assume that there is a critical parent program P such that
sufficiently good children can be found only if Cost 1imit; > C. Intuitively, P
is the bottle-neck of a genealogical path that leads to a desirable program. The
critical secondary iterations are the ones that expand P.

Let n be the number of the last critical secondary iteration, which is the one
that produces a sufficiently good child. To simplify the following discussion, we
assume that both the first primary iteration and the first secondary iteration
are rTun with an initial limit of 1 instead of 10000 and 100 respectively. This
means that secondary iteration number 7 is assumed to have Cost_limit; = &.
Obviously, n is the smallest value such that 57 > C', which impliesn = [logﬁ 1.

The degree of pruning made by the algorithm for synthesis of compound
transformations depends on the current program, the form and the Cost_1imit;
value of the current secondary iteration. For each form number i, we as-
sume that the ratio between the number of programs synthesized using form
¢ and Cost_1limit; rather rapidly approaches some limit 4; when Cost_limit;
grows 1.e., that a constant fraction 1 — v; of the programs are pruned for large
Cost limit; values. One could relax this assumption and for example study
the effects of oscillating ratios. However, based on limited experiments, we feel
that such effects are negligible and do not study them here.

Since the last iterations produce many more programs than the first, we
can assume that the number of programs produced by the n first secondary
iterations using form i is

g -1
-1

v B 4+ BT =y
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Let us now for a moment assume that no pruning is used and that the first
secondary iteration is run with cost limit ;. It is easy to see that this situation
is equivalent to using pruning and limit 1 for the first secondary iteration. Since
the expected overall number of produced programs is essentially the same even
if the initial cost limit for a given form is any reasonable number, say between
1073 and 103, we can ignore pruning altogether. In the following discussion, we
therefore assume 74; = 1 for all i.

Let m be the number of the first primary iteration that may be good enough

l.e., with
n—1
a™ > b .
-1
Let m’ be the number of the first primary iteration that is certain to be good
enough i.e., with

m' /Rl —1
= 75-1
Primary iteration number m is such that the cost interval ]!, 3"] may be

only partly covered whereas this interval will be fully covered during primary
iteration number m’. It is easy to see that

«

g -1

me |—10g0z 6 _ 1 —|
and o
nTh—1
m/ ~ ﬂoga %] .

Let p; be the probability that primary iteration number 7 is the first one that
produces a sufficiently good child of P. The total work spent on expanding P
during iterations number 0,1,... ¢ 18

aftl — 1
a—1

The expected total work Wp(C, «, §) is

ul |
Z P
=m
The children programs produced by primary iteration number j are a superset of
the children programs produced by primary iteration number 7 — 1. This means
that the probability ¢;_; that a desirable program is not found during primary
iterations number 0, 1, ..., i—1 equals the probability that a desirable program is
not found during primary iteration number :—1. Assume that primary iteration
number ¢ is about to be started. The probability ¢;_; depends on how large a
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part of the interval |37 ~1, 37] that has been covered so far. Assuming that each
program in the interval is equally likely to be covered, we have

Cardinality of part covered so far

fi-t =27 Cardinality of the entire interval ’

which equals

max(0, min(3", o’ ! — ﬁ;__ll))ﬁ’%l . max(0, min(3", o=t — ﬁﬁn__ll))

671 _ Bn—l 671
Let r; be the probability that iteration number ¢ discovers a desirable program
even though iterations number 0,1,...,2 — 1 did not discover any desirable
program. Note that p; = ¢;_17r;, where we have

Cardinality of part only covered by iteration number ¢

r; = — - - - ,
" 7 Cardinality of part not covered by iteration number i — 1

which 1s

max(0, min(3", a® — ﬁﬁn__ll))ﬁ’%1 — max(0, min(#", o'~ — %))ﬁ’%l

B — =1 — max(0, min(f", ai=1 — H51)) 221

max(0, min(3", a® — ﬁﬁn__ll )) — max(0, min(3", o’ ! — ﬁ;__ll))

3? — max(0, min(”, a’~1 — ﬁn—_l))

We want to determine « and / so that the expected ratio Wp(C, o, 5)/C is
minimized. Therefore, we need to know the distribution of the random variable
C'i.e., the minimum “bottle-neck” cost. We assume that computers are so slow
that is unreasonable to have C' > 10® and that they are so fast that there is no
need to worry about C' < 10°. These computing speed assumptions motivated
choosing

1
K(X +105)

where K is a normalizing constant that equals

Pr(C=X)=

108

1
g ———— = 6.90875.
5

= X +10

Given « and f, the expected Wp(C, o, )/C ratio is

108

E(a,8) =Y Pr(C =X)

X=1

WP(Xaaaﬁ)
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2 4 6 8 10 12 14 16

Figure 7.1: A coarse map of E(«, 3).
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3 3.5 4 4.5 5

Figure 7.2: A fine map of E(a, 3).
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local

fun best_list_prunel(Min_call_count,Xs:best_type list) =
case Xs of
nil => nil
[ X1::Xs1 =>
if #call_count X1 < Min_call_count then
X1::best_list_prunel(#call_count X1,Xs1)
else
best_list_prunel(Min_call_count,Xs1)

in

fun best_list_prune(X1::Xsl) =
X1::best_list_prunel(#call_count X1,Xs1)

end (* local *)
Figure 7.3: The ML function for pruning Best list.

Figure 7.1 shows a contour plot of E(a, 3) for 2< a < 16 and 2 < 3 < 16
with « on the vertical axis and 8 on the horizontal axis. Black represents
the smallest E(a, 3) values whereas white represents the greatest values. By
studying the numerical data, we found that the region 3 < a <band 3 < g <5
contained the best F(«, 3) values. This region is shown in Figure 7.2, where
the best F(«, §) values are approximately located along the line o = 5. Since
smaller o and 3 values give less variance for the ratio Wp(C, o, 5)/C, we chose
a good («, B) value not too far from (0, 0), namely o = 3.88 and 5 = 3.77. Since
F(3.88,3.77) & 3.93, the average execution time of ADATE increases about 3.93
times because we cannot employ a fixed, minimum Cost_1limit; value.

7.4 Which are the Best Synthesized Programs?

Let perpq—min be the best peppq value of any program that has been found
so far. During the entire execution, ADATE maintains a list Best_1ist that
only contains programs with pe,yo = pepyo_min- Fach synthesized program is
considered for insertion into Best list. Let (S1,71),(S2,72),...,(Sh,Tn) be
the syntactic complexity and call count values of the programs in Best_list,
which is sorted so that (S1,71) < (S2,T2) < ... < (Sy,Ts). When a new pro-
gram with pe,po = peppg_min has been found, it is inserted into the appropriate
position in Best_1ist, which is then pruned so that the 77,75, ..., T, values are
strictly decreasing. The pruning function is shown in Figure 7.3. The purpose
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of this pruning is to ensure that a greater syntactic complexity always is com-
pensated by a smaller call count. When ADATE synthesizes a program with a
Perpg value that is better than any other pey,. value found so far, Best 1ist
is set to the singleton list that only contains this program.

The execution of ADATE is viewed as a perpetual process i.e., the more
execution time the better. It is up to the user to decide when execution is to
be terminated. The output of ADATE is the contents of Best 1ist.
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Chapter 8

Sample Specifications,
Inferred Programs and
Run Times

Polynomial simplification. This problem was discussed in Section 3.4. The
specification consisted of

1.

5.

The type int and the type declaration datatype ’a list = nil |
of ’a * ’a list.

The primitive = : int * int -> bool.

The type of the function to be inferred i.e., (int*int) list -> (int*int)
list. Recall that a polynomialis represented as a list of (coefficient,exponent)
pairs.

. The following sample inputs.

L =11
IL=1@,2)]
Is =1 (@3,2), (5,2), (12,2), (11,2) ]

Iy = [ (67,0), (71,4), (37,3), (117,1), (13,2), (19,4), (31,0),

(83,1), (67,3), (87,4) ]

The output evaluation function shown in Figure 3.1.

Note that these 4 sample inputs were chosen to facilitate incremental infer-
ence. I 1s an empty polynomial. I consists of only one term. All terms in I3
have the same degree. I, is a “random polynomial”. Thus, I, Is and I3 are
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special cases which it may be advantageous to learn to simplify before trying to
simplify general polynomials such as I.

With this specification, ADATE inferred a polynomial simplification pro-
gram which below is shown exactly as it was printed by the system.

fun £ (V3_0) =
case V3_0 of
nil => V3_0
| (( V4996_0 as ( V4997_0, V4998_0 ) ) :: V4999_0) =>
let
fun gb011724_0 (V5011725_0) =
case Vb5011725_0 of
nil => (V4996_0 :: nil)
| (( v5000_0 as ( V5001_0, V5002_0 ) ) :: V5003_0) =>
case (V5002_0 = V4998_0) of
true => (( (V4997_0 + V5001_0), V4998_0 ) :: V5003_0)
| false =>
(V5000_0 :: gb011724_0( V5003_0 ))
in
g5011724_0( £( V4999_0 ) )
end

This program is equivalent to the one below in which identifiers generated
by the system have been replaced by more readable identifiers.

fun simplify Xs =

case Xs of nil => Xs

| (X1 as (Xi1c,X1le)) :: Xs1 =>

let fun g ¥s =
case Ys of nil => X1::nil
| (Y1 as (Yic,Yle)) :: Ys1 =>
case Yle = Xle of true => ( X1lc+Yic, Xle ) :: ¥si
| false => Y1 :: g ¥si

in
g(simplify Xs1)

end

The auxiliary function g, which was invented by the system, is such that the
call g Ys tries to merge X1 with a term in Ys

Rectangle intersection. This is one of the few problems for which an input-
output pair specification is adequate. The rectangles may be viewed as windows
occurring in a graphical user interface. The overlap between a foreground win-
dow and a background window needs to be updated when the latter is moved
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( Bp2x, Bp2y )

( Ap2x, Ap2y ) B

( Bpix, Bpily )

( Apix, Aply )

Figure 8.1: Two non-intersecting rectangles and their coordinates.

I
g/
Hiinjin
Nk
I

Figure 8.2: The set of input rectangles.

into the foreground i.e., made entirely visible. Each rectangle is represented by
a pair of points which in turn are pairs of integers specifying the coordinates of
the lower left and the upper right corners. Figure 8.1 shows the representation
of two rectangles A and B.

The specification contained

1. The type int and the type declaration datatype ’a option = nomne
some of ’a.

2. The primitive < : int * int -> bool.

3. The type of the function to be inferred. The type is

((int*int)*(int*int)) * ((int*int)*(int*int)) —>
((int*int)*(int*int)) option.

4. A set of 50 sample inputs consisting of each pair of rectangles such that
the big rectangle in Figure 8.2 is either the first or the second rectangle
and such that the other is one of the 25 small rectangles.

5. An output evaluation function that knows the correct output for each
sample input.

The value returned by a correct rectangle intersection program is none if
the two input rectangles do not intersect and some C if their intersection is the
rectangle C. After renaming, the inferred program is as follows.
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fun rect_is(I as (4 as (Apl as (Aplx,Aply),
Ap2 as (Ap2x,Ap2y)),
B as (Bpl as (Bpix,Bply),
Bp2 as (Bp2x,Bp2y)))) =
case Aplx<Bp2x of
true =>(case Ap2x<Bplx of true => none
| false =>
case Aply<Bp2y of
true =>(case Ap2y<Bply of true => none
| false =>
some((case Bplx<Aplx of true => Apix
case Aply<Bply of true => Bply
(case Bp2x<Ap2x of true => Bp2x
case Ap2y<Bp2y of true => Ap2y
| false => nomne)
| false => nomne

false => Bpix,
false => Aply),
false => Ap2x,
false => Bp2y)))

|

|

|

|
If two input rectangles A and B intersect, the output of this program is

some( (max(Apilx,Bpix),max(Aply,Bply)), (min(Ap2x,Bp2x),min(Ap2y,Bp2y)) )

This algorithm is not obvious even though both the algorithm and the specifi-
cation are simple.

BST deletion. The problem is to delete an element from a binary search tree
with integers in the nodes. The specification contained

1. The type int and the type declaration datatype ’a bin_tree = btnil
| bt_cons of ’a * ’a bin_tree * ’a bin_tree

2. The primitive < : int * int -> bool .

3. The type of the function to be inferred i.e., int * int bin_tree —-> int
bin_tree.

4. Eight sample inputs. Assume that the element X is to be deleted from the
BST Xs and that bt_cons(X,Ls,Rs) is a subtree of Xs. The inputs cover
the following four cases.

Ls Rs
btnil btnil
btnil bt_cons(_,_,_)

bt_cons(_,_,_) | btmnil
bt_cons(_,_,_) | bt_cons(_,_,_)

5. An output evaluation function that uses inorder listing and deletion for
lists to check that the correct element is deleted. Note that it is possible
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to define this function without knowing any good way to delete an element
from a BST. The output evaluation function oe uses the following auxiliary
definitions.

fun inorder bt_nil = nil
| inorder (bt_cons(RoXs,LeXs,RiXs)) =
inorder LeXs @ RoXs::inorder RiXs

fun depth bt_nil = 0
| depth(bt_cons(_,LeXs,RiXs)) = 1+max(depth LeXs,depth RiXs)

fun delete_one(_,nil) = nil
| delete_one(X,Y::Ys) = if X=Y then Ys else Y::delete_one(X,Ys)

Given input (X,Xs) and output Ys, oe checks that
inorder Ys = delete_one(X,inorder Xs) andalso depth Ys <= depth Xs.

If the depth requirement depth Ys <= depth Xs is omitted, ADATE infers
a BST deletion program that produces very unbalanced outputs. With the
depth requirement, the following program was inferred.

fun bst_del(I as (X,Xs)) =
case Xs of bt_nil => Xs
| bt_cons(RoXs,LeXs,RiXs) =>
case RoXs<X of true => bt_cons(RoXs,LeXs,bst_del(X,RiXs))

| false =>
case X<RoXs of true => bt_cons(RoXs,bst_del(X,LeXs),RiXs)
| false =>

let fun g ¥s =
case Ys of bt_nil => LeXs
| bt_cons(RoYs,LeYs,RiY¥s) =>
case LeYs of bt_nil => bt_cons(RoYs,LeXs,bst_del(RoYs,RiXs))
| bt_cons(RoLeYs,LelLeYs,RiLeYs) => g Le¥s
in
g RiXs
end

The most innovative part of this program is the let-expression, which de-
termines what to do when the element to be deleted has been found.

BST insertion. This problem is to insert an integer into a binary search
tree. In addition to the datatype-definition for binary trees, the specification
contained the relation < on integers. No auxiliary function was needed.
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List reversal. The specification contained the datatype-definition for lists.
An auxiliary function that inserts an element last in a list was inferred.

List intersection. The problem is to compute the intersection of two lists of
integers. The specification contained the datatype-definition for lists and the
relation = on integers. An auxiliary function, that checks if an element occurs
in a list, was inferred.

List delete min. The problem is to delete exactly one occurrence of the
minimum element in a list. The specification contained the datatype-definition
for lists and the relation < on integers. The sample inputs and the inferred
program were presented in Subsection 4.1.4.

Permutation generation. The problem is to compute all permutations of
a list of integers. The specification contained the datatype-definition for lists
and the function @ that concatenates two lists. The output evaluation function
measured the number of different permutations occurring in the output and
checked that the output only consisted of permutations. The inferred program
contains one auxiliary function.

List sorting. The specification contained the datatype-definition for lists and
the relation < on integers. The sample inputs were given in Subsection 4.1.1.
Subsection 4.1.2 contains the inferred program. Appendix B shows the complete
output of ADATE for this sample inference.

List splitting. The specification contained the datatype-definition for lists.
The output evaluation function was described in Section 3.3.

The run times shown in Table 8.1 were obtained using the Standard ML
of New Jersey compiler, version 0.93, and IBM RS6000-580 and RS6000-590
workstations running only ADATE and AIX processes. Most of the experiments
were run on the 590 but some were run on the 580. For the latter experiments,
the table shows the equivalent run times on the 590. We found that the ratio
between 580 and 590 run timesis 1.5. The equivalent times on SUN SparcStation
10’s or DECStation 5000’s are two to three times longer.

Note that the table shows the times required to find correct programs. In
general, there is no guarantee that a correct program also is small and efficient.
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Table 8.1: Run times.

Problem Run time in hours:minutes
Polynomial simplification 22:56
Rectangle intersection 4:35
BST deletion 70:51
BST insertion 16:23
List reversal 0:4
List intersection 5:10
List delete min 12:7
Permutation generation 22:35
List sorting 0:27
List splitting 0:3
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Chapter 9

Related Work

We will discuss the following four categories of work that is related to ADATE.
1. Program synthesis using computation traces.
2. Inductive logic programming.
3. Genetic programming.
4. Program transformation.

Category 1 is older and less interesting than categories 2, 3 and 4. Therefore,
we will only discuss it briefly. The most interesting work in category 1 is the
inference of LISP programs from input-output pairs as surveyed by D.R. Smith
[Smith 82]. Smith writes that the methods in his survey stem from Summer’s
[Summers 77] insight that a semi-trace of a computation can be constructed
from well chosen input-output pairs. Summer’s THESYS system then uses the
semi-trace to construct the corresponding LISP program.

Example. Assume that the input-output pairs are ([11,1), ([1,2],2)
and ([1,2,3]1,3). If the input is Xs;, each output ¥Y; can be described as
follows using Standard ML notation.

Y; = hd Xsg Ys = hd(tl Xss) Yz = hd(t1(tl Xs3))

THESYS notes that ¥Y; equals ¥;_; with t1 Xs; substituted for Xs;_;. This
recurrence relation is then employed to infer a function that finds the last ele-
ment in a list. O

The inference method used by THESYS is highly specialized and requires
that the structure of the input-output pairs directly corresponds to a specific
program.

Categories 2, 3 and 4 are rarely discussed together in the literature even
though they all study automatic inference of programs. One reason for this
separation is that categories 2 and 3 are only a few years old. We will use the
following criteria to evaluate categories 2, 3, 4 and ADATE.
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Specification form. What is the ratio between the difficulty of writing a spec-
ification and the difficulty of writing a program that satisfies it?

Degree of automation. How much interaction between the system and the
user 1s required?

Creativity. Can the system create good programs that are novel, non-trivial
and unexpected?

Inventivity. Can the system invent new functions and data types?

Program constraints. What are the forms of inferred programs? For exam-
ple, can the system deal with recursion and real-valued constants?

Effectiveness in various domains. For which types of problems is the sys-
tem suitable? Which class of algorithms can be inferred in each domain?

Efficiency. Time and space complexity for

1. the inference system and

2. inferred programs.

Next, we present categories 2, 3, 4 and discuss them with respect to these
criteria. We will use the criteria to evaluate ADATE in Chapter 10. These
three categories and ADATE have disjoint capabilities and somewhat different
goals, which means that it is difficult to compare them directly using a common
set of criteria. Each category is interesting and unique from several points of
view. It is desirable to keep this in mind when reading the following critical
presentations.

9.1 Inductive Logic Programming

A system in this category uses specifications consisting of

1. Background knowledge K, which in the most general case is a set of user
supplied predicate definitions.

2. Positive examples 1, which are ground atoms.
3. Negative examples €7, which also are ground atoms.

The system tries to find a set of clauses H such that ¢t can be inferred from
H and K using SLD-resolution with a depth-first search strategy and such that
¢~ cannot be inferred. The following example illustrates ILP specification.

Example. Consider the problem of finding a definition of a predicate sort
such that sort(Xs,Ys) holds if and only if the list of integers Ys is a sorted
permutation of the list Xs. Here is a typical ILP specification that facilitates
the inference of insertion sort.
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1. Background knowledge.

insert (X, [, [X1).
insert (X, [Y|Ys], [X,YI¥s]) :- X<=Y.
insert(X,[YIY¥s],[Y|Zs]) :- ¥<X, insert(X,Y¥s,Zs).

2. Positive examples.

sort([1,[1).
sort([1],[1]).
sort[2]1,[2]).

sort([3,1,21,[1,2,31).

3. Negative examples.

sort([1,[1]).
sort([1,[2]).

sort([3,1,2],[3,1,21).

Using this specification, an ILP system would hopefully infer the following
definition.

sort([1,[1).
sort([X|Xs],Ys) :- sort(Xs,Zs), insert(X,Zs,Ys).

The negative examples are not needed if the closed world assumption is
used. This assumption means that each example that is not in €T is assumed
to be in ¢~. This is controversial since T usually contains only a small fraction
of all positive examples. Normally, there are infinitely many possible positive
examples whereas ¢ is finite and explicitly listed in the specification. Here is
a critical evaluation of ILP with respect to the criteria listed above.

Specification form. We have discovered four fundamental problems with ILP
specifications. Here are the four problems together with illustrative ex-
amples.

Problem 1. Typically, an ILP specification requires

1. extremely many examples or

2. very well chosen examples.
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In the above specification, for example, €T must contain two examples
e; and es such that sort(Xs,Zs) (mgu(e;,sort([X1Xs],¥s)))=es
e.g.e; =sort([3,2,11,[1,2,3]) and es =sort([2,1],[1,2]). Thus,
€9 1s the recursive call that sort makes when working on e;. Two
alternative ways of ensuring that eT contains e; and es are

1. to list all possible examples up to some maximum size or

2. to have a clever user who can anticipate the forms of recursive
calls and choose examples accordingly.

Alternative (1) was chosen in the specification of sort above, which
has et Ue™ = {sort(As;,Ass) : | As; |< 3 and As; C {1,2,3}},
which gives | e Ue™ |= (1 4+3 49+ 27)? = 1600.

Both alternatives are often unfeasible.

Alternative (1) is unfeasible since | e¥ U e~ | often grows super-
exponentially with the maximum size Sy ax and since Sy ax in general
only can be kept small for “toy examples”. In the specification above,
|etue™ |= (Zgi‘g‘ S5 )% which is Q(S27max). With the closed world
assumption, | et Ue™ |=| et |= Zgr;‘a" S5 which is Q(S5max).
Alternative (2) is undesirable since a user who can anticipate all
forms of recursive calls most likely also is able to write the program
to be inferred and thus does not need an inference system. This
“call anticipation problem” is not well studied by the ILP community
even though it seems to impose a fundamental limit on TLP systems
when it comes to inferring recursive programs. Unfortunately, the
call anticipation problem appears over and over again.

Example. A predicate bst_del is such that bst_del(X,Xs,Ys)
holds if and only if deletion of the integer X from the binary search
tree (BST) Xs yields the BST Ys. The binary tree constructors are
bt nil and bt_cons. A bt_cons term has the form bt_cons( Root,
Left sub_tree, Right_sub_tree ). For example, assume that the
following definition of bst_del is to be inferred.

bst_min( bt_cons(Ro,bt_nil,_), Ro ).
bst_min( bt_cons(_,Le,_), M ) :- bst_min(Le,M).

bst_del( X, bt_nil, bt_nil ).

bst_del( X, bt_cons(Ro,Le,Ri), bt_cons(Ro,Le’,Ri) ) :-
X<Ro, bst_del(X,Le,Le’).

bst_del( X, bt_cons(Ro,Le,Ri), bt_cons(Ro,Le,Ri’) ) :-—
Ro<X, bst_del(X,Ri,Ri’).

bst_del( X, bt_cons(X,bt_nil,Ri), Ri ).

bst_del( X, bt_cons(X,Le,bt_nil), Le ).

bst_del( X, bt_cons(X,Le,Ri), bt_cons(M,Le,Ri’) ) :-
bst_min(Ri,M), bst_del(M,Ri,Ri’).
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Also assume that 20 1s to be deleted from the BST

A user of an ILP system unfortunately needs to know the bst_del
program before it is inferred in order to anticipate the need for this
example.

Problem 2. Many specifications should not contain any outputs at all
since the outputs reflect the user’s knowledge of a particular al-
gorithm. This is also illustrated by the BST deletion specification
above. Thus, it is better to specify a requirement that the output
must satisfy e.g.

bst_del(X,Xs,Ys) :—
inorder(Xs,Xs_nodes), inorder(Ys,Ys_nodes),
del_one(X,Xs_nodes,Ys_nodes).

The call inorder(Zs,Nodes) puts the inorder listing of the tree Zs in
the list Nodes. The call del_one(Z,Zs,Zs’) deletes one occurrence
of Z from the list Zs yielding Zs’. Note that the predicates inorder
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and del_one may be easily defined by the user without knowledge of
any good BST deletion algorithm.

Problem 3. A serious limitation of ILP specifications is that they do not

use continuous grading of output quality and program time and space
complexity. For example, the bst_del program should produce an
output BST of small “average” depth in time O(logn), where n is
the number of nodes in the input BST, which is assumed to have
depth O(logn). A powerful inference system would perhaps be able
to utilize the depth and time grades to infer a BST deletion algorithm
that uses techniques similar to Tarjan’s [Tarjan 83] splay heuristic.
However, this algorithm would be much more complicated than the
one above.

Problem 4. Most ILP systems need to have the background knowledge

in the form of ground facts. There are two ways of achieving this,
namely

1. To require that the user provides ground facts instead of clauses.

This method is used by FOIL [Cameron-Jones and Quinlan 94].

. To convert clauses to ground facts as in GOLEM

[Muggleton and Feng 92]. This method is problematic since the
number of ground facts needs to be limited by only allowing a
maximum of h binary resolutions when producing a fact. The
number of ground facts grows exponentially with h even for very
simple and common examples.

Example. Consider a predicate is bt which holds if and only
if its argument is a binary tree. For simplicity, assume that no
information is stored in the tree nodes, which gives the following
definition of is_bt.

is_bt(bt_nil).

is_bt(bt_cons(Le,Ri)) :- is_bt(Le), is_bt(Ri).

It is obvious that the number of binary trees with kA nodes grows
exponentially with h.

Thus, we have identified the following four drawbacks of ILP specification.

1.
2.
3.
4.

The need for either extremely many examples or call anticipation.
The need for outputs that mirror a particular algorithm.
Inability to utilize continuous grades.

Conversion of background knowledge to ground facts.

An ILP system, that suffers from one or more of these specification prob-

lems, will never become an effective tool for general purpose logic pro-
gramming. All systems in the literature suffer from at least three of the
problems.
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Degree of automation. Some ILP systems, such as MIS [Shapiro 83], CIGOL
[Muggleton and Buntine 88] and SIERES [Wirth and O’Rorke 92], ask the
user questions during the inference process. An example of such a question
1s “Give me a Ys such that insert(4,[1,5,8],Ys) holds”. This so-called
oracle requirement is used to circumvent the call anticipation problem.
However, the oracle requirement is in general unreasonable since

1. the user, as discussed above, should not be required to provide out-
puts and

2. very many questions may need to be asked.

Creativity. The literature does not contain any novel recursive algorithm de-
veloped by an ILP system. The inference processes are on the contrary
strongly guided towards a specific, pre-conceived algorithm.

Inventivity. A particularly interesting development in ILP is the invention of
new predicates, which is reviewed by Irene Stahl [Stahl et. al. 93]. A new
predicate is introduced using so-called intra-construction, which is based
on inverse resolution. When executing a logic program, a resolution step
corresponds to a function call in a functional program. Intuitively, inverse
resolution corresponds to “inverse function call” i.e., replacing an instanti-
ation of the right hand side of a function definition with the corresponding
instance of the left hand side. As described in Subsection 4.1.2, this is done
by an abstraction transformation, which is therefore analogous to pred-
icate invention. However, the abstraction transformation was developed
independently of any previous work, including predicate invention.

One major difference between abstraction and predicate invention is the

choices that need to be made to determine the initial definition of the

invented function or predicate. Many ILP systems that do predicate inven-

tion, e.g. CIGOL [Muggleton and Buntine 88] and STERES [Wirth and O’Rorke 92],
ask the user to confirm the usefulness of an invented predicate. Another

criteria of usefulness that is employed is the size of the resulting program.

Irene Stahl concludes that “Additionally, the experimental evaluation of

systems performing predicate invention in ILP is almost lacking”.

The literature does not describe any ILP system that can generalize argu-
ment types e.g. change the type “list of integers” to the type “list of lists
of integers”.

Program constraints. In general, ILP systems impose few constraints on the
form of inferred programs. GOLEM employs the so-called ¢j-determinate
restriction, which leads to an enormous reduction of the search space
when using relative least general generalization to construct clauses. Even
though this restriction rules out certain non-deterministic programs, for
example the standard n-queens program, it still seems to be a mild re-
striction that does not preclude most interesting programs.
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FOIL only infers function free clauses, but this does not make FOIL less
general since programs easily can be rewritten to function free form by
introduction of extra predicates. FOIL also restricts recursive calls so
that non-termination always is avoided.

Effectiveness in various domains. ILP is a promising method for automatic
“concept” learning in domains with vast amounts of real-world data. The
logic programs that describe “concepts” are typically non-recursive and
have much of the same flavour as the decision trees inferred by Quinlan’s

ID3 algorithm [Quinlan 86].

Given a well chosen specification and a “helpful oracle”, ILP systems are
also quite good at inferring recursive programs.

ILP is normally not applied to numerical, continuous optimization prob-
lems that require the inference of one or more floating point numbers.

Efficiency. ILP systems perform a rather constrained search and therefore usu-
ally infer programs very rapidly.

There are very few useful theoretical results on the time complexity of
ILP. One recent result [Muggleton and Feng 92], for example, is that the
length of clauses produced with relative least general generalization and
the ij-determinate restriction is O((mft)U")), where m is the number of
predicates in the specification, f is the maximum arity of such a predicate
and ¢ is the number of terms in the least general generalization of the
examples. The usefulness of this upper bound strongly depends on ¢ and 7,
which are maximum values of two syntactic measures of clause complexity.
Roughly speaking, ¢ is the maximum depth of the variable dependency
DAG for any clause. See [Muggleton and Feng 92] for details. Muggleton
and Feng found that ¢« = j = 2 suffice for a number of recursive programs
such as the ones for list reversal and Quicksort. Note that this empirical
result is necessary to motivate the usefulness of the theoretical result.

Due to the lack of useful, purely theoretical time complexity results, there
is a strong need for experimental assessment of ILP systems. To check
the extremely short run times given in the ILP literature, we decided to
try version 6 of FOIL on the insertion sort specification given above. The
experiment was carried out using a SUN SparcStation 10 and the GNU C
compiler. The closed world assumption was employed. The background
knowledge clauses for insert were converted to all positive examples in-
volving numbers chosen from {1,2,3} and lists of length less than or equal
to 3.

FOIL inferred the following insertion sort program in 2.1 seconds.

sort([1,[1) :-
sort(A,B) :- component(A,C,D), sort(D,E), insert(C,E,B)
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This efficiency is really splendid.

However, the efficiency of an inferred program is rather arbitrary since
FOIL only considers termination and does not use other time complexity
measures.

9.2 Genetic Programming

The primary difference between genetic programming (GP) and genetic algo-
rithms (GAs) is that the former encodes a solution as a LISP program whereas
the latter normally uses bit string encoding. Since GP is an offspring from GA
research, much of the discussion below holds for GAs as well. The originator of
GP is John Koza [Koza 92].

A GP specification contains the following.

1. Background knowledge consisting of a set of constants and functions that
are to be used in inferred LISP programs.

2. A fitness function which takes an inferred program as argument and re-
turns a floating point number. The probability of “survival” of the pro-
gram 1s proportional to this number.

3. Sample inputs that are used to compute the fitness function.

4. Search control parameters. There are 19 parameters, but only a few of
them normally needs to be adjusted when tackling a new inference prob-
lem. Some of the most important parameters are below given with default
values in parentheses.

(a) Population size (500).

(b) Maximum number of generations (51).
(¢) Probability of crossover (0.9).

(d) Probability of reproduction (0.1).

(e) Probability of mutation (0).

¢

As indicated by the choice of default parameter values, the main program
transformation is crossover, i.e., random exchange of subexpressions between
two programs. Crossover, consisting of an exchange of substrings, is also the
most important transformation in GAs.

Crossover is only effective if the schema theorem [Holland 76] is applicable.
We have identified the following basic problem with crossover. When inferring a
large expression E, the schema theorem requires that E primarily is composed
from first or higher order subexpressions Ey, Es, ..., E, such that the fitness
advantage of each F; can be measured independently of each E; with j # ¢.
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Each E; may be viewed as a “schema”. Unfortunately, practically all recursive
programs consist of coupled E;’s.

Example. Consider the following ML list concatenation program, which
i1s written using if and selectors instead of case in order to make it resemble
Koza’s LISP style [Koza 92].

fun @(Xs,Ys) = if null Xs then Ys else hd Xs :: @(tl Xs,Ys)

The right hand side can be written as £y Ey with

F{ =fn As => if null Xs then Ys else As
and
Fs=hd Xs :: @(tl Xs,Ys).

The fitness advantage of Fs cannot be measured unless the base case of the
recursion is properly handled. Thus, E5 has a positive effect on fitness only if
it appears in conjunction with F; or some equivalent expression. O

This so-called “subexpression coupling problem” means that crossover is an
extremely inefficient program transformation when recursive programs are to be
inferred.

Therefore, 1t 1s quite natural that only the inference of one single “recursive”
program is presented in Koza’s book. This program, which computes the Fi-
bonacci numbers, does not contain any explicit recursive calls. Instead, it uses
a problem-specific, user-defined operator srf which provides memoization. The
operator 1s defined so that (srf K D) returns the value (fib K) if K is smaller
than J which is the argument of the first call (£ib J). Otherwise, (srf K D)
returns the default value D. Thus, this sample inference is rather tricky and
dependent on the specialized srf operator.

The inability to infer recursive programs is most unfortunate since recursion
is of fundamental importance in LISP and functional programming. Since it
in general seems to be equally difficult for GP to produce iterative programs,
the current form of GP is unlikely to ever become an effective tool for general
purpose programming.

Here is an evaluation of GP with respect to the criteria listed above.

Specification form. The form of specifications is similar to the one in our
ADATE system. This form was presented in Section 3.3. The specifica-
tions in Koza’s book are very good at supporting evolutionary program
development and are well worth studying independently of the rest of the
book.

The main difference between ADATE and GP specifications is that the
latter very rarely use more than one fitness measure, whereas the former
use at least four measures. In particular, the syntactic complexity measure
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is not used by GP, which means that inferred programs normally are much
more complicated than they need to be. In order to alleviate this problem,
Koza allows the specification to contain domain-specific rewrite rules that
are used to simplify programs during the inference process. An example of
such a rule is (append Xs nil) —— Xs. Considering the state-of-the-art
in rewrite system research, this approach is far from generally applicable.

Degree of automation. GP is fully automatic i.e., does not rely on user in-
teraction.

Creativity. The programs developed by GP are very different from normal
programs The primary reasons are that GP programs

1. often are extremely complicated in comparison with normal programs
and

2. contain mathematical equations that are “almost correct”, whereas
equations derived by mathematicians more often either are com-
pletely correct or wrong.

Koza’s notion of “almost correct” is quite interesting and greatly facilitates
evolutionary inference.

Inventivity. Koza uses a program transformation that he calls “automatic
function definition”. This transformation is similar to the abstraction
transformation discussed in Subsection 4.1.2. No invented recursive func-
tions are presented in Koza’s book. Neither i1s there any transformation
similar to the embedding transformation that was introduced in Subsec-
tion 4.1.4.

Program constraints. Recursive calls are not allowed in any inference pre-
sented in Koza’s book. With this exception, there are few constraints on
inferred programs. Since LISP has an unusually poor type system, GP
does normally not even use type constraints. In many cases, the lack of
typing unfortunately leads to an enormous increase in search space cardi-
nality.

Effectiveness in various domains. Given specifications that facilitate evo-
lutionary inference, GP is amazingly good at inferring formulas. Most of
the inferred “programs” in Koza’s book are in fact mathematical formulas
that do not use common programming language constructs such as itera-
tion, recursion and case-tests. As explained above, iterative or recursive
programs cannot be effectively produced by GP.

Efficiency. Koza does not provide any run times, but it is obvious that GP is
very computationally demanding. Chapter 8 in his book presents experi-
mental results concerning the total number of programs produced during
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an inference. This number is in the neighbourhood of 10° for simple prob-
lems and in excess of 10° for the more difficult problems.

Since the run time of inferred programs is not used as a fitness measure,
they are unlikely to be particularly efficient.

9.3 Program Transformation

The deductive inference of programs from formal specifications, which usually
are expressed in predicate logic or similar formalisms, is an old and well studied
area of research. We will here only review the inference of executable programs
from specifications that are unfeasible to execute. The reason for this unfeasi-
bility 1s either that the specification is non-constructive or that it requires at
least exponential time to execute. Thus, this review will not cover optimiz-
ing compiler transformations such as common subexpression elimination, loop
unrolling etc. The deductive inference of programs from non-constructive spec-
ifications is a research area that aims for a much lower degree of automation
than ADATE, which means that it is more weakly related to ADATE than ILP
and GP. Therefore, we will give a less detailed presentation of this area.
A formal specification of a function f often contains the following.

1. Background knowledge consisting of types, function definitions and possi-
bly also specialized inference information such as function-specific rewrite
rules.

2. The type D — R of f.

3. An input condition ¢ : D —bool such that #(I) must hold for each legal
input I.

4. An output condition o : D x R —bool. A program is correct if and only
if i(I) implies o(I, f(I)) for all I in D.

Below is an example of a Horn clause specification of a sorting function f.
The specification can be directly executed using SLD-resolution but the time
required to sort n integers is Q(n!).

1. The types int and int 1list and the <-relation on integers are given as
background knowledge, which also contains the definitions

del_one(X,[X|Xs],Xs).
del_one(X,[YIXs],[Y|Ys]) :- del_one(X,Xs,Ys).

is_perm([]1,[1).
is_perm([X[Xs],¥s) :- del_one(X,Ys,Zs), is_perm(Xs,Zs).
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sorted([]).
sorted([X]).
sorted([X1,X21Xs]) :- X1<=X2, sorted([X2]Xs]).

2. The type of f is int 1list — int list.
3. The input condition is always true.

4. The output condition is
o(Xs,Ys) :- is_perm(Xs,Ys), sorted(Ys).

A program transformation system such as the one in [Komorowski 93] can
assist in the gradual transformation of the above specification to a reasonably
efficient sorting program.

Here is a characterization of program transformation using the same criteria
as for ILP and GP.

Specification form. It is quite clear that a formal specification can be very
much simpler than the programs that satisfy it. Another advantage of a
formal specification is of course that it practically always is sufficient.

Degree of automation. Practically all program transformation systems, for
instance KIDS [Smith 90] and PROSPECTRA [Krieg-Briickner et. al. 91],
are semi-automatic and totally dependent on system-user interaction dur-
ing an inference. This dependence is so pervasive that program transfor-
mation is not to be regarded as an area of machine learning whereas ILP,
GP and ADATE all are machine learning methods. The goal of program
transformation research i1s machine-aided programming rather than fully
automatic programming.

Since program transformation systems need deductive inference and the-
orem proving, fully automatic and general program transformation seems
to require fully automatic and general theorem proving, which yet is to be
achieved.

Creativity. Since a program transformation system is strongly dependent on
the user, 1t is not creative.

Inventivity. Inventivity also depends on the user.

Program constraints. There are practically no constraints. The program-
ming language does not even need to be applicative.

Effectiveness in various domains. Given a sufficiently competent user, it is
hard to think of any algorithm in any domain that cannot be developed
using a program transformation system.
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Efficiency. Program transformation systems are usually very efficient since the
search for deductive inferences is highly constrained and user controllable.
Inferred programs can also be very efficient.
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Chapter 10

Conclusions and Future

Work

We start this chapter by evaluating ADATE with respect to the criteria that
were used for evaluating inductive logic programming, genetic programming and
program transformation in Chapter 9.

Specification form. The combination of sample inputs and output evaluation
function must support evolutionary program transformation. Otherwise,
there are few constraints on the form of a specification, which may be
much easier to write than any desirable program. The requirement that
the specification must support evolutionary transformation resembles the
requirement that text-books must be pedagogical in order to support grad-
ual and progressive learning. A minimum requirement is that there exists
a genealogical path P, Ps, ..., P,_1, P, where P is the initial program,
P, is a desirable program and the compound transformation costs C; re-
quired to transform P; to P41 are so low that no C; corresponds to more
than a few hours of CPU time. The writing of pedagogical text-books
relies more on common sense than on fixed rules. This also characterizes
the art of specification writing.

Degree of automation. ADATE is fully automatic. The only run time “in-

teraction” 1s that the user should decide when to terminate an inference
i.e., when sufficiently good program evaluation function values have been
achieved.

Creativity. ADATE can automatically synthesize novel and non-trivial recur-
sive programs. Even though the programs written by ADATE may be
quite difficult to discover for human programmers, there is still an enor-
mous gap between human creativity and the “creativity” of ADATE.
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Inventivity. In comparison with the program synthesis systems reviewed in
Chapter 9, ADATE has a superior ability to automatically invent new
functions and data types.

Program constraints. One constraint in the current version of ADATE is
that synthesized recursive calls are required to contain at least one “de-
creasing” argument as discussed in Subsection 5.2.3. However, this con-
straint is only employed to reduce the number of synthesized expressions
and would be easy to remove if one is willing to accept a two- or three-fold
increase of the average inference time. There are few other constraints.

Effectiveness in various domains. The current version of ADATE is espe-
cially suitable for inferring small recursive programs such that a few aux-
iliary functions are missing in the specification. Of course, it can infer
non-recursive programs as well. There are no mechanisms for optimiza-
tion of numerical constants that occur in inferred programs.

Efficiency. The main disadvantage of ADATE is the long inference times. The
systems for induction of logic programs reviewed in Chapter 9 are much
faster. However, they do need to acquire much more knowledge from the
users.

The program evaluation function pe, was designed to contribute to the
inference of programs with good time complexity, but it seems to be dif-
ficult to always achieve the best possible time complexity using “natural”
specifications. For example, the ADATE user may have to be satisfied
with O(n?) instead of O(nlogn) for sorting.

The current version of ADATE does not consider space complexity.

ADATE finds “good” programs through a combination of thorough testing
and attempted minimization of syntactic complexity. There is no guarantee
that ADATE will find a program that is optimal according to some program
evaluation function pe;. For example, if ADATE always guaranteed to find a
correct program of minimum syntactic complexity, run times would in general
grow exponentially with complexity. The ability to give such a guarantee would
therefore have little practical value. Fortunately, many users are satisfied with
a program that is correct and reasonably small and fast, but not necessarily
the smallest nor the fastest. This situation i1s analogous to the one for many
NP-hard problems, where a solution within say 1% of the optimum can be
found in polynomial time with high probability, even though the worst case
time complexity for finding an optimal solution is exponential.

Some possible improvements are

1. To generalize embedding to arbitrary insertions into type expressions.

2. To generalize abstraction so that higher order functions can be invented.
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3. To add more heuristics to the algorithms that synthesize expressions and
compound transformations.

4. To significantly improve run times by implementing ADATE on a high
performance massively parallel computer.

All programs inferred so far are rather small. The most important future
work is to study the inference of large programs. Recall that m; is the number of
symbols that may occur in node N; in an expression tree. A potential problem
with inference-in-the-large is that m; grows with the number of ancestor let-
and case-nodes, since such nodes introduce new symbols. More experimenta-
tion is needed to determine if the scoping rules of Standard ML suffice to keep
m; small or if additional symbol selection techniques are required. A related
question is the use of library functions versus the invention of functions on-the-
fly i.e., if the system should rely on a general toolbox or on the construction of
specialized tools as needed. In comparison with human programmers, a system
for inference-in-the-large is likely to rely less on general tools since the use of
such tools seems to be combinatorially expensive.
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Appendix A

The ML Definition of
Syntactic Complexity

val Normal_lengths =
( "(1n 0.025), “(1n 0.15), “(1n 0.325), “(1n 0.5) )
val Analyzed_lengths = ( “(In 2.5E"3), “(1n 1.BE"2),
“(1n 0.387045454545455), ~(1ln 0.5954545454545468) )

fun syntactic_complexity( D : (’a,’b)d ) : real =
let
fun sc_of_exp( N_internals, N_leaves,
Lengths as (Let,Case,Internal,Leaf), E : (’a,’b)e ) : real =
case E of
app_exp{func,args,...} =>
if func="7" then
if is_not_activated_exp E then
0.0
else
Leaf + 1n(real N_leaves)
else if null args then
Leaf + 1n(real N_leaves)
else
Internal + 1n(real N_internals) + real_sum(
map(fn & => sc_of_exp(N_internals,N_leaves,Lengths,4),
args)) +
(if null(tl args) orelse func="tuple'" then
0.0
else
Internal + 1n(real N_internals)
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(* Accounts for the "implicit" tuple constructor. *)

)
| case_exp{exp,rules,...} =>
Case +
sc_of_exp( N_internals, N_leaves,
case rules of _::nil => Lengths | _ => Analyzed_lengths,
exp) +

real_sum(map( fn{pat,exp} =>
sc_of_exp( N_internals, N_leavestlength(vars_in_pat pat),
Lengths, exp ),
rules))
| let_exp{dec_list,exp,...} =>
Let+
real_sum(map( fn D => sc_of_dec( N_internals+length(dec_list),
N_leaves, Lengths,
D),
dec_list )) +
sc_of_exp( N_internals+length(dec_list), N_leaves, Lengths,
exp )

and sc_of_dec( N_internals, N_leaves, Lengths, {pat,exp,...}
(’a,’b)d ) =
sc_of_exp( N_internals, N_leavestlength(vars_in_pat pat),
Lengths, exp )

val Arity_zero_funs = filter( fn F =>
case assoc(F,Predefined.ty_env) of
{ ty_exp=ty_con_exp("->",_),... } => false
[ _ => true,
Spec.Funs_to_use

)

in
sc_of_dec( 2+length(Spec.Funs_to_use)-length(Arity_zero_funs),
length(Arity_zero_funs)+1, Normal_lengths,
D)/ 1n 2.0
end (* fun syntactic_complexity *)
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Appendix B

The Raw Log File for List
Sorting

The log file 1s basically self-explanatory. The sample inputs in the specification
were presented in Subsection 4.1.1. ADATE regards a program as correct if
it can sort all five of these input lists. Note that the first such program is the
one with identification number (4,1,828), which is found after 1617.52 seconds
(about 27 minutes) of execution time. At end of the log file, after the text

THE BEST INDIVIDUALS FOUND SO FAR ARE

are the best programs found thus far when the inference process was inter-
rupted. The smallest of these programs is (3,1,1420), which is less complex
than (4,1,828).
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