
Inductive Functional Programming UsingIncremental Program TransformationRoland OlssonA thesis presented to the University of Osloin ful�lment of the thesis requirement for the degree ofDoctor ScientiaruminComputer Science

ContentsI Inductive Functional Programming Using Incremen-tal Program Transformation 71 Introduction 81.1 Research Perspectives : 81.1.1 The CASE Perspective : 81.1.2 The Machine Learning Perspective : : : : : : : : : : : : : 91.1.3 The Perspective of Combinatorial Optimization : : : : : : 101.2 Design Challenges and Choices : : : : : : : : : : : : : : : : : : : 132 The Language in Which Synthesized Programs are Written 182.1 Advantages of Functional Languages for Inductive Inference : : : 182.2 The Design of ADATE-ML : 202.3 Basic De�nitions for the Manipulation of ADATE-ML Programs 243 Speci�cation and Selection of Programs 273.1 Basic Properties of Speci�cations : : : : : : : : : : : : : : : : : : 273.2 Attempts to Deal with Lack of Su�ciency : : : : : : : : : : : : : 283.3 Speci�cation Form : 293.4 The Output Evaluation Function : : : : : : : : : : : : : : : : : : 323.5 The Program Evaluation Functions : : : : : : : : : : : : : : : : : 343.5.1 Syntactic Complexity : 343.5.2 Time Complexity : 363.5.3 Error Locality : 363.5.4 Lineage : 403.5.5 The De�nitions of pe1, pe2 and pe3 : : : : : : : : : : : : : 404 The Atomic Transformations 414.1 Atomic Transformation Schemas : : : : : : : : : : : : : : : : : : 424.1.1 Replacement : 434.1.2 Abstraction : 454.1.3 case-distribution : 464.1.4 Embedding : 491

4.2 Atomic Transformation Algorithms : : : : : : : : : : : : : : : : : 534.2.1 The R Transformation Algorithm : : : : : : : : : : : : : : 554.2.2 The REQ Transformation Algorithm : : : : : : : : : : : : 584.2.3 The ABSTR Transformation Algorithm : : : : : : : : : : 674.2.4 The CASE-DIST Transformation Algorithm : : : : : : : : 704.2.5 The EMB Transformation Algorithm : : : : : : : : : : : : 805 Expression Synthesis 875.1 Description of the Expression Synthesis Problem and Its Com-plexity : 875.2 Expression Synthesis in ADATE : : : : : : : : : : : : : : : : : : 885.2.1 The Interface to Expression Synthesis : : : : : : : : : : : 885.2.2 A Simpli�ed Implementation of synt n : : : : : : : : : : 925.2.3 Restrictions on the Synthesis of Recursive Calls : : : : : : 945.2.4 Restrictions on the Synthesis of case-expressions : : : : : 955.3 Alternative Strategies for Expression Synthesis : : : : : : : : : : 965.3.1 Equivalence Checking : 965.3.2 Randomization : 1006 Synthesis of Compound Transformations 1086.1 Compound Transformation Forms : : : : : : : : : : : : : : : : : 1086.2 Syntactic Checking and Pruning of Programs : : : : : : : : : : : 1116.2.1 Static case Checking : 1116.2.2 Pattern Occurrence Checking : : : : : : : : : : : : : : : : 1126.3 Using the Forms to Produce Programs : : : : : : : : : : : : : : : 1156.3.1 Cost Limit Computation for Forms : : : : : : : : : : : : : 1156.3.2 Computation of REQ, EMB and CASE-DIST Cost Limits 1166.3.3 Match Error Handling : 1167 The Overall Search for Programs 1187.1 Population Structure : 1187.2 Selection and Insertion of Programs : : : : : : : : : : : : : : : : 1197.2.1 Selection : 1197.2.2 Insertion : 1197.3 Iterative-Deepening Search : 1207.4 Which are the Best Synthesized Programs? : : : : : : : : : : : : 1258 Sample Speci�cations, Inferred Programs and Run Times 1279 Related Work 1349.1 Inductive Logic Programming : 1359.2 Genetic Programming : 1429.3 Program Transformation : 1452

10 Conclusions and Future Work 148A The ML De�nition of Syntactic Complexity 155B The Raw Log File for List Sorting 157

3

List of Figures1.1 Basic local search. : 112.1 The syntax of ADATE-ML expressions. : : : : : : : : : : : : : : 232.2 The data types for expressions and fun-declarations. : : : : : : : 242.3 The de�nition of pos fold. : 263.1 The output evaluation function for polynomial simpli�cation. : : 333.2 The tripartite graph for P2. : 384.1 The ML representation of typed expressions and declarations. : : 544.2 The ML implementation of R transformations. : : : : : : : : : : 574.3 Finding the sum of cost reciprocals for a given K. : : : : : : : : : 664.4 An expression tree. : 684.5 A help function for iterative-deepening. : : : : : : : : : : : : : : 754.6 Performing one iteration. : 764.7 Dry search that is needed to determine costs. : : : : : : : : : : : 774.8 The implementation of the CASE-DIST transformation. : : : : : 794.9 The ML de�nition of zeroth order ground types. : : : : : : : : : 804.10 Finding a list of lists of candidate expressions. : : : : : : : : : : : 824.11 Contour curves for CREQ : 844.12 Contour curves for CEMB : 854.13 Replacing ? embs. : 854.14 The auxiliary replace q embs' function. : : : : : : : : : : : : : 865.1 The logarithm of expression space cardinality as a function of size. 895.2 Finding the components at a given position. : : : : : : : : : : : : 905.3 Computing expression size and iterating over lists. : : : : : : : : 925.4 Synthesizing all expressions of size S max or less. : : : : : : : : : 935.5 A highly simpli�ed de�nition of synt n. : : : : : : : : : : : : : : 945.6 A partially non-terminating de�nition. : : : : : : : : : : : : : : : 955.7 An operational de�nition of the number of violations. : : : : : : 995.8 The total cardinality as a function of size. : : : : : : : : : : : : : 1025.9 The hardness of random synthesis as a function of size. : : : : : : 1034

5.10 Expression space cardinality as a function of size and type. : : : 1066.1 All forms. : 1106.2 The implementation of static case checking. : : : : : : : : : : : : 1126.3 Two auxiliary functions for pattern occurrence checking. : : : : : 1136.4 The implementation of pattern occurrence checking. : : : : : : : 1147.1 A coarse map of E(�; �). : 1237.2 A �ne map of E(�; �). : 1247.3 The ML function for pruning Best list. : : : : : : : : : : : : : : 1258.1 Two non-intersecting rectangles and their coordinates. : : : : : : 1298.2 The set of input rectangles. : 129

5

List of Tables3.1 The de�nitions of pe1, pe2 and pe3. : : : : : : : : : : : : : : : : : 408.1 Run times. : 133

6

Chapter 1Introduction1.1 Research PerspectivesThe research presented in this part of the thesis belongs to the following areas.1. Computer-aided software engineering (CASE).2. Machine learning.3. Combinatorial optimization.We will �rst describe what we want to accomplish from a CASE perspec-tive. However, since we aim for a very high degree of automation, the machinelearning and combinatorial search perspectives are more important.1.1.1 The CASE PerspectiveThe development of a program to solve a given problem consists of many activ-ities. A software engineer may proceed as follows [Boehm 76].1. Determine the requirements that the program should satisfy and write aspeci�cation.2. Design algorithms and data structures.3. Implement the design in a programming language.4. Test the implementation.The software engineering literature contains numerous more sophisticateddevelopment models such as the spiral model [Boehm 88]. We will use thesimple model above to explain our research goal even though it may be too7

sequential, phase-oriented and crude for practical purposes. Our research goalis to completely automate phases 2 and 3 and to partially automate phase 4.We have developed a system, ADATE, that automatically can design, imple-ment and test programs. The name ADATE, Automatic Design of AlgorithmsThrough Evolution, indicates that the goal of the research is automatic inven-tion of new algorithms and not only automatic implementation of algorithmsthat the ADATE user already knows. As we will see, this means that phase 1i.e., speci�cation, becomes more di�cult. In particular, the ADATE user needsto give a speci�cation that supports automatic and incremental program devel-opment.1.1.2 The Machine Learning PerspectiveThe main part of machine learning is inductive inference, which is the process of�nding generally valid rules from a �nite number of examples. When inferringprograms, the examples may be input-output pairs, which is a primitive form ofspeci�cation indeed. However, a simple input-output pair speci�cation su�cesto illustrate inductive inference of programs.Example. Assume that a list concatenation algorithm, implemented inStandard ML, is to be inferred. The speci�cation says that the type of thefunction to be inferred is 'a list * 'a list -> 'a list and that the emptylist nil and the list constructor :: may be used in inferred programs. Also, thespeci�cation contains the single input-output pair(([1,2,3,4],[5,6,7,8,9]), [1,2,3,4,5,6,7,8,9]).The least complex de�nition that satis�es this speci�cation isfun append(Xs,Ys) =case Xs ofnil => Ys| X1::Xs1 => X1::append(Xs1,Ys)2We formally de�ne the complexity of a program in Subsection 3.5.1. Thisformal de�nition approximates a programmer's intuition regarding program sim-plicity. There are in�nitely many \undesirable" programs that satisfy the spec-i�cation above e.g. 8

fun append(Xs,Ys) =case Xs ofnil => nil| X1::Xs1 =>case Xs1 ofnil => X1::Ys| X2::Xs2 => X1::append(Xs1,Ys)However, every undesirable program is more complex than the one we want.This is no coincidence. The small-is-beautiful assumption is also inherent inscienti�c theory formation. One may even argue that science as we know it todaywould not exist without it. We discuss the relationship between desirability andcomplexity in Section 3.2.Note that the above program easily can be made \desirable" by substitutingYs for nil. This substitution makes the second case redundant. Removing thisredundancy gives the simplest desirable append de�nition. These two transfor-mations are actually very simple illustrations of the evolutionary \replacement"(R) transformation presented in Chapter 4.The speci�cations employed by ADATE are certainly not restricted to input-output pairs, which are inadequate for many interesting programming tasks.Instead of outputs, ADATE uses an evaluation function, which is de�ned by thespeci�er based on the requirements that the outputs must satisfy. For example,the speci�er may require that the output from a sorting algorithm is both1. sorted according to some total ordering and2. a permutation of the input.The disadvantage of providing outputs is not evident from this simple exam-ple, but becomes quite obvious for more complicated programming tasks e.g.autonomous robot navigation.1.1.3 The Perspective of Combinatorial OptimizationA combinatorial optimization problem de�nes a set of solutions and a cost func-tion that determines the quality of each solution. In ADATE, the solutions arecorrectly typed Standard ML programs that satisfy some additional constraints,for example recursion restrictions. The cost function, which is to be minimized,is called a program evaluation function. Program evaluation functions are auto-matically de�ned by ADATE using universal program quality measures such astime complexity and syntactic complexity together with the output evaluationfunction provided by the speci�er.The search employed by ADATE is a form of local optimization. Given aninitial solution, local optimization �nds better and better solutions through a9

fun local_search(S : solution) : solution =letval N = A minimum cost neighbour of Sinif cost N < cost S then local_search N else Send Figure 1.1: Basic local search.series of incremental changes. In ADATE, these changes are called programtransformations. The set of all solutions that can be obtained from a givensolution S using only one transformation is called the neighbourhood of S. Localsearch moves from neighbour to neighbour as long as the cost decreases. Whenno neighbour of the current solution has lower cost, we are at a local optimum,which of course is not guaranteed to be a global optimum. Figure 1.1 shows oneversion of local search, where S is the current solution. Another version justpicks a neighbour of lower, but not necessarily minimal, cost. We employ theformer version, which means that the entire neighbourhood is examined beforemoving to a neighbour.Most, but not all, \good" transformations yield an increase in program com-plexity, which means that the search in ADATE usually performs successiveaugmentation. The following example shows how the append program abovemay be produced using incremental transformations.Example. Assume that there are two input-output pairs, namely1. (([],[1,2,3,4,5]), [1,2,3,4,5])2. (([1,2,3,4],[5,6,7,8]), [1,2,3,4,5,6,7,8])ADATE uses a special constant, ?, which means \don't-know". Intuitively,it is better to say \don't-know" than give a wrong answer. In this example,we will only employ the replacement (R) transformation, which replaces anexpression in a program with a new, small synthesized expression or insertssuch an expression into a program. Thus, the neighbourhood of a program isthe set of all programs that can be obtained from it using R transformations witha transformation complexity that does not exceed the current transformationcomplexity limit, which is iteratively deepened by ADATE. The initial programisfun append(Xs,Ys) = ?This program gives a \don't-know" answer for all inputs. It is improved byreplacing the ? with Ys, which yields 10

fun append(Xs,Ys) = YsThis program is an improvement since it correctly handles input number 1.The next transformation is an insertion that givesfun append(Xs,Ys) = case Xs of nil => Ys | X1::Xs1 => ?The reason this program is better is that it does not give a wrong outputfor input number 2 while still being able to handle input number 1. The �naland desirable list concatenation program is obtained by replacing the ? withthe synthesized expression X1::append(Xs1,Ys).Note that we used three transformations and a search space trajectory con-taining four programs even for this very simple sample inference. However, thesearch algorithms in ADATE are powerful enough to �nd the �nal programusing only one single R transformation applied to the initial program. Also,ADATE manages �ne without input-output pair number 1. 2The point with the example above is to show that even very simple pro-grams have many better-and-better intermediate forms. For more complicatedprograms, we do need speci�cations that give smooth search spaces with chainsof gradually improving programs such that there are no weak links requiringtoo big neighbourhoods.The search in ADATE is a heavily modi�ed form of the traditional localsearch algorithms for problems such as graph partitioning, graph colouring, binpacking etc. Some important modi�cations are1. Iterative-deepening [Korf 85, Olsson 93] of neighbourhood cardinality.2. Using three multiple-valued cost functions instead of only one cost functionthat returns only one numerical value.3. Maintaining a structured so-called population of programs instead of justone single current program.The Traveling Salesman problem (TSP) is often considered to be the pro-totypical \hard" combinatorial optimization problem [Johnson 90]. However,even very large instances of this problem, e.g. one million cities, can be solvedwithin 2% of the optimum with high probability in a few hours of CPU time[Johnson 94]. Therefore, we hope not to scare the reader by saying that thesearch problem in ADATE is much harder than the TSP. Even though the TSPis very well studied in complexity theory, the practical, experimental results aremore signi�cant and not well described by theory. Since it is so di�cult to �ndreasonably exact theoretical bounds on the average time complexity of TSP al-gorithms, we cannot expect to �nd such theoretical complexity results for themuch more complicated problem of program synthesis as in ADATE. Therefore,our general methodology is empirical end experimental.11

The development, debugging and evaluation of ADATE has consumed about4000 hours of CPU time on an IBM RS6000-590. In spite of careful program-ming, the debugging phase has consumed more than 80% of this time. We feelthat our experimental activity is on the limit between the feasible and the unfea-sible using a modern workstation. However, given massively parallel computersand further research and development, it is impossible to tell where this limitwill be.1.2 Design Challenges and ChoicesThe most important overall design choice in ADATE is the high degree of au-tomation, which is related to the amount of information in ADATE speci�ca-tions. If a speci�cation contains much explicit information or if system-userinteraction is allowed, the system does not need to be particularly autonomous.We will use the explicit information contents in speci�cations to briey compareinductive inference systems.At one end of the spectrum of explicit information contents are systems thatuse traces of computations [Biermann and Krishnaswamy 76]. At the same endof the spectrum are systems requiring speci�cations that consist of input-outputpairs [Biermann 78, Smith 82, Summers 77] or positive and negative examplesas in inductive logic programming [Muggleton and Buntine 88, Muggleton 92,Stahl et. al. 93, Wirth and O'Rorke 92]. In such systems, the input-outputpairs or the examples must have a structure that corresponds to a speci�c algo-rithm.At the other end of the spectrum are genetic algorithm(GA) systems [Koza 92]and ADATE, which use speci�cations such that the ratio between the di�cultyof writing a desirable program and the di�culty of speci�cation may be enor-mous. An important di�erence between ADATE and GA systems is that thelatter are very poor at inferring recursive programs since they use primitiveprogram transformations and an unsystematic search of the program space.ADATE uses speci�cations that contain few constraints on the programs to besynthesized and that allow a wide range of correct programs.Of course, there are many design choices other than the degree of automationand the amount of explicit information in speci�cations. For each relevantchapter in this part of the thesis, the following listing shows the design choicesthat are discussed in the chapter. We also give a brief general introduction toeach chapter.Chapter 2. A di�cult choice is which language to use for expressing the al-gorithms that are inferred. We started our program synthesis researchbelieving that the simplest possible language would be most suitable forautomatic programming. We looked at polycephalic Turing machines,�nite state automatons (sequential nets) and subsets of LISP and PRO-LOG. Due to lack of time and knowledge, we omitted several candidates12

such as Kolmogorov graph machines and neural nets. However, it is nowclear that we do not need a simple language, but instead a language thatallows simple algorithm formulations that are easy to transform and suit-able for combinatorial search.After many time-consuming bad starts concerning the choice of language,we have found that a subset of Standard ML, which we call ADATE-ML,is superior to the other candidates that we have tried. However, the choiceof language depends on the class of algorithms to be inferred. For example,we cannot be sure that ADATE-ML is better than neural nets for patternrecognition applications.ADATE is also implemented in Standard ML. Additionally, Chapter 2contains some ML de�nitions that this implementation employs when ma-nipulating ML programs.Chapter 3. The form of speci�cations should be general enough to allow basi-cally any kind of requirement to be formulated. It should also enable theinference system to recognize microscopic program improvements. Tra-ditional predicate logic speci�cations do not satisfy this last requirementsince they are often either \false" or \true", i.e., give an extremely roughsearch space topography even if they are supplemented with additionalmeasures such as time complexity and syntactic program complexity.The choice of sample inputs and an output evaluation function as inADATE is much better than using input-output pairs. For example, theADATE speci�cation form is easy to adapt to the sort of \environment"simulation employed in arti�cial life research, but ADATE has primar-ily been used for the type of problems found in text-books on algorithmdesign and analysis.Chapter 4. This chapter presents so-called atomic transformations. The pro-grams in the neighbourhood of the program to be transformed are pro-duced using so-called compound transformations as presented in Chap-ter 6. A compound transformation is a sequence of one or more \related"atomic transformations.The choice of atomic transformations was made empirically. We startedwith the replacement (R) transformation and looked at sample infer-ences using only this transformation. We also implemented a precursorof ADATE that only employed a limited form of R transformations. Theexperimental results obtained using this precursor showed the need fora transformation that rearranges case-expressions, which is the so-calledcase-distribution (CASE-DIST) transformation. The next step in theevolution of ADATE was the observation that auxiliary functions couldbe extracted from already synthesized program fragments, which is doneby the abstraction (ABSTR) transformation. We then noted that some13

of these invented functions could be generalized by adding parameters orchanging parameter types, which yielded the embedding (EMB) transfor-mation.A particularly di�cult stage in this gradual evolution of the ADATE trans-formations was how to introduce recursive auxiliary functions. However,the current design is both simple and e�ective.A major omission in ADATE is the ability to invent and utilize higherorder functions. There are no principal problems with these, but theyseem to have bad combinatorial properties if used without restrictionsand heuristic guidance.Chapter 5. The R transformation requires the synthesis of new expressions.The choice of expression synthesis techniques has a strong inuence onthe run times of ADATE since the number of expressions to be examinedgrows exponentially with expression size i.e., complexity. Therefore, theexpression synthesis problem is intractable for large sizes. One may dealwith this combinatorial explosion in the following three ways.1. By ensuring that the size of synthesized expressions is always quitesmall.2. By avoiding the synthesis of equivalent expressions.3. By employing heuristics in order to try the \best" expressions �rst.From the very beginning of the research presented in this thesis, we havefocussed on ensuring that only very small expressions need to be synthe-sized.Informally, we will now try to explain how this is possible by presenting anidealized program induction scenario. Let us de�ne a grain to be a subex-pression of the program to be inferred. Additionally, a grain is requirednot to contain any case and to have a case or a let as parent. Thismeans that the grains are the biggest possible case-free subexpressions ofa program.Example. Consider the programfun sort Xs =case Xs of nil => Xs| X1::Xs1 =>let fun g V1 =case V1 of nil => X1::nil| X2::Xs2 => case X2<X1 of true => X1::g Xs2 | false => X1::V1ing(sort Xs1)end 14

The grains are Xs, Xs, V1, X1::nil, X2<X1, X1::g Xs2, X1::V1 andg(sort Xs1). Note that the biggest grain is X1::g Xs2 which meansthat the maximum grain size is 4. 2Let us de�ne the resolution of an inference as the maximum number ofgrains that need to be added to any program Pi in order to improve thevalue of at least one program evaluation function. We require that eachPi is a program in a suitable \genealogical path" that leads to a �nal anddesirable program. In the ideal scenario, the resolution is one grain. Thismeans that there is a permutation of grains G1; G2; : : : ; G#G such that wecan obtain successively better programs by adding one grain Gi at a timewith i taking the values 1; 2; : : : ;#G. Each added grain Gi is assumedto improve the value of at least one program evaluation function. Thefollowing three observations are crucial.1. Empirically, we have found that many, perhaps even most, functionalprograms can be written in a form with a very small maximum grainsize.2. It is frequently possible to provide sample inputs and an output eval-uation function that give a resolution of one or a few grains.3. The product of the maximum grain size and the resolution gives anapproximate upper bound on the total size of the expressions thatneed to be synthesized in any compound transformation.Unfortunately, it is di�cult to substantiate these claims by means otherthan empiricism. The examples in Chapter 8 will give at least some em-pirical motivation for the claims.Even though our expression synthesis techniques and heuristics are rea-sonably simple, they were di�cult to implement. Chapter 5 also presentsalternative, unimplemented methods, but full exploration of all possibledesigns would require several additional Ph.D. theses.Chapter 6. When having chosen atomic transformations, we need to choosehow to combine them. For example, after introducing a new function usingabstraction (ABSTR), this new function should be used immediately ina subsequent replacement (R). The reason is simply that a function mustbe used i.e., formally called, at least twice in order to serve any purpose.We de�ne this coupling between atomic transformations using so-calledcoupling rules, similar to rewrite and production rules, which ADATEemploys to automatically generate all possible compound transformations.Chapter 7. The �nal choice in the design of ADATE is the overall combi-natorial search technique that navigates through the program space byjumping from neighbour to neighbour using compound transformations.There are several combinatorial \meta-heuristics" that may be used as15

templates for the overall search. Two such methods are simulated an-nealing [Kirkpatrick et. al. 83] and tabu search [Glover 89], both of whichare based on local optimization. In comparison with plain local optimiza-tion methods, both simulated annealing and tabu search are substantiallybetter at escaping from local optima but require much more executiontime. Since we already are on the limit of the computationally feasible,we chose a special-designed overall search, which is likely to be at least twoorders of magnitude faster than simulated annealing. Unfortunately, wehave to sacri�ce general and robust search performance in order to reducethe number of examined neighbourhoods and achieve this speed increase.When 10 to 100 times more computing power is available, we will use arandomized search that is better at escaping from local optima. How-ever, the basic population structure and sophisticated iterative-deepeningsearch presented in Chapter 7 will also be needed in future implementa-tions. Therefore, there is practically no material in Chapter 7 that is likelyto become obsolete in new versions of ADATE.Chapter 8. This chapter contains examples of speci�cations and inferred pro-grams. We used 10 sample speci�cations to evaluate ADATE. The inferredprograms typically consist of less than 30 lines of ADATE-ML code, butare nevertheless mostly non-trivial. As far as we know, there is no otherinference system in the literature that can infer even one single of theseprograms using speci�cations that contain as little explicit information asours.Desirable, non-trivial and unexpected programs were found surprisinglyoften. One reason is that recursive calls were employed in ways we couldnot anticipate. Our general impression is that the results of grand scalecombinatorial search as in ADATE are unpredictable and that they wouldbe less interesting if they were not.Some of the 10 speci�cations, in particular BST deletion and permutationgeneration, were not easy to write since we had to change them severaltimes in order to enable the overall search method to escape from localoptima.Appendix B shows a \raw" log �le from the inference of a list sortingprogram.Chapter 9. This chapter discusses categories of inductive inference systemsthat are related to ADATE, namely inductive logic programming, geneticalgorithms (programming) and program transformation. We evaluate eachof these categories with respect to seven common criteria.Chapter 10. This chapter contains merits and drawbacks with ADATE anddirections for future research. 16

Chapter 2The Language in WhichSynthesized Programs areWrittenSynthesized programs are written in a purely functional subset, ADATE-ML, ofStandard ML. We will �rst motivate the choice of ML, then compare ADATE-ML with Standard ML and �nally explain how ADATE-ML programs are rep-resented using algebraic data types. This explanation lays the ground for thealgorithms that transform ADATE-ML programs.2.1 Advantages of Functional Languages for In-ductive InferenceWe will �rst discuss the advantages of ADATE-ML in comparison with lan-guages from the ALGOL family e.g. SIMULA, ADA, MODULA,: : :. Then, wewill compare ADATE-ML with PROLOG and LISP.For expressing inferred programs, a purely functional language has the fol-lowing advantages in comparison with ALGOL-like languages.1. A purely functional language is referentially transparent and has no notionof state nor destructive assignment. Consequently, it is relatively easy tode�ne general, semantics preserving transformations of purely functionalprograms. Helmut Partsch [Partsch 90, page 263] writes that \experiencehas shown that it is advisable to do these manipulations on the applicativelevel as far as possible, thus pro�ting from the obvious advantages (suchas referential transparency) of this level of formulation".17

2. Another advantage of a functional language is that a functional programis often much smaller than the corresponding ALGOL-like program. Thisis particularly important when using search strategies that, in principle,exhaustively search subsets of the space of all programs. The cardinalityof such a subset is often much lower for a purely functional language thanfor practically any other language.3. ALGOL-like languages have type systems that are rigid and primitive incomparison with algebraic data types and Hindley-Milner polymorphictyping as in ML.4. A purely functional language uses recursion instead of while-loops. Itis easy to reformulate any program that contains while-loops using onlyrecursion, but there are many recursive programs that require clumsy,unnatural formulations if only while-loops are allowed.5. Most languages in the ALGOL family do not have automatic garbage col-lection, which necessitates arduous, explicit storage allocation and deallo-cation.6. Functions are �rst-class citizens in functional languages i.e., may be usedjust like other values. Higher-order functions and �-expressions provideexcellent abstraction facilities, but ADATE-ML does not contain them.However, they may be useful in future versions and certainly are employedover and over again in the ML source code of ADATE itself.7. Some functional languages, e.g. MIRANDA and HASKELL, have lazyevaluation, which allows more expressive formulations. However, we donot exploit lazy evaluation and use strict evaluation only.Undoubtedly, LISP and PROLOG are the most popular high level languagesfor expressing programs that are synthesized by inductive inference systems.The comparison with these languages is more interesting since the advantagesof ADATE-ML may be less obvious. Here are some problems with LISP andPROLOG.1. Both LISP and PROLOG su�er from extremely poor type systems, whichmight lead to unnecessarily high cardinalities for the program space sub-sets that are searched. The combinatorial advantage of typing is illustratedby the following example.Example. Assume that a syntactically correct program is a string, a1a2 : : : a#a,of terminal symbols produced by a context-free grammar (CFG). Assumethat the ai's are drawn from sets of terminals that have cardinalities withthe geometric average B for large #a. The CFG normally constrains theseterminal sets so that B is only a fraction of the total number of di�erentterminals. There are �(B#a) programs of size #a. Type constraints may18

be taken into consideration by assuming that t di�erent types reduce Bto B=t. Thus, the number of programs of size #a may be reduced from�(B#a) to �((B=t)#a) through typing.For example, consider the CFGE �! a j b j f E j f' E j g E j g' Ewith the terminal symbols a, b, f, f', g, g' and the non-terminalsymbol E. There are �(4#a) syntactically correct strings of length #a,i.e., B = 4 asymptotically. Assume that an E-string is a preorder listingof an expression and that the functions are typed as follows.a : S f : S->T g : T->Sb : T f': S->T g': T->SThere are two types, S and T, i.e., t = 2. There are �((B=t)#a)= �(2#a)expressions of size #a that are both syntactically correct and correctlytyped. Of course, there are many grammars and type assignments suchthat typing does not reduce B to B=t. 22. PROLOG, but not LISP, lacks scoping and modularization facilities e.g.predicate de�nitions inside other de�nitions. Neither does PROLOG havehigher order predicates as �rst class citizens.3. LISP, but not PROLOG, lacks pattern-matching constructs and relies ontest predicates and selectors instead e.g. null, car, cdr. The attempts torectify this in for example COMMON LISP are quite primitive.Since language advantages often are hard to prove with mathematical rigour,language discussions are often fruitless. The reader who still feels that SIMULA,ADA, COMMON LISP, SCHEME or PROLOG is superior for inductive infer-ence may want to try to show this by replacing ADATE-ML and reimplementingADATE. However, we believe that this endeavour would be much more di�cultthan our own implementation e�ort.2.2 The Design of ADATE-MLOne design goal was to remove redundancy from Standard ML, which has manyequivalent constructs. Normally, these constructs give programmers freedom ofchoice, but ADATE-ML should not contain \syntactic sugar" since this may leadto unnecessarily large search spaces. For example, the Standard ML expressionlet val V = E1 in E2 end 19

is equivalent to(fn V => E1) E2and tocase E1 of V => E2.ADATE-ML only allows the last form of this expression. ADATE-ML usescase E of true => RHS1 | false => RHS2instead ofif E then RHS1 else RHS2.ADATE-ML also uses case-expressions and pattern-matching instead of dis-criminators and selectors, e.g.case Xs of nil => nil | X1::Xs1 => Xs1is used instead ofcase null Xs of true => nil | false => tl Xs.Boolean operators can be replaced with case-expressions without any signi�cantincrease in code size or execution time. They are therefore superuous and notallowed in ADATE-ML. The boolean expression E1 andalso E2 can be replacedwithcase E1 of true => E2 | false => false.Similarly, E1 orelse E2 may be replaced withcase E1 of true => true | false => E2.and not E can be replaced withcase E of true => false | false => true.ADATE-ML uses case-expressions instead of alternative left hand sides in fun-de�nitions. For example, the de�nitionfun l nil = 0| l (X1::Xs1) = 1 + l Xs1is written asfun l Xs = case Xs of nil => 0 | X1::Xs1 => 1 + l Xs1.20

ADATE-ML does not contain curried functions. The pattern in the left handside of a fun-de�nition is required to be an n-tuple pattern with n � 1. Atuple pattern is always required to be fully layered which means that namesare introduced for all possible parts of a tuple pattern. For example, the type((int*int)*int)*int corresponds to a pattern like (A as (B as (C,D),E),F).Requiring tuple patterns to be fully layered often leads to the introduction ofsuperuous names. This problem is more aesthetic than practical.ADATE-ML contains datatype-de�nitions of the following form.datatype (0a1;0a2; : : : ;0a#a) Type constructor =C1 of T1;1 � T1;2 � : : : T1;#T1| C2 of T2;1 � T2;2 � : : : T2;#T2...| C#C of T#C;1 � T#C;2 � : : : T#C;#T#CEach 0ai is a type variable, each Cj is a constructor and each Tj;k is the typeof argument number k of constructor Cj.If the type of a case-analyzed expression E is de�ned by a datatype-de�nition, the patterns in the left hand sides of case-rules must correspond tothe alternatives in the datatype-de�nition as follows. Let the case-expressionbecase E of Match1 => RHS1 | : : : | Matchn => RHSnand assume that the datatype-de�nition for the type of E has the form givenabove. ADATE-ML requires n = #C and Matchi = Ci(Tuple-pati) whereTuple-pati is the fully layered tuple pattern for the tuple type Ti;1 � : : : �Ti;#Ti .The language restrictions presented so far do not signi�cantly reduce theexpressiveness of ADATE-ML. However, as mentioned above, the current ver-sion of ADATE-ML contains neither �-expressions nor higher order functions,both of which are important ingredients of functional programming languages.These ingredients were omitted from ADATE-ML since more complicated pro-gram transformations would be required to utilize them e�ectively. Since theseingredients were omitted, each application of an expression E1 to an expressionE2, i.e., E1E2, is such that E1 is a function symbol.The basic syntax of ADATE-ML expressions is speci�ed by the grammar rulefor the non-terminal Exp in Figure 2.1. In order to keep the grammar simple,it does not describe in�x function applications even though these are allowed inADATE-ML. 21

Exp �!Idj (Exp list)j Id (Exp list)j case Exp of Rule listj let Dec list in Exp endId �! All valid alphanumeric identi�ers.Exp list �!Expj Exp , Exp listRule list �!Pat => Expj Pat => Exp | Rule listPat �!Idj (Pat list)j Id (Pat list)j Id as PatPat list �!Patj Pat , Pat listDec list �! fun DecsDecs �!Id Pat = Expj Id Pat = Exp and DecsFigure 2.1: The syntax of ADATE-ML expressions.22

datatype ('a,'b)e =app_exp of { func : symbol, args : ('a,'b)e list, exp_info : 'a }| case_exp of { exp : ('a,'b)e,rules : {pat:('a,'b)e,exp:('a,'b)e} list,exp_info : 'a }| let_exp of {dec_list :{func:symbol,pat:('a,'b)e,exp:('a,'b)e,dec_info:'b} list,exp : ('a,'b)e,exp_info : 'a }| as_exp of { var : symbol, pat : ('a,'b)e, exp_info : 'a }type ('a,'b)d ={ func : symbol, pat : ('a,'b)e, exp : ('a,'b)e, dec_info : 'b }Figure 2.2: The data types for expressions and fun-declarations.2.3 Basic De�nitions for the Manipulation ofADATE-ML ProgramsADATE is implemented in Standard ML. We will also use Standard ML topresent algorithms that manipulate ADATE-ML programs. Standard ML waschosen as a presentation language instead of pseudo-notation since the \level"of Standard ML is almost as high as the level of pseudo-notation and sinceStandard ML has precise and well-de�ned semantics.ADATE-ML expressions and fun-declarations are represented using the datatypes ('a,'b)e and ('a,'b)d respectively. The type variable 'a is the type ofinformation that is associated with each expression. The type variable 'b is thetype of information that is associated with each fun-declaration. For example,this information can be the types of expressions and functions. Since fun-declarations can occur in expressions and vice versa, both the type constructore and the type constructor d need ('a,'b) as argument.The de�nitions of e and d are shown in Figure 2.2. These data types aresimple and easy to use when de�ning program manipulation functions, but maynot be theoretically appealing since some values can be constructed in manydi�erent ways and since illegal values can be constructed. This is illustrated bythe following two examples.Example. The expression f(X1,X2) has at least two representations. Thetwo representations below correspond to the expressions f(X1,X2) and f((X1,X2)).Assume that we have the bindingArgs = [app_exp{func="X1",args=nil,exp_info=NONE},23

app_exp{func="X2",args=nil,exp_info=NONE}]The two representations are thenapp_exp{func="f",args=Args,exp_info=NONE}andapp_exp{func="f",args=app_exp{func="tuple",args=Args,exp_info=NONE}::nil,exp_info=NONE}.We always assume that the �rst form of representation is used. 2Example. The de�nition of e in Figure 2.2 regards patterns as expressions.For example, this means that the data type ('a,'b)e allows as-bindings inplaces where the grammar in Figure 2.1 does not allow them, e.g. infun f A = g(A as (B,C)).This as-binding is illegal in ML and does not make sense but can still be rep-resented using the data type. 2When manipulating ADATE-ML expressions, it is frequently necessary tospecify the positions of subexpressions. The position of a subexpression is alist [P1; P2; : : : ; Pn] of natural numbers that correspond to the expressiontree path that leads to the subexpression. Number Pi corresponds to going tochild number Pi. The left-most child has number 0. The higher order functionpos fold shown in Figure 2.3 may be used to de�ne many functions that employpositions. A function pos to sub that returns the subexpression Sub at positionPos in an expression E can be de�ned asfun pos_to_sub(E,Pos) = pos_fold(#1, fn Sub => Sub, Pos, E).In order to produce names for functions and parameters, ADATE maintainsa counter that is increased by one each time a new name is needed. If thiscounter has the value N , a function is called gN whereas a parameter is calledVN . Since the counter contains 60 bits (two int values in Standard ML of NewJersey), the name supply is large enough for all practical purposes.24

fun pos_fold(f : 'c * ('a,'b)e * pos -> 'c, g : ('a,'b)e -> 'c,Pos : pos, E : ('a,'b)e) : 'c =case Pos ofnil => g E| P::Ps =>case E ofapp_exp{args,...} =>f(pos_fold(f,g,Ps,nth(args,P)), E, Pos)| case_exp{exp,rules,...} =>if P=0 thenf(pos_fold(f,g,Ps,exp), E, Pos)elsef(pos_fold(f,g,Ps,#exp(nth(rules,P-1))), E, Pos)| let_exp{dec_list,exp,...} =>if P < length dec_list thenf(pos_fold(f,g,Ps,#exp(nth(dec_list,P))), E, Pos)elsef(pos_fold(f,g,Ps,exp), E, Pos)Figure 2.3: The de�nition of pos fold.
25

Chapter 3Speci�cation and Selectionof Programs3.1 Basic Properties of Speci�cationsA speci�cation implicitly de�nes a set C of correct programs. A program iscorrect if and only if it satis�es the speci�cation. The person(s), who wrote thespeci�cation, want a program chosen from a set D of desirable programs. Thesoftware engineering discipline distinguishes between validation and veri�cation.Validation of a program P means to check if P 2 D whereas veri�cation checksif P 2 C.Ideally, a speci�cation should be such that1. C 6= ; (consistency),2. D � C (necessity) and3. C � D (su�ciency).The ideal C = D is rarely achieved. A speci�cation that is necessary issometimes also called \loose" since it does not unnecessarily restrict the set ofprograms that may be inferred. Many inductive inference systems use speci�ca-tions that are not necessary, which means that one or more desirable programsare not allowed by the speci�cations. Usually, such speci�cations contain extrainformation that facilitate e�cient inference by constraining the search. The ba-sic philosophy of our work is to maximize the ease of speci�cation by minimizingthe amount of extra information. ADATE speci�cations are always necessary.A major potential problem with practically all speci�cations employed ininductive inference is that they are not su�cient.26

3.2 Attempts to Deal with Lack of Su�ciencyLack of su�ciency is a fundamental problem that arises in practically all kindsof scienti�c theory formation and inductive inference. A thorough theoreticaltreatment of the problem is given by Li and Vit�anyi in their book on Kol-mogorov complexity [Li and Vit�anyi 93]. They provide an illustration similarto the following. \If a man has seen the sun rise on the eastern side of his houseevery morning in his entire life, can he use these examples of sunrise to concludethat the sun will rise on the eastern side of the house the next morning?" If onerequires examples to be absolutely su�cient, the answer is no, which indicatesthat it sometimes is unreasonable to insist on su�ciency.Li and Vit�anyi discuss Occam's razor principle at length, giving many his-torical accounts of its importance. They cite many di�erent formulations of thisprinciple. For our purposes, the following version is the most suitable.Compute the set of hypotheses that agree as well as possible withthe observations. Choose the simplest hypothesis in this set.For example, they write that Albert Einstein developed his general theory ofrelativity because he was convinced that the special theory was not the simplestthat can explain all observed facts.In machine learning, there are several interesting theoretical approaches tothe problem of constructing highly probable hypotheses, in particular Valiant'smodel of learning [Valiant 84] and the so-called Occam's razor theorem as statedin [Blumer et. al. 86]. This theorem is based on Valiant's model and Occam'srazor principle.The problem of �nding a program Pmin, that satis�es the speci�cation andhas minimum syntactic complexity, is NP-hard even for very simple languagessuch as regular expressions [Angluin 78]. Occam's razor theorem says that aprogram P with reasonably small but not necessarily minimal syntactic com-plexity still is correct with high probability. The theorem is useful since itdoes not require minimization of syntactic complexity, which means that worst-case polynomial time learning methods are more likely to exist. An interestingquestion is which languages that may be used to formulate P . Blumer et. al.considers restricted languages such as geometric concepts and Boolean expres-sions. For the latter language, their result may be described as follows. Assumethat the syntactic complexity s(P) is the minimum number of bits required toencode the program P and that n is the number of examples. The theorem as-sumes that s(P) is O(s(Pmin)kn�), where k and � are constants such that k � 1and 0 � � < 1. It is normally assumed that � is substantially less than one sothat n� rapidly becomes much smaller than n. Note that P is assumed to havea reasonably small, but not necessarily minimal, syntactic complexity. Occam'srazor theorem says that P still is correct with high probability. The probabilityof correctness depends on k, � and n as described in [Blumer et. al. 86].27

Even if this result is not directly applicable to the inference of general func-tional programs, it indicates that reasonably small syntactic complexity in com-bination with well chosen examples can achieve su�ciency with a high proba-bility.3.3 Speci�cation FormSome additional requirements for a speci�cation are:1. The speci�cation should be as easy as possible to write and preferably bemuch simpler than any desirable program.2. The speci�cation should facilitate e�cient inference.3. A computer should reasonably quickly be able to decide if a given programis correct.Requirements 1 and 2 are often in conict. One main goal of the researchpresented in this thesis was to allow speci�cations to be as simple as possible.The only e�ciency goal was that many interesting inferences should be possibleusing computers that were generally available in 1993.Even if requirement 3 is satis�ed, there are still many speci�cations thatare very simple in comparison with the programs that satisfy them. For exam-ple, most of the well-known NP-hard problems can be used to construct suchspeci�cations, which employ sample inputs and an output evaluation function.Example. Assume that I is a large instance of the traveling salesmanproblem and that the speci�cation writer knows the minimum length Lmin of aHamiltonian cycle on I. It is easy to construct such an instance in time O(n2),where n is the total number of nodes. Here is a simple speci�cation of a programP . Given input I, P is required to output a Hamiltonian cycle C oflength Lmin in less than n2=106 CPU seconds.Note that it takes time O(n) to check if C is a Hamiltonian cycle of length Lmin.Thus, the correctness of P is decidable in time O(n2=106)+O(n) = O(n2) eventhough P may be extremely di�cult to �nd. 2The Journal of Algorithms maintains a list with hundreds of NP-completeproblems that can be used to construct similar speci�cations.Assume that a speci�cation is to be used to check a synthesized ML programP . P is a de�nition of a function f which is an approximation of a desirablefunction. An ADATE speci�cation consists of1. A set of algebraic data types.2. The primitive functions that are to be used in inferred programs.28

3. The type of f .4. A set of sample inputs f I1, I2, : : : , I#I g.5. An output evaluation function oe, which uses the setf(I1; f(I1)); : : : ; (I#I ; f(I#I))gto rate P .The sample inputs need to be chosen so that incremental inference is fa-cilitated. This means that the inputs should contain su�ciently many specialcases. The sample inputs in the speci�cation of a list sorting program mayfor example include an empty list, a singleton list, a sorted list and a few ran-dom lists. One interesting progression of more and more di�cult sample inputswould be the problems in mathematics textbooks, ranging from �rst grade inelementary school up to university level. Even if the speci�cation writer maynot need to be as \pedagogical" as the authors of such textbooks, the sampleinputs still need to be carefully chosen.It is important that speci�cations are not required to be based on input-output pairs. We have identi�ed the following four problems with input-outputpair speci�cations.1. The choice of output sometimes reects the particular algorithm that wasused to construct it. The speci�cation writer may need to know thisalgorithm to be able to provide appropriate output. An inference systemnaturally becomes much less useful if the writer is required to know thealgorithm to be inferred.2. Looseness is lost if the pairs do not include all possible outputs for a giveninput.3. An input-output pair speci�cation grades an output as correct or wrong.It is often desirable to use more than two grades. For example, the gradescan be all real numbers in some interval.4. It may be too di�cult for the user to provide optimal outputs.Here are four examples such that example number i illustrates problem num-ber i.1. Consider the speci�cation of a functionsplit : 'a list -> 'a list * 'a listthat splits a list Xs into a pair of lists (Ys,Zs) such that the lengthsof Ys and Zs di�er by at most one. The split function is useful whenimplementing merge sort. The input-output pair29

([1,2,3,4,5,6,7,8], ([1,2,3,4],[5,6,7,8]))obviously reects the particular algorithm that chooses Ys to the �rst halfof Xs and Zs to the second half. However, the following split algorithm isboth simpler and faster.fun split nil = (nil,nil)| split (X1::Xs1) = case split Xs1 of (Ys,Zs) => (X1::Zs,Ys)An input-output pair that reects this algorithm is([1,2,3,4,5,6,7,8], ([1,3,5,7],[2,4,6,8])).Instead of giving outputs, it is much better to provide an output eval-uation function. Assume that the function is perm is de�ned so thatis perm(As,Bs) means that Bs is a permutation of As. Given input Xsand output (Ys,Zs), the output evaluation function computesis_perm(Xs,Ys@Zs) andalso abs(length Ys - length Zs) <= 1,where @ is the ML operator for list concatenation.2. Problem 2 can be exempli�ed using the above TSP speci�cation. Ifthe speci�cation only allowed programs that produce a particular pre-determined tour of length Lmin, a program that produces another tourof length Lmin would be regarded as incorrect. The speci�cation wouldtherefore not be loose if such a tour exists.3. This example illustrates the usefulness of grades. Consider navigationof a polygon among polygonal obstacles. When computing the outputevaluation function one might check if a given path, represented by aseries of points and angles of rotation, intersects any obstacle, computethe length and curvature of the path, the amount of rotation along thepath and its safety i.e., margin to obstacles.4. In order to illustrate that it may be problematic to provide optimal out-puts, consider choosing random graphs as inputs in the TSP speci�cation.It would then be di�cult for the speci�cation writer to provide optimaloutputs i.e., Hamiltonian cycles of minimum length.30

3.4 The Output Evaluation FunctionSince the output evaluation function oe is of fundamental importance in ADATE,the exact form of oe is described below. An inferred program may contain aspecial constant, ?, that needs to be considered when de�ning oe. A ? constantmeans \don't-know". A correct output is better than a don't-know outputwhich in turn is better than a wrong output. Let the type of f be input type-> output type. The domain type of oe is(input_type * output_type exec_result) list,where exec result is de�ned asdatatype 'a exec_result = ? | too_many_calls | some of 'aThe outcome of the computation of f(Ii) is� ? if any ?-constant was evaluated,� too many calls if the call count limit, which is discussed in Subsec-tion 3.5.2, was exceeded and� some Oi otherwise.ADATE calls oe with an argument Execute result which is a list of the form[(I1; R1); : : : ; (I#I ; R#I)], where each Ri is the outcome of the computation off(Ii). The range type of oe is cwd list * real list where cwd is de�ned asdatatype cwd = correct | wrong | dont_knowIf the call oe Execute result returns (Cs,Grades), element number i in Cscorresponds to (Ii; Ri) in Execute result. Grades is a list of oating pointnumbers which is to be minimized according to the usual lexicographic orderingon lists. For example, Grades may have the form [Grade 1,Grade 2], whereGrade 1 is more important than Grade 2.Example. Consider the speci�cation of a program that simpli�es polyno-mials. Assume that simpli�cation of a polynomial Xs, e.g. 3X2 + 4X + 8X2 �5X + 4 � X2 + 8, yields a polynomial Ys, e.g. 12 + 10X2 � X. For a givenpolynomial Xs the user may need to determine how good an output Ys is with-out knowing any optimal output nor any way of computing one. Assume thatthe function eval pol is de�ned so that the call eval pol(Pol,Z) evaluates thepolynomial Polwith the integer Z substituted for the variable in the polynomial,e.g. eval pol(X3+X2+1; 3) = 37. Note that eval pol is easier to de�ne thana function that simpli�es polynomials. Grades is a singleton list [Grade] suchthat Grade is the sum of the lengths of all correct output polynomials.If M and N are the number of terms in Xs and Ys respectively, oe checksthat eval pol(Xs,X) = eval pol(Ys,X) for all integers X in 1; : : : ; M+ N. This31

fun eval_pol(Pol,Z) =case Pol ofnil => 0| (Coeff,Exponent)::Pol =>Coeff*int_pow(Z,Exponent) + eval_pol(Pol,Z) handle _ => 0fun oe(Execute_result : (input_type * output_type exec_result) list): cwd list * real list =letval Zs = map(fn(Xs,R) =>case R of? => (dont_know,0)| too_many_calls => (wrong,0)| some Ys =>let val M = length Xs val N = length Ys inif (N<=1 orelse N<M) andalsoforall(fn X => eval_pol(Xs,X)=eval_pol(Ys,X),fromto(1,M+N))then(correct,N)else(wrong,0)end,Execute_result)in(map(#1,Zs), [real(int_sum(map(#2,Zs)))])endFigure 3.1: The output evaluation function for polynomial simpli�cation.32

check su�ces to ensure that Xs and Ys are equivalent since Xs@Ys cannot containterms of more than M+ N di�erent degrees. A polynomial is represented as alist of (coe�cient,exponent) pairs. The complete de�nition of oe, includingthe auxiliary eval pol de�nition, is shown in Figure 3.1. This de�nition lookscomplicated in comparison with a polynomial simpli�cation program. However,the structure of oe-de�nitions is basically the same for all speci�cations, even ifmuch more complicated programs are speci�ed. 23.5 The Program Evaluation FunctionsADATE uses the sample inputs I1; : : : ; I#I and the output evaluation functionoe to compute three program evaluation functions pe1, pe2 and pe3 that supple-ment the program rating provided by oe with measures of syntactic complexity,time complexity, error locality and lineage.3.5.1 Syntactic ComplexityWe de�ne the syntactic complexity of a program P as � log2Pr(� = P) bits,where the random variable � is de�ned on a program space �. Let '(P) =Pr(� = P) be a predetermined distribution on �. Intuitively, the distribution 'should be such that '(P) > '(Q) holds for all programs P and Q in � such thatP is \simpler" than Q. In order to ensure that ' is a probability distribution,we should also have 0 � '(P) � 1 for all P in � and PP2� '(P) = 1.Here are three ways of choosing �.� �1 = The set of all lexically correct programs.� �2 = The set of all syntactically correct programs.� �3 = The set of all type correct programs.It is assumed that �3 � �2 � �1. The traditional choice when performingdata compression is � = �1. For example, using the so-called universal prior dis-tribution for positive integers [Rissanen 82], we could de�ne '(P) = K2�log�n,where the positive integer n is the number of lexemes in P and K is a nor-malizing constant such that PP2�1 '(P) = 1. The function log� is de�nedas log� n = logn+ log logn + log log logn+ : : :where the sum only includes the positive terms.When performing data compression, Robert Cameron [Cameron 88] showedthat � = �2 gives better compression than � = �1. Since the choice � = �3gives unnecessarily complicated and slow computation of syntactic complexity,we will choose � = �2.Cameron's encoding is lossless, which means that an encoded program canbe decoded so that an exact copy of the original program is obtained. The33

syntactic complexity estimate used by ADATE is based on lossy encoding. Inparticular, the exact choice of variable names is neglected. For example, theexpressions case Xs of A1::As1 => RHS1and case Xs of B1::Bs1 => RHS2are viewed as having the same encoding if the substitution f A1=B1, As1=Bs1 guni�es RHS1 and RHS2.The complexity estimation algorithm partitions the nodes in expression treesinto four classes namely let-nodes, case-nodes, other internal nodes and leaves.The complexity of an expression is computed by a preorder traversal of theexpression tree. Let Prc be the probability that the next node to be encodedduring such a traversal belongs to class c. Usually, ADATE employs the adhoc choices Prlet = 0:025, Prcase = 0:15 Printernal = 0:325 and Prleaf = 0:5.High con�dence estimation of these probabilities would require a rather largesample of typical inferred programs. Since it was di�cult to �nd such a samplebefore ADATE was implemented, the ad hoc probabilities above were chosen.Experimentally, these probabilities have led to adequate syntactic complexitybased di�erentiation of programs. Therefore, there is no compelling reason tochange them in accordance with the sample of synthesized programs that noware available. Additionally, this sample is still too small to allow statisticallyjusti�able estimation of universal probabilities since estimation using a smallsample will yield estimates that are too tailored to the sample.The scope rules of ML determine the set of symbols that may occur in anode. It is assumed that all symbols in the set have the same probability ofoccurring in the node. This means that � log2(1=N)= log2N bits are requiredto encode a symbol if the symbol set has cardinality N . LetNinternals = The number of di�erent symbols that may occur in an internal node.Nleaves = The number of di�erent symbols that may occur in a leaf.s(E) = The syntactic complexity of an expression E.In principle, syntactic complexity is de�ned as follows.s(E) = � log2 Prleaf + log2Nleaves if E is a leaf.s((E1; : : : ; En)) = � log2 Printernal + log2Ninternals +Pni=1 s(Ei).s(h E) = � log2 Printernal + log2Ninternals + s(E).s(case E of Match1 => E1 | : : : | Matchn => En)= � log2 Prcase+ s(E)+Pni=1 s(Ei). 34

s(let fun g(V1,V2,: : :,Vn) = E1 in E2 end)= � log2Prlet+ s(E1)+ s(E2).Note that neither the number of components in a tuple nor the number ofrules in a case-expression are encoded. It is assumed that these numbers canbe determined using type information or, alternatively, that their contributionto the syntactic complexity is negligible.The actual de�nition of syntactic complexity is somewhat more complicatedthan the one above. The expression E that is analyzed in a case-expressioncase E of Match1 => E1 | : : : | Matchn => Envery rarely contains let-expressions or other case-expressions when n is twoor more. Therefore, we have chosen Prlet = 0:0025 and Prcase = 0:015 insidecase-analyzed expressions when n is two or more.The exact de�nition of syntactic complexity is shown in Appendix A.3.5.2 Time ComplexityA natural measure of time complexity is the total execution time required tocompute f(I1); : : : ; f(I#I). In practice, it is di�cult to measure this time withsu�cient accuracy since few computers have timers with su�ciently high reso-lution, e.g. 1 microsecond or less.Another time complexity measure is the total number of function calls thatare made during the computation of f(I1); : : : ; f(I#I). This measure is alsosomewhat impractical since it would require much time to increase a countereach time a function is called. Therefore, ADATE only keeps track of the numberof calls to the function f and the let-functions that are de�ned in a programP . Thus, the time complexity measure for P is the total number of such calls.Since an inferred programP may have very bad time complexity, the numberof calls to functions de�ned in P needs to be limited. The current version ofADATE uses a call count limit of 200 when computing f(Ii). Thus, the upperlimit on the total number of calls is 200#I. The �xed 200 limit is somewhatarbitrary and may in the future need to be replaced by an iterative-deepeningscheme.3.5.3 Error LocalityWe will �rst de�ne the problem of computing error locality, then show that thisproblem is NP-hard and �nally present a simple approximation algorithm thatworks well in practice.For a given program P , letNc = The number of correct outputs.Nw = The number of wrong outputs. 35

Nd = The number of don't-know outputs.Naturally, the sum Nc + Nw + Nd equals the number #I of sample inputs.By replacing subexpressions of P with ?-constants, we can decrease Nw andincrease Nd. Usually, such replacements also decrease Nc. The error localitymeasure only considers replacements that give Nw = 0. Such replacementsare assumed to eliminate all errors in the program P . Out of all replacementsthat give Nw = 0, the best replacements are the ones that maximize Nc. LetN 0c be the maximum. Intuitively, the di�erence #I � N 0c indicates how muchtransformation work that remains to be done in order to obtain a completelycorrect program. Therefore, this di�erence should be as small as possible.Example. Consider a list sorting program sort. Assume that the sampleinputs are I1 = [], I2 = [10], I3 = [10,20,30,40], I4 = [50,20,60,20,40]and I5 = [10,20,50,40]. Both of the following two programs have Nc = 3 andNw = 2.P1 = fun sort Xs = XsP2 = fun sort Xs =case Xs ofnil => Xs| X1::Xs1 =>case Xs1 ofnil => Xs| X2::Xs2 => XsHowever, P2 is better than P1 since P2 has N 0c = 2 whereas P1 has N 0c = 0. 2.Since the semantics of the ?-constant is such that h(?) = ? for all functionsh, it is only necessary to consider replacing right hand sides of case-rules andfun-de�nitions with ?-constants. LetCorrect = The set of all correct outputs.Locations = The set of all right hand sides of case-rules and fun-de�nitions.Wrong = The set of all wrong outputs.Assume that Correct, Locations and Wrong are the three node partitions in atripartite graph. There is an edge between an output R and a location RHS ifand only if R changes to ? when RHS is replaced by a ?.Example. The program P2 above contains 5 right hand sides, namelyRHS1 = case Xs of nil => Xs | X1::Xs1 =>case Xs1 of nil => Xs | X2::Xs2 => Xs.RHS2 = Xs (position [1]).RHS3 = case Xs1 of nil => Xs | X2::Xs2 => Xs.36

R3R2R1
RHS5RHS4RHS3RHS2RHS1

R5
R4

..
...

..
...

...

1
Figure 3.2: The tripartite graph for P2.RHS4 = Xs (position [2,1]).RHS5 = Xs (position [2,2]).Assume that output Ri corresponds to input Ii. The three node partitions areCorrect = fR1; R2; R3g.Locations = f RHS1, RHS2, RHS3, RHS4, RHS5 g.Wrong = fR4; R5g.The tripartite graph is shown in Figure 3.2. N 0c can be computed by �ndinga subset of Locations that is connected to all nodes in Wrong and to a minimumnumber of nodes in Correct. N 0c is then Nc minus this minimum number. Inthe sort example, such a subset is fRHS5g which givesN 0c = Nc �#fR3g = 3� 1 = 2:We will now show that the problem of computing N 0c unfortunately is NP-hard. Using the style of [Garey and Johnson 79], we state the decision versionof this problem as follows. 37

INSTANCE: An undirected tripartite graph G = (V;E) and a positive inte-ger K. Let Correct, Locations and Wrong be the three node partitions.QUESTION: Is there a subset L of Locations such that(8w 2Wrong:9l 2 L:fw; lg 2 E) ^ jfc : c 2 Correct^ 9l 2 L:fc; lg 2 Egj � K?We prove that this problem is NP-complete by a reduction from the NP-complete MINIMUM COVER problem in [Garey and Johnson 79]. The MIN-IMUM COVER problem isINSTANCE: A collection C of subsets of a �nite set S and a positive integerK. QUESTION: Is there a collection C 0 such thatC0 � C ^ jC 0j � K ^ 8s 2 S:9�0 2 C 0:s 2 �0?Given an instance of MINIMUM COVER, the corresponding instance of ourproblem is constructed as follows. Choose Locations so that there is a bijectionbetween Locations and C, i.e., each location l corresponds to one and only onesubset � 2 C. Choose Correct so that there is a bijection between Correct andLocations. The edges between Correct and Locations are given by this bijection.Choose Wrong so that there is a bijection between S and Wrong. There is anedge between w 2Wrong and l 2 Locations if and only if the element s 2 S thatcorresponds to w is in the subset � 2 C that corresponds to l. It is now easy tosee that the question for MINIMUM COVER has the answer `yes' if and onlyif the question for our problem has the answer `yes'.Ideally, the computation of the error locality measure should take only asmall fraction of the time required to compute ff(I1); : : : ; f(I#I)g. Since f isoften reasonably e�cient, e.g. linear in the size of its input, we want to computeerror locality in linear time. Most likely, there is no worst-case polynomial timealgorithm for computing error locality since this problem is NP-hard. The pro-gram evaluation functions employ many measures other than the error localitymeasure, which only occasionally is needed in order to di�erentiate programs.Therefore, it is not necessary to choose an algorithm that always gives the \best"error locality measure.All the errors in a synthesized program are often located in a single RHSthat does not contain any other RHS. For such a program, the best error localitymeasure is obtained by replacing this single RHS with a ?-constant. Therefore,ADATE uses an algorithm that approximates N 0c byNc � jfc : c 2 Correct^ fc; lg 2 Egj;where l is chosen to a member of Locations such that the approximation ismaximized and such that l is connected to all nodes in Wrong. In the sortexample, we obviously have l = RHS5. This algorithm is very e�cient and givessu�ciently good approximations su�ciently often for all inferences that havebeen run. 38

i Value returned by pei1 �Nc :: Grades @ Nw :: �N 0c :: S :: Lineage @ [T]2 �Nc :: Grades @ Nw :: �N 0c :: T :: Lineage @ [S]3 Nw :: �Nc :: Grades @ �N 0c :: S :: Lineage @ [T]Table 3.1: The de�nitions of pe1, pe2 and pe3.3.5.4 LineageThe lineage measure for a program P considers the parent, say P , of P . Intu-itively, a program with a good parent is preferable to a program with a poorparent. LetNc = The number of correct outputs produced by P .Nw = The number of wrong outputs produced by P .Grades = The grades produced by the output evaluation oe when applied tothe outputs produced by P .The lineage measure Lineage is simply de�ned as�Nc::Grades @ [Nw].A typical inference proceeds by adding one case-expression at a time, whichmeans that cc(P) =1+cc(P), where the function cc counts the number of case-expressions. If an identity transformation is employed to produce P from P ,we will get P = P , Nc = Nc, Nw = Nw and Grades =Grades. Therefore, anidentity transformation (or one that makes a small trivial change) will make thelineage measure meaningless. This is avoided by choosing Nc, Nw and Gradesto the Nc, Nw and Grades values of the initial program if cc(P) � cc(P). Thus,the lineage measure gives preference to \genealogies" with strictly increasing ccvalues.3.5.5 The De�nitions of pe1, pe2 and pe3LetS = The syntactic complexity.T = The total call count.The three program evaluation functions are de�ned in table 3.1. A programP is considered to be better than a program Q according to pei if and only ifpei(P) comes before pei(Q) in the lexicographic ordering of lists. For exam-ple, the program evaluation function pe1 prefers correctness to small syntacticcomplexity which in turn is preferred to low call count.39

Chapter 4The AtomicTransformationsWe will �rst explain the concepts atomic transformations, compound transfor-mations and expression synthesis.A compound transformation is the composition of a sequence of atomic trans-formations. The program evaluation functions pe1, pe2 and pe3, which are usedto determine whether a program is to be kept or discarded, are only applied toprograms resulting from compound transformations. Assume that programPi+1is produced from program Pi with an atomic transformation ti. A compoundtransformation that produces P#t+1 from P1 will be written t1t2 : : : t#t.The initial program only consists of a single ? and thus gives a don't-knowoutput for all inputs. The �nal program is evolved from the initial programthrough a sequence of compound transformations.A simple form of expression synthesis is enumerative and exhaustive pro-duction of type correct expressions containing a �xed set of function symbols.Expressions are synthesized in order of increasing size. The size of an expressionis the number of nodes in the tree representation of the expression. The mostfrequently used atomic transformation, replacement, employs expression syn-thesis. Since the requirements for expression synthesis are determined by thisand other atomic transformations, we will wait with a more detailed discussionof expression synthesis until all atomic transformations have been presented.Expression synthesis is so important and complicated that the entire Chapter 5is dedicated to it. Chapter 6 explains how to build compound transformationsfrom atomic transformations.Section 4.1 gives schemas for each of the atomic transformations which areR. Replacement.REQ. Replacement that does not make the program \worse".40

ABSTR. Abstraction.CASE-DIST. case-distribution.EMB. Embedding.Since REQ is a special case of R, it may seem to be superuous. However,REQ transformations are so common that an enormous reduction in synthesistime usually is achieved by identifying them as special cases. The most di�cultatomic transformation to design is EMB. Our choices of schemas and algorithmsfor EMB are open in the respect that they may be substantially changed in thefuture.Section 4.2 deals with algorithms that perform atomic transformations. Thissection is more mathematical and technical than Section 4.1.4.1 Atomic Transformation SchemasThe schemas are presented in a form that relies on higher order matching, whichis a special case of higher order uni�cation. The di�erence between matchingand uni�cation is as follows. When unifying two terms T1 and T2, both T1 andT2 may contain variables. When matching T1 against T2, only T2 may containvariables.Example. Assume T1 = a(b(g(d),e), c)and T2 = H(E1; E2):Matching T1 against T2 yields 12 uni�ers if we assume that each argument ofH must occur in the �-body of H. If the order of the arguments of H does notmatter, there are only 6 non-equivalent uni�ers, namely1. f H = �(X;Y):a(X;Y); E1 = b(g(d),e); E2 = c g2. f H = �(X;Y):a(b(X;Y); c); E1 = g(d); E2 = e g3. f H = �(X;Y):a(b(X; e); Y) E1 = g(d); E2 = c g4. f H = �(X;Y):a(b(g(X); Y); c) E1 = d; E2 = e g5. f H = �(X;Y):a(b(g(X); e); Y) E1 = d; E2 = c g6. f H = �(X;Y):a(b(g(d); X); Y); E1 = e; E2 = c gA schema has the form LHS �! RHS;where a subexpression of the program to be transformed is matched againstLHS. 41

4.1.1 ReplacementReplacement is the only transformation that may change the semantics of aprogram. The general replacement schema isH(E1; E2; : : : ; En) �! G(E1; E2; : : : ; En);where G is an expression that is synthesized as a part of a replacement trans-formation. The special case n = 0 simply means that an entire subexpression ofthe program is replaced with a newly synthesized expression. The special casen = 1 and H = �X:X may be viewed as an insertion of a newly synthesizedexpression. These two special cases are the most common forms of replacement.Here is an example that illustrates the special case n = 0.Example. Consider the inference of a list sorting program. Assume thatthe sample inputs areI1 = []I2 = [10]I3 = [10,20,30,40]I4 = [50,20,60,20,40]I5 = [10,20,50,40]In one out of many possible inferences of sort, each compound transformationexcept the last consists of a single replacement with n = 0. For each compoundtransformation, we will give the position Pos of H, the synthesized expressionG, the resulting program and its Nc and Nw values. Program number 1 is theinitial program.1. fun sort Xs = ?Nc = 0 Nw = 02. Pos = []G = case Xs of nil => Xs | X1::Xs1 => ?fun sort Xs = case Xs of nil => Xs | X1::Xs1 => ?Nc = 1 Nw = 03. Pos = [2]G = case Xs1 of nil => Xs | X2::Xs2 => ?42

fun sort Xs =case Xs ofnil => Xs| X1::Xs1 =>case Xs1 ofnil => Xs| X2::Xs2 => ?Nc = 2 Nw = 04. Pos = [2,2]G = case X2<X1 of true => ? | false => Xsfun sort Xs =case Xs ofnil => Xs| X1::Xs1 =>case Xs1 ofnil => Xs| X2::Xs2 =>case X2<X1 oftrue => ?| false => XsNc = 3 Nw = 15. Pos = [2,0]G = sort Xs1fun sort Xs =case Xs ofnil => Xs| X1::Xs1 =>case sort Xs1 ofnil => Xs| X2::Xs2 =>case X2<X1 oftrue => ?| false => XsNc = 3 Nw = 0The �nal compound transformation is shown in Subsection 4.1.2. 243

In order to discriminate between replacements, ADATE employs a specialprogram evaluation function peREQ which returns �Nc :: Grades @ [Nw]. Areplacement that does not increase the peREQ value is denoted by REQ whereasan ordinary replacement is denoted by R. If a compound transformation con-tains several replacements, ADATE usually requires that one or more of thereplacements are REQ's. REQ's are found by trying R's and selecting the onesthat do not increase the peREQ value. Normally, only a small fraction of the R'smeet this requirement. The REQ's are sorted according to the peREQ value togive preference to the best REQ's.4.1.2 AbstractionAn abstraction introduces a let-function with a de�nition based on a subex-pression E of the program to be transformed. The transformation schema isH(E1; E2; : : : ; En) �!let fun g(V1,V2,: : :,Vn) = H(V1,V2,: : :,Vn) in g(E1; E2; : : : ; En) end,where g is a new function.Example. The last compound transformation in the inference of sort hasthe form ABSTR REQ REQ R. Consider the last sort program given above.The ABSTR has n = 1, E1 = sort Xs1 and H(E1) =case sort Xs1 of nil => Xs| X2::Xs2 => case X2<X1 of true => ? | false => XsThus, the program produced by the ABSTR isfun sort Xs =case Xs of nil => Xs| X1::Xs1 =>let fun g V1 =case V1 of nil => Xs| X2::Xs2 => case X2<X1 of true => ? | false => Xsing(sort Xs1)endThe �rst REQ replaces the second occurrence of Xs. The second REQ re-places the third occurrence of Xs. Assume that these occurrences for pedagogicalreasons are labeled Xs' and Xs''. The program above is then written as44

fun sort Xs =case Xs of nil => Xs| X1::Xs1 =>let fun g V1 =case V1 of nil => Xs'| X2::Xs2 => case X2<X1 of true => ? | false => Xs''ing(sort Xs1)endThe �rst REQ replaces Xs' with the synthesized expression X1::nil. Thispreserves equivalence since Xs' always is a singleton. The second REQ replacesXs'' with the synthesized expression X1::V1. Equivalence is preserved sinceXs'' always is sorted. The R then �nally replaces the ? with the synthesizedexpression X2::g Xs2 which yields a correct sorting program i.e.,fun sort Xs =case Xs of nil => Xs| X1::Xs1 =>let fun g V1 =case V1 of nil => X1::nil| X2::Xs2 => case X2<X1 of true => X2::g Xs2 | false => X1::V1ing(sort Xs1)end24.1.3 case-distributionThis transformation is based on the following schema.H(case E of Match1 => E1 | Match2 => E2 | : : : | Matchn => En) !case E of Match1 => H(E1) | Match2 => H(E2) | : : : | Matchn => H(En).Note that the schema may be used both left-to-right and right-to-left. If itis used left to right and some Ei is ?, an expression H(?) is produced. Such anexpression is immediately replaced by ?.Example. Consider the inference of a function bst del that deletes anelement from a binary search tree (BST). Binary trees are represented with thethe following data typedatatype 'a bin_tree =bt_nil | bt_cons of 'a * 'a bin_tree * 'a bin_tree45

We will exemplify case-distribution using the �nal compound transformation inone of many possible inferences of a correct bst del program. This compoundtransformation, which has the form CASE-DIST ABSTR REQ R, starts withthe following program.fun bst_del(I as (X,Xs)) =case Xs ofbt_nil => Xs| bt_cons(RoXs,LeXs,RiXs) =>case RoXs<X oftrue => bt_cons(RoXs,LeXs,bst_del(X,RiXs))| false =>case X<RoXs oftrue => bt_cons(RoXs,bst_del(X,LeXs),RiXs)| false =>case LeXs ofbt_nil => RiXs| bt_cons(RoLeXs,LeLeXs,RiLeXs) =>case RiXs ofbt_nil => LeXs| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>bt_cons(case LeRiXs ofbt_nil => RoRiXs| bt_cons(RoLeRiXs,LeLeRiXs,RiLeRiXs) => ?,LeXs,RiRiXs)The CASE-DIST moves the last occurrence of case outwards, which yieldsthe programfun bst_del(I as (X,Xs)) =case Xs ofbt_nil => Xs| bt_cons(RoXs,LeXs,RiXs) =>case RoXs<X oftrue => bt_cons(RoXs,LeXs,bst_del(X,RiXs))| false =>case X<RoXs oftrue => bt_cons(RoXs,bst_del(X,LeXs),RiXs)| false =>case LeXs ofbt_nil => RiXs| bt_cons(RoLeXs,LeLeXs,RiLeXs) =>case RiXs of 46

bt_nil => LeXs| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>case LeRiXs ofbt_nil => bt_cons(RoRiXs,LeXs,RiRiXs)| bt_cons(RoLeRiXs,LeLeRiXs,RiLeRiXs) => ?The ABSTR has n = 2 and H(E1; E2) equal to the last case-expression.The following program is produced by the ABSTR.fun bst_del(I as (X,Xs)) =...case RiXs ofbt_nil => LeXs| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>let fun g(Ys,Y) =case Ys ofbt_nil => bt_cons(Y,LeXs,RiRiXs)| bt_cons(RoLeRiXs,LeLeRiXs,RiLeRiXs) => ?ing(LeRiXs,RoRiXs)endThe REQ changes the last occurrence of RiRiXs to bst del(Y,RiXs), whichgives the programfun bst_del(I as (X,Xs)) =...case RiXs ofbt_nil => LeXs| bt_cons(RoRiXs,LeRiXs,RiRiXs) =>let fun g(Ys,Y) =case Ys ofbt_nil => bt_cons(Y,LeXs,bst_del(Y,RiXs))| bt_cons(RoLeRiXs,LeLeRiXs,RiLeRiXs) => ?ing(LeRiXs,RoRiXs)endFinally, the R produces a correct bst del program by replacing the ? withg(LeLeRiXs,RoLeRiXs).Note that the retention of \old" variable names in H(E1; E2) means that thevariables that designate the root and the left and the right subtrees of Ys havemisleading names i.e., RoLeRiXs, LeLeRiXs and RiLeRiXs instead of RoYs, LeYsand RiYs. 2 47

4.1.4 EmbeddingAn embedding generalizes the type of a let-function. Two examples of embed-dings are to add an argument to the function or to change an argument of type'a to one of type 'a list. Assume that the let-function to be embedded hasthe de�nitionlet fun g(V1,V2,: : :,Vn) = RHS in Exp end.In its most general form, an embedding inserts a synthesized type expressioninto the type expression for g. When the type of g changes, the types of functionsoccurring in RHS and Exp may need to change too. Changing these typesmay make it necessary to change other types and so on. Since this \chainreaction" makes it a bit di�cult to choose which types to change, a simpli�edform of embedding that avoids chain reactions is described below. However,this design is not as complete and de�nitive as the designs of the other atomictransformations.The data type de�nitions provided by the speci�cation writer are used forembedding. The allowed data type de�nitions are a subset of ML data typede�nitions and have the following form.datatype (0a1;0a2; : : : ;0a#a) Type constructor =C1 of T1;1 � T1;2 � : : : T1;#T1 jC2 of T2;1 � T2;2 � : : : T2;#T2 j...C#C of T#C;1 � T#C;2 � : : : T#C;#T#CEach 0ai is a type variable, each Cj is a constructor and each Tj;k is the typeof argument number k of constructor Cj.A given datatype-de�nition may be used to embed a type T only if Tmatches some Tj;k. The types T and Tj;k are considered to match only if afunction with domain type Tj;k may be applied to an object of type T accordingto the typing rules of ML.Example. The datatype-de�nition for lists isdatatype 'a list = nil | :: of 'a * 'a listSince T2;1 is the type variable 'a, which matches any type, this de�nitionmay be used to embed any type. For example, embedding the type 'b bin treeyields the type ('b bin tree) list. 2Tuple types are prede�ned and given special treatment. A tuple type T1 � : : : � Tncan be embedded in two ways.1. The new type is T1 � : : : � Tn�0a, where 0a is a fresh type variable.48

2. An index i is chosen and the type Ti is embedded using a datatype-de�nition as described above.The embedding of a proper subtree of some Ti is not allowed. For example,using the type constructor bin tree the tuple type int list � bool may beembedded to (int list) bin tree � bool but not to (int bin tree) list � bool.This restriction simpli�es the translation between an expression of the old typeand the corresponding expression of the new type as described below.The only tuple types that may be embedded are the domain and the rangeof g. Note that all embeddings given below preserve semantics and completelyavoid chain reactions. The following schemas use a special constant, ? emb, todenote an expression to be synthesized as part of an embedding transformation.Embedding the domain of g. Assume that the domain type of g is T1 � : : : � Tnand that the datatype-de�nition for lists is to be used. The two ways of em-bedding tuple types given above are now used as follows.1. T1 � : : : � Tn to T1 � : : : � Tn �0 a: Each call of the form g(E1; : : : ; En) ischanged to g(E1; : : : ; En; ? emb)2. T1 � : : : � Ti � : : : � Tn to T1 � : : : � Ti list � : : : � Tn.(a) Each call g(E1; : : : ; Ei; : : : ; En) is changed to g(E1; : : : ; Ei::? emb; : : : ; En).(b) RHS is replaced by case Vi of nil => ? emb | X::Xs => (RHSwith X substituted for Vi), where X and Xs are fresh variables.Embedding the range of g. Assume that the range type of g is T1 � : : : � Tnand that the datatype-de�nition for lists is to be used. The two ways of em-bedding tuple types given above are now used as follows.1. T1 � : : : � Tn to T1 � : : : � Tn �0 a:(a) Each call g(: : :) is changed tocase g(: : :) of X as (X1; : : : ; Xn; Xn+1) => (X1; : : : ; Xn).(b) TheRHS, which in this case is assumed to have the form (E1; : : : ; En),is changed to (E1; : : : ; En; ? emb): If n = 1 andE1 is a case-expression,case-distribution is used to move ? emb downwards until no ? embhas a case-expression as sibling. This is illustrated by the del minexample below.2. T1 � : : : � Ti � : : : � Tn to T1 � : : : � Ti list � : : : � Tn.(a) If n = 1, each call g(: : :) is changed tocase g(: : :) of nil => ? emb | X::Xs => X.49

If n � 2, each call g(: : :) is changed tocase g(: : :) of X as (X1; : : : ; Xi; : : : ; Xn) =>case Xi of nil => ? emb | Y::Ys => (X1; : : : ; Xi�1; Y;Xi+1; : : : ; Xn).(b) The RHS, which in this case is assumed to have the form(E1; : : : ; Ei; : : : ; En);is changed to (E1; : : : ; Ei::? emb; : : : ; En):If Ei is a case-expression, case-distribution is invoked to move the? emb downwards until no ? emb has a case-expression as sibling.The datatype-de�nition for lists was used above in order to make the pre-sentation less abstract. In case 2.(a) for embedding of the domain and in case2.(b) for embedding of the range, the constructor :: was used to translatean expression Ei of type Ti to an expression of type Ti list. In general, thedatatype-de�nition may contain several types Tj;k that match Ti. For eachsuch Tj;k, Ei may be translated to Cj(? emb; : : : ; Ei; : : : ; ? emb) where Ei is ar-gument number k. It is of course also straightforward to generalize case-analysisto datatype-de�nitions other than the one for lists. The same (j; k) must beused for all translations in the same embedding. This restriction ensures thatthe system knows which case-alternative to use for translation in case 2.(b) forembedding of the domain and in case 2.(a) for embedding of the range.Example. Consider the inference of a program del min : int list ->int list that deletes one occurrence of the smallest integer in a list. Since anempty list does not have a smallest element, it is natural for del min nil toevaluate to ?. If ADATE was given a function min that �nds the smallest elementin a list or a function delete one that deletes one occurrence of an elementfrom a list, the inference would be trivial. An important point is that ADATEis given neither of these functions, which means that it is required to inventcorresponding \auxiliary functionality". The sample inputs are I1 = [10],I2 = [1,2,3,4,5,6,7,8,9,10] and I3 = [5,9,45,46,28,3,11,10,30,23].Here is one of many possible inferences of del min. The initial program isfun del min Xs = ?.1. The �rst compound transformation is a single R which givesfun del_min Xs =case Xs of nil => ?| X1::Xs1 =>case Xs1 of nil => nil | X2::Xs2 => ?50

2. The second compound transformation has the form ABSTR EMB REQR. The ABSTR givesfun del_min Xs =let fun g Ys =case Ys of nil => ?| X1::Xs1 =>case Xs1 of nil => nil | X2::Xs2 => ?ing XsendThe range of g is then embedded so that the type of g is changed fromint list -> int list to int list -> int list * int. Applicationof schema 1 for embedding of the range and the accompanying case-distribution givesfun del_min Xs =let fun g Ys =case Ys of nil => ?| X1::Xs1 =>case Xs1 of nil => (nil,?_emb) | X2::Xs2 => ?incase g Xs of V as (Zs,Z) => ZsendNote that the case-distribution changes each of the two occurrences of? to (?,? emb) which in turn immediately is replaced by ?. The typeof each of the two occurrences of ? naturally changes from int listto int list * int. The EMB is then �nished by replacing the singleoccurrence of ? emb with X1. Note that this program still has Nc = 1 andNw = 0. The REQ yields a program with Nc = 2 and Nw = 0, namelyfun del_min Xs =let fun g Ys =case Ys of nil => ?| X1::Xs1 =>case Xs1 of nil => (nil,X1) | X2::Xs2 =>case g Xs1 of V as (Ws,W) =>case X1<W of true => (Xs1,X1) | false => ?incase g Xs of V as (Zs,Z) => Zsend 51

Note that the REQ is facilitated by input I2. The R then produces the�nal program by replacing the last ? with (X1::Ws,W). The �nal programhas Nc = 3 and Nw = 0.This inference is unusually short since it only consists of two compoundtransformations. 24.2 Atomic Transformation AlgorithmsThe transformation algorithms operate with two concepts, work and combina-torial cost. The work is the approximate number of programs to be produced.The cost is a measure of transformation complexity.The cost of a transformation is the reciprocal probability of the transforma-tion as determined by some prior probability distribution. Intuitively, this priordistribution speci�es the probability that a transformation produces a \good"program. Assume that the program to be transformed is a declaration D andthat the transformation of D produces declarations D1; D2; : : : ; Dn. The cost-probability relationship is Pr(Di) � cost(Di) = 1;where each Di has probability Pr(Di) and cost cost(Di).A proper probability distribution on the set f D1, D2, : : :, Dn g must satisfy0 � Pr(Di) � 1 and Pni=1 Pr(Di) = 1. We assume that each Di has posi-tive probability, which means that each cost is well-de�ned. The requirementPni=1 1=cost(Di) = 1 is not only motivated by the desire to have a proper prob-ability distribution, but also by the need to ensure that the costs of di�erenttypes of atomic transformations can be directly compared. For example, anABSTR transformation with a cost of 200 should be as \complex" as a REQtransformation with a cost of 200. We assume that probability is inversely pro-portional to transformation complexity. When an algorithm needs to make msequential choices, i.e., choose a path of length m in a decision tree, we assumethat the total probability is the product of the probabilities of each choice.Each type of transformation T in f R, REQ, ABSTR, CASE DIST, EMB gcould be implemented in a purely functional language using a function that re-turns a list of produced programs. Since very many programs may be produced,such lists may require unreasonably much space. Therefore, we have chosen animplementation style that is not purely functional but still rather elegant. Eachtype of transformation T is implemented by a function with a declaration of thebasic formfun T trfs(D : dec, Cost limit : real,emit : dec * atomic trf record list * real -> unit) : unit = : : : 52

datatype ty_exp =ty_var_exp of ty_var| ty_con_exp of symbol * ty_exp listtype ty_schema = { schematic_vars : ty_var list, ty_exp : ty_exp }type ty_env = (symbol * ty_schema) listtype exp = (ty_exp option,ty_schema option)etype dec = (ty_exp option,ty_schema option)dFigure 4.1: The ML representation of typed expressions and declarations.The declaration D is to be transformed using a cost that does not exceedCost limit. The type dec is the type of typed declarations. Similarly, exp isthe type of typed expressions. These types are specializations of the polymor-phic types ('a,'b)d and ('a,'b)e that were given in Figure 2.2. Following[Peyton Jones 87], the type of the function introduced by a fun-declarationis described using a type schema that contains so-called schematic variables.Please see [Peyton Jones 87] for more details concerning the representation andinference of types. Figure 4.1 shows the ML declarations of dec and exp. Itis necessary to use the types dec and exp instead of the types ('a,'b)d and('a,'b)e since the atomic transformation algorithms need to know the typesof expressions and functions.For each produced declaration Di, T trfsmakes the call emit(Di,Records,Cost).Records is a list that describes the atomic transformation that transformed Dto Di. Cost is the cost of this transformation. Note that the emit function iscalled only because of its side-e�ects, which are unacceptable in purely func-tional programming.An implementation of T trfs should normalize costs, i.e., ensure thatnXi=1(1=cost(Di)) = 1:The ADATE implementation uses a �xed, unnormalized cost measure, say cost'.The normalized cost is determined by �nding a normalizing factor K and choos-ing cost(Di) =K �cost'(Di) for each i in 1; : : : ; n. For some types of atomic trans-formations, the normalization problem is non-trivial. Here is a simple examplethat exhibits the di�culty of computing the normalizing factor K.Example. Assume that cost'(Di) =10i, which gives cost(Di) =10Ki. For agiven Cost limit, we want to �nd n and K such that Cost limit =10Kn andPni=1(1=(10Ki)) =1 i.e.,Pni=1(1=i) =10K. A simple integration approximation53

gives lnn =10K. Thus, we need to solve the equation n lnn =Cost limit forn, which is di�cult to do analytically. 2.In general, K cannot be computed analytically. Therefore, we sometimesemploy a simple numerical equation solver in order to �nd K. The di�culty ofcomputing K depends on the type of atomic transformation that is under con-sideration. Normalization is further discussed in conjunction with each atomictransformation algorithm that is presented below.4.2.1 The R Transformation AlgorithmThis algorithm needs to choose the number n of reused expressions E1; : : : ; En,the synthesized expression G, the position of H and the position of each Ei.ADATE uses only the following three kinds of replacements.1. n = 0.2. n = 1 and H = �X:X.3. n = 1 and H 6= �X:X.Therefore, the R transformation algorithm needs to make the following choices.1. The kind of replacement, i.e., 1, 2 or 3.2. The position ofH. For replacement of kind 3, it is also necessary to choosethe position of E1.3. The synthesized expression G.We will now discuss the (unnormalized) costs associated with each of thesethree choices.1. We have chosen costs 1, 1 and 2 for replacements of kinds 1, 2 and 3respectively. These cost choices have been found empirically, but we havetoo limited transformation statistics to claim that they are not \ad hoc".Unfortunately, this holds for most prior choices of costs in ADATE.2. Let Top pos be the position of H, which is of course the same as theposition of H(E1; : : : ; En). The set of all possible values of Top pos ispartitioned into the following three classes.(a) H(E1; : : : ; En) is a ?.(b) H(E1; : : : ; En) is the right hand side of a case-rule.(c) H(E1; : : : ; En) is some other expression.54

A Top pos in class (a) is more likely to lead to a \good" replacement thana Top pos in class (b), which in turn is more likely than a Top pos in class(c). Therefore, we have chosen the costs 1, 5 and 25 for classes (a), (b)and (c) respectively.For replacements with n = 1, i.e., replacements of kinds 2 or 3, we donot allow E1 to be a leaf in the expression tree. The reason is that aleaf is considered too small to be worth reusing. Let Bottom pos be theposition of E1. For replacements of kind 2, we obviously have Bottom pos= Top pos. For replacements of kind 3, we require that Top pos is a properpre�x of Bottom pos, i.e., a pre�x such that Bottom pos 6= Top pos. EachBottom pos is assigned the same cost.3. Synthesized expressions are numbered in the order in which they are syn-thesized, which is in order of increasing size. The cost of expression num-ber i is i.Figure 4.2 shows the ML de�nition of a function R trfs that implementsthe R transformation. We will now explain this implementation. In addition tothe parameters D, Cost limit and emit, which were discussed above, R trfshas the parameters poses ok and Min once.The function parameter poses ok is used to impose additional constraintson positions. For replacements with n = 0, we must have poses ok(Top pos,nil). If n = 1, we require poses ok(Top pos, [Bottom pos]).The parameter Min once speci�es symbols that are required to occur atleast once in the synthesized expression G. For example, when having done anABSTR transformation, we require that the introduced let-function is used atleast once in some G. It is, after all, rather meaningless to have a let-functionthat is used only once. Min once is a list of lists of symbols[[S1;1; S1;2; : : :], [S2;1; S2;2; : : :], : : :, [S#S;1; S#S;2; : : :]]For each i in 1; 2; : : : ;#S, at least one Si;j in Min once must occur in G.Before starting to �nd R transformations of D, D is executed for all sampleinputs fI1; : : : ; I#Ig that are given in the speci�cation. A subexpression of D issaid to be activated if and only if it was evaluated during this execution. An Rtransformation, that replaces a subexpression that is not activated, is pointless.The call add not activated exps dec D executes D for all sample inputs andreplaces each non-activated subexpression with a special Not activated constant.We �rst normalize the costs of positions. The normalized cost of an R trans-formation is obtained by multiplying the normalized cost of the positions withthe normalized cost of G. The local variable Interval width is the normaliza-tion factor for position costs. This factor is computed by simulating a \dry"run of the R transformation algorithm before doing the \real" run. The dry rundoes not synthesize expressions. Its only purpose is to �nd the normalizationfactor. 55

fun R_trfs(D : dec, Cost_limit : real,poses_ok : pos*pos list -> bool, Min_once : symbol list list,emit : dec*atomic_trf_record list*real->unit) : unit =letval D as {func,pat,exp,dec_info} = add_not_activated_exps_dec Dval Interval_width = ref 0.0fun run(Dry_run:bool) =letfun replace'(Top_pos,Bottom_poses,Cost) =if Dry_run thenInterval_width := !Interval_width + 1.0/Costelseletval Cost = Cost * !Interval_widthfun emit'(New_D,G_cost,Not_activated_syms) =emit(New_D, R{top_pos=Top_pos,bottom_poses=Bottom_poses,not_activated_syms=Not_activated_syms}::nil,Cost*G_cost)inReplace.replace(D, Top_pos, Bottom_poses,Cost_limit/Cost, Min_once, emit')endval All_poses = all_poses_in_preorder expval R0_top_poses =filter(fn Top_pos => poses_ok(Top_pos,nil), All_poses)in(* Replacement of kind 0. *)map(fn Top_pos =>replace'(Top_pos,nil,real(length R0_top_poses)*top_pos_class_cost(exp,Top_pos)),R0_top_poses);(* Code for replacements of kinds 1 and 2 has been omitted here. *)endinrun true;run false; ()end (* fun R_trfs *)Figure 4.2: The ML implementation of R transformations.56

A run calls the function replace'with all allowed Top pos and Bottom posesvalues. If a real run is in progress, the function replace' in turn calls the aux-iliary function Replace.replace, which synthesizes G expressions and insertsthem into D. The implementation of this auxiliary function is discussed togetherwith expression synthesis in Chapter 5.The local variable All poses is the list of all positions in D, excluding posi-tions of Not activated constants.Figure 4.2 contains code for replacement of kind 0 but not for kinds 1 and2. The code for kind 1 is straightforward. The code for kind 2 is complicatedby scope checking, which is necessary since symbols that occur in E1 may bede�ned in H. Since H is removed, there may be \illegal" occurrences in E1of symbols de�ned in H. The scope checking code is straightforward but long-winded. Therefore, we have omitted it in Figure 4.2.4.2.2 The REQ Transformation AlgorithmThe most common form of REQ is a semantics preserving replacement of a smallsubexpression with a small, synthesized expression. All replacements that areemployed when trying to �nd REQs have n = 0, i.e., do not reuse any Ei's.This is motivated by the empirical observation that other kinds of replacementsonly rarely are useful REQs.REQs are implemented by a function N REQ trfs which has parameters asfollows.fun N_REQ_trfs(No_of_REQs : int, D : dec, Cost_limit : real,REQ_cost_limit : real, top_pos_ok : pos->bool,emit : dec*atomic_trf_record list*real->unit) : unit = ...The parameters D, Cost limit and emit have already been described.Sometimes, ADATE needs to apply a sequence of REQs to a program. Theparameter No of REQs speci�es how many REQs that are to be applied in se-quence. For example, if No of REQs = 2, the initial declaration D is transformedto another declaration, say D', by the �rst REQ. The second REQ then trans-forms D' to yet another declaration which is emitted.The parameter REQ cost limit says how complex replacements that are tobe employed in order to �nd REQs. Usually, REQ cost limit is many timesgreater than Cost limit.The function parameter top pos ok is such that top pos ok Top pos holdsif and only if the expression at position Top pos should be allowed to be replacedwhen trying to �nd REQs.We will now discuss the implementationof N REQ trfs. Assume that Enumerationis a list of (position, expression) pairs [(Pos1,E1), (Pos2,E2), : : :] suchthat the replacement of the expression at position Posi with Ei is a REQ. Alsoassume that Enumeration is sorted in order of increasing peREQ values, i.e., with57

the best REQs �rst. There are two main problems to solve, namely1. How to �nd an appropriate value of Enumeration.2. How to use Enumeration to compute sequences of REQs.We will �rst attack problem 1 and then problem 2.Computing EnumerationProblem 1 is solved using the following function.fun find_REQs(D : dec, REQ_cost_limit : real,top_pos_ok : pos -> bool,emit : pos*exp*real list->unit) : unit =...This function makes the callemit(Posi, Ei, peREQ-valuei)for all REQs found using a cost that does exceed REQ cost limit. The emittedtriples are inserted into a priority queue that is sorted according to the peREQ-value with the size of Ei appended. The size is appended in order to givepreference to small REQs if the peREQ-values are equal. Since the queue isimplemented as a heap, each insertion takes timeO(logN), where N is the heapcardinality. ADATE has a predetermined, �xed upper limit on heap cardinality.This limit should be set as high as the amount of memory in the computerallows. An upper limit of 1000 is actually more than enough for all examplesthat have been run so far. When the upper limit is exceeded, the worst REQis deleted from the heap, which takes time O(logN). When the heap has beenconstructed, it is very simple to convert it to Enumeration in time O(N logN).The implementation of find REQs is somewhat more complicated. One com-plication is that di�erent REQs may yield identical programs. Naturally, onlyone of these identical programs should be emitted. Here is an example withREQs that produce identical programs.Example. Assume that the following program is to be transformed.fun f X = g1(g2(g3(X,a)))Also assume that the (position,expression) pair ([0,0,1],b) describes a REQ,i.e., that replacement of a with b does not increase peREQ. This REQ yields theprogramfun f X = g1(g2(g3(X,b)))There are three other REQs that produce the same program, namely1. ([0,0],g3(x,b)), 58

2. ([0],g2(g3(x,b))) and3. ([],g1(g2(g3(x,b)))).Each of these three REQs is more complex than ([0,0,1],b). 2ADATE �nds the least complex REQ �rst in a class of REQs that produceidentical programs by trying positions in postorder.A simple way to avoid the emission of identical programs is to store eachproduced program in a hash table and immediately discard a new program if itoccurs in the table. This method requires too much space since each programmay require 10 or more times as much space as a (position,expression) pairthat speci�es a REQ. Instead of storing programs in the hash table, we store�ngerprints of the right hand sides of programs. A �ngerprint is an integercomputed by a hash function exp hash of type ('a,'b)e -> int.Since ADATE uses this technique for other purposes as well, it is importantenough to be worth analyzing. Two expressions E1 and E2 are assumed tobe identical if and only if exp hash(E1) =exp hash(E2). This assumption isinvalid if and only if exp hash(E1) =exp hash(E2) and E1 6= E2. We will nowshow that the probability that the assumption is invalid can be made negligiblysmall. Let n be the cardinality of the range of exp hash. Using b bits torepresent �ngerprints gives n = 2b. Assume that exp hash has such a goodspread that every �ngerprint is equally probable. It is then reasonable to assumethat two di�erent expressions have the same �ngerprint with probability 1=n.For example, choosing b to 64 bits means that this probability is 2�64 which isnegligibly small.Another issue in the implementation of find REQ is how to distribute REQ -cost limit on the allowed positions i.e., the positions speci�ed by the top -pos ok predicate. We have chosen to use a �ve times higher cost limit forpositions of ?-constants than for other positions. Assume that n is the totalnumber of allowed positions and that n? of these positions specify ?-constants.The requirement that costs are normalized then gives a cost limit of5REQ cost limitn+ 4n?for positions of ?-constants and a cost limit ofREQ cost limitn+ 4n?for other positions.Using Enumeration to Compute Sequences of REQsWe are now ready to tackle problem 2, i.e., the construction of REQ sequencesand their normalized costs. Let 59

(Pos1,E1), (Pos2,E2), : : :, (PosNo of REQs,ENo of REQs)be a REQ sequence i.e., a sequence of (position, expression) pairs such thatthe peREQ value does not increase when all expressions at positions Pos1, : : :,PosNo of REQs have been replaced with the corresponding Ei's. Note that one ormore (Posi,Ei) replacements might increase peREQ even though all No of REQsreplacements taken together do not increase peREQ. As illustrated by the fol-lowing example, the assumption that each replacement in a REQ sequence is aREQ may lead to an enormous reduction of the number of combinations thatneed to be checked for REQ-hood.Example. For illustration purposes only, assume that NR replacements areto be tried for each element in a REQ sequence of length No of REQs. If we hadto try all combinations of NR replacements for each element, there would beNNo of REQsR replacement sequences that would need to be checked for REQ-hood. Sometimes, about one of every one hundred replacements is a REQ,which means that the probability PrREQ that a replacement is a REQ is about10�2. The assumption that each replacement in a REQ sequence can be requiredto be a REQ reduces the total number of combinations from NNo of REQsR to(NRPrREQ)No of REQs. Note that we usually have No of REQs � 2 and that theprobability PrREQ depends on the position, the program and the speci�cation.2 We assume that each (Posi,Ei) is a REQ. This means that a sequence(Pos1,E1), (Pos2,E2),: : :, (PosNo of REQs,ENo of REQs)can be constructed by choosing each (Posi,Ei) from the list Enumeration.There are some obvious constraints on positions. If Posj is the next positionto be added to the sequence, the sequence must not contain any position Posisuch that1. Posi is a pre�x of Posj or2. Posj comes before Posi in preorder, which will be written Posj <Posi.The second condition only allows one permutation of a sequence.The last topic in the implementation of N REQ trfs is the computation of thenormalized cost of a sequence. Let x(Posi; Ei) be the order number of (Posi; Ei)in Enumeration. The unnormalized cost of the sequence(Pos1,E1), (Pos2,E2),: : :, (PosNo of REQs,ENo of REQs)is chosen to No of REQsYi=1 (x(Posi; Ei) + A);where A is a constant factor that is chosen to 3 in the current implementation.The purpose of A is, for example, to say that a REQ with order number 1 is not60

5 times as cheap as a REQ with order number 5 but (5 + 3)=(1 + 3) =2 timesas cheap.Normalization is somewhat complicated. We use the following abbreviations.n = No of REQs = The number of REQs to be applied in sequence.N = The cardinality of Enumeration.Using simpli�ed constraints on positions, we will �rst quickly compute two ap-proximations of the normalizing factor K and then choose the best of these asthe initial value of K in a more time consuming and precise iterative search thatemploys the two position constraints given above.The Two Approximations of K. The two approximations are computedas follows. Let (x1; : : : ; xn) be the order numbers of the REQs in a sequence oflength n. The position constraints are approximated by requiring xi < xi+1 fori =1; : : : ; n� 1. We want to �nd a normalizing factor K such thatX(x1;:::;xn)2Dn(Cost limit=K) 1(x1 +A) � : : : � (xn +A) = K;where the summation domain isDn(c) = f(x1; : : : ; xn) j 1 � xi � N; xi < xi+1; (x1 + A) � : : : � (xn + A) � cg:The sum is approximated using the n-dimensional integralIn(c) = Z : : :ZDn(c) 1(x1 + A) � : : : � (xn +A)dx1 : : :dxn:We will now relax constraints in Dn(c) in order to simplify the integration.Let �1 : : :�n be a permutation of x1 : : :xn. Consider the integration domainobtained by requiring �1 <�2 < : : : < �n instead of x1 <x2 < : : : < xn. Due tosymmetry, the integral over this domain has the value In(c). Since there are n!di�erent permutations of x1 : : :xn, there are n! such domains that are disjoint.If we remove the constraints x1 <x2 < : : : < xn from Dn(c), we multiply theintegral by n!. Therefore, it is su�cient to consider integration over the domainf(x1; : : : ; xn) j 1 � xi � N; (x1 +A) � : : : � (xn + A) � cg:It is straightforward to integrate over this domain for n = 1 and n = 2. Forn � 3, we get problems with overlapping sub-domains under the hyperbolicsurface (x1 + A) � : : : � (xn + A) = c;which seems to require the use of a so-called \inclusion-exclusion" formula thatis quite complicated for large n. Since we only want to quickly compute an initialapproximation of K, we choose to further simplify the domain. The followingtwo simpli�cations are used 61

D0n(c) = f(x1; : : : ; xn) j 1 � xi � Ng.D00n(c) = f(x1; : : : ; xn) j 1 � xi; (x1 +A) � : : : � (xn +A) � cg.Let I 0 and I 00 be the integrals over the domains D0 and D00 respectively. BothI 0n(c) and I 00n(c) are overestimates of In(c), which means that the correspondingvalues of K, say K 0 and K 00, also are overestimates. We choose to initiallyapproximate K with the smallest of these factors i.e.,Kinitial = min(K 0;K 00):The next issue is the computation of I 0 and I 00. Using repeated one-dimensionalintegration we getI 0n(c) = Z N1 1x1 +A Z N1 1x2 +A Z N1 : : :Z N1 1xn + Adxn : : :dx2dx1;which equals (ln N +A1 +A)n:The computation of I 00 is more di�cult. The de�nition isI 00n(c) = Z : : :ZD00n(c) 1(x1 + A) � : : : � (xn + A)dx1 : : :dxn:Since 1 � xi and (x1 +A) � : : : � (xn +A) � c; we have1 � xn � c(1 +A)n�1 �A;where the upper limit is obtained by setting each xi to 1 for i = 1; : : : ; n � 1.For a �xed value of xn, the upper limit on the other variables is given by(x1 +A) � : : : � (xn�1 + A) � cxn +A:This means that I 00n(c) equalsZ c(1+A)n�1 �A1 1xn +A (Z : : :ZD00n�1 (cxn+A) 1(x1 +A) � : : : � (xn�1 + A)dx1 : : :dxn�1)dxn:We obtain the following recurrence relation.I00n(c) = Z c(1+A)n�1 �A1 1x+AI00n�1(cx+A)dx:The base case is I001 (c) = Z c�A1 1x+Adx = ln c1 +A:62

We employed this recurrence relation to compute I 002 (c) and I 003 (c), which leadto the induction hypothesisI00n(c) = 1n!(ln c(1 + A)n)n:Assuming that this equality holds for n, we want to prove that it holds for n+1.The recurrence relation givesI00n+1(c) = Z c(1+A)n �A1 1x+AI00n(cx+ A)dx:The induction hypothesis yieldsI00n+1(c) = R c(1+A)n �A1 1x+A 1n! (ln c(x+A)(1+A)n)ndx= 1n! h� 1n+1 (ln c(x+A)(1+A)n)n+1i c(1+A)n �A1= 1(n+1)!(�(ln 1)n+1 + (ln c(1+A)n+1)n+1)= 1(n+1)!(ln c(1+A)n+1)n+1 Q.E.D.In order to �nd K 0 and K 00, we need to solve the equations1n!(ln N +A1 + A)n = K 0and 1(n!)2 (ln Cost limitK00(1 +A)n)n = K 00:The �rst equation is already solved. The second equation can be solved veryquickly using Newton-Raphson iteration. In order to do this, we de�ney(z) = 1(n!)2 (ln Cost limitz(1 + A)n)n � z;which means that we want to �nd K 00 such that y(K 00) = 0. Let zi be the K 00approximation produced after iteration number i. Newton-Raphsons' formulais zi+1 = zi � y(zi)dydz (zi) :Computing the derivative and simplifying yieldszi+1 = zi + zi � (ln Cost limit(1+A)n zi)n(n!)2�1� n (ln Cost limit(1+A)n zi)n�1zi (n!)2 :63

To prevent some oating point overows, we want an initial approximation z0that is a lower bound on K 00. Since we must haveCost limitz(1 +A)n > 1;we choose z0 = Cost limit(1 + �)(1 + A)n ;where � is chosen to 0.1. The search is terminated whenjzi+1zi � 1j < 10�3:The Exact Search for K. Starting fromKinitial = min(K 0;K 00);we now want to do a computation of K that does not use approximations suchas the ones that were employed to �nd Kinitial. Since this exact search maybe quite time consuming if we employ a poor initial approximation of K, we doneed an initial approximation that is as good as Kinitial.Figure 4.3 shows the de�nition of a function choose order nos which �rst isemployed to compute the sum of cost reciprocals with the parameter Dry run =true and then to emit programs resulting from REQ sequences with Dry run =false. In the ADATE source code the de�nition of choose order nos occursinside the de�nition of N REQ trfs. Therefore, Figure 4.3 contains variablesthat are parameters to N REQ trfs, namely Cost limit, No of REQs and emit.There are also some other variables that are global with respect to Figure 4.3,namely Enumeration and pe REQ D. The latter is the peREQ value of the programD that is to be transformed. No of REQs left is the number of REQs thatremain to be determined, which initially is No of REQs. So far is the partialREQ sequence that has been chosen so far. D so far is the result of applyingSo far to D. Cost so far is the unnormalized cost of So far. K is a tentativenormalizing factor. The REQ-hood of So far is checked if and only if Evaluate= true. For a given candidate K-value, choose order nos accumulates costreciprocals in the reference variable Interval width. In particular, note thatthe search is cut o� as soon as K * Cost so far exceeds Cost limit.To simplify the usage of choose order nos, we de�nefun choose(K,Evaluate,Dry_run) =choose_order_nos(No_of_REQs,nil,D,1.0,K,Evaluate,Dry_run)64

fun choose_order_nos(No_of_REQs_left : int, So_far : (pos*exp) list,D_so_far : dec, Cost_so_far : real, K : real, Evaluate : bool,Dry_run : bool) =if K*Cost_so_far > Cost_limit then()else if No_of_REQs_left = 0 thenif No_of_REQs>=2 andalso Evaluate andalsonot(better_or_equal(pe_REQ D_so_far, pe_REQ_D))then()else if Dry_run thenInterval_width := !Interval_width + 1.0/(K*Cost_so_far)elseemit(D_so_far, map(fn(Pos,_) => REQ{top_pos=Pos},So_far),K*Cost_so_far * !Interval_width)else (map(fn(X,(Pos,E)) =>if exists(fn(Pos',_) =>pos_less(Pos,Pos') orelse is_prefix(Pos',Pos),So_far)then()elsechoose_order_nos(No_of_REQs_left-1, (Pos,E)::So_far,if Dry_run andalso not Evaluate then D_so_far elsepos_replace_dec(D_so_far,Pos,fn _ => E),Cost_so_far*(real X + A),K,Evaluate,Dry_run),combine(fromto(1,N),Enumeration)); ())Figure 4.3: Finding the sum of cost reciprocals for a given K.65

The sum of the cost reciprocals is computed by the following function.fun sum K = (Interval_width := 0.0;choose(K,false,true);!Interval_width)First, N REQ trfs employs a binary search to �nd a K such that0:9 � sum K � 1:1:We allow a 10% deviation from 1.0 to reduce the number of calls to sum thatare needed to �nd K. Note that K was found with Evaluate = false. Since aREQ sequence may increase pe REQ even though each individual REQ in thesequence does not increase pe REQ, N REQ trfs executes the following code.Interval_width := 0.0;choose(K,true,true);This sets Interval width to the fraction of the sequences that do not in-crease the pe REQ value. This fraction is then used for normalization togetherwith K in the �nal call to choose, which ischoose(K,true,false)This is the �rst call that has Dry run = false, which means that the produceddeclarations are emitted from N REQ trfs.4.2.3 The ABSTR Transformation AlgorithmThis algorithm needs to choose1. The arity n of the let-function g that is to be created.2. Top pos which is the position of H(E1; : : : ; En).3. Bottom poses which is the list of the positions of E1; : : : ; En.We will now discuss each of these three choices.1. The arity n is chosen to 1 or 2. However, an EMB transformation may beapplied immediately after an ABSTR transformation in order to increasethe arity. Both the choice n = 1 and the choice n = 2 have the normalizedcost 2. 66

........................ Figure 4.4: An expression tree.2. Top pos is chosen so that the size of H(E1; : : : ; En) is 2 + 2n or greater.The reason is that it, in principle, should be possible to choose the expres-sionsH;E1; : : : ; En so that each expression contains at least two expressiontree nodes that also occur in the program to be transformed. We assumethat leaf subexpressions of this program are often too small to be worth\reusing". The 2+2n minimum size restriction means that there are fewerchoices of Top pos values.Example. Assume that Top pos is to be chosen in an expression tree thatis binary and complete, which means that the tree has 2d nodes at eachdepth d in f0; 1; : : :; dmaxg. Consider n = 1 only. Without any restriction,there are 2dmax+1 � 1 choices of Top pos. With the 2 + 2n minimum sizerestriction, there are 2dmax�1 � 1 choices of Top pos, which means thatthis restriction reduces the number of choices by about four times. 2Each choice of Top pos is assigned a normalized cost equal to the numberof possible Top pos choices.3. Each position P in Bottom poses must be such that Top pos is a properpre�x of P . We also require that Bottom poses does not contain any twopositions P and P 0 such that P is a pre�x of P 0. We eliminate equivalentpermutations of Bottom poses by requiring that it is sorted according tothe relation < on positions. Yet another requirement on Bottom poses isthat the reused part of H must have size 2 or more. However, we allowEi's of size 1 provided that the size constraints given above are satis�ed.For a given choice of Top pos, each possible choice of Bottom poses isassigned a normalized cost equal to the number of possible choices.Here is an example that shows the computation of the normalized cost of anABSTR transformation.Example. Assume that an ABSTR with arity 2 is to be applied to theexpression tree in Figure 4.4. Since n = 2, the size of H(E1; E2) is required tobe 6 or more. This means that there are three choices of Top pos, namely1. []2. [0]3. [1] 67

Assume that we choose Top pos = [1]. Since the reused part of H is notallowed to have size 1, we cannot haveBottom poses = f[1,0]; [1,1]g:Therefore, Bottom poses may only be chosen to one of the following alterna-tives.1. f[1,0]; [1,1,0]g2. f[1,0,0]; [1,0,1]g3. f[1,0,0]; [1,1]g4. f[1,0,0]; [1,1,0]g5. f[1,0,1]; [1,1]g6. f[1,0,1]; [1,1,0]gThe cost of the arity choice is 2. The Top pos choice has cost 3. Each of the6 choices of Bottom poses has cost 6. Thus, the normalized cost of an ABSTRwith arity 2 and Top pos = [1] is 2 � 3 � 6 =36. 2In general, the cost of an ABSTR depends on the structure of the expressiontree. Since this structure varies from program to program, it is di�cult to doan exact analysis of the cost. However, we will now derive an upper limit onthe cost. Letnmax = The maximum allowed arity i.e., 2 in the current implementation.Ntot = The size of the expression tree.NABSTR = The size of H(E1; : : : ; En).The cost of the choice of arity is of course nmax. Top pos may be chosen inno more than Ntot di�erent ways. The constraint NABSTR �2 + 2n meansthat the number of choices is normally much less than Ntot, but it is di�cultto provide a much tighter bound without further assumptions about the treestructure. If we ignore the pre�x constraints on positions and the size constrainton H, there are � NABSTRn �possible choices of E1; : : : ; En. Therefore, the cost of an ABSTR is bounded bynmax �Ntot �� NABSTRn � < nmax �Ntot � NnABSTRn! :68

For �xed nmax, the interesting question is how this expression depends on n,Ntot and NABSTR. If n and NABSTR also are �xed, the cost bound is obvi-ously proportional to Ntot. For varying n and NABSTR, there is a tug-of-warbetween the increasing factor NnABSTR and the decreasing factor 1=(n!). Ex-perimental results are more useful than the formula above. The reason is thatit is important to consider the statistical properties, e.g. tree structure, of theprograms and ABSTR transformations that arise in practice.ABSTR transformations are implemented by the following function.fun ABSTR_trfs(D : dec, Cost_limit : real, top_pos_ok : pos->bool,bottom_poses_ok : pos list -> bool,emit : dec*atomic_trf_record list*real->unit) : unit = ...This function is rather simple to implement. Therefore, we omit a moredetailed discussion of the implementation. However, it is worth noting that noEi may contain a symbol declared in H since this would lead to a violation ofthe scope rules of ML.4.2.4 The CASE-DIST Transformation AlgorithmA CASE-DIST transformation consists of a sequence of moves. Each move cor-responds to one of the following schemas in which h denotes a function symbol.1. (a) h(A1; : : : ; Ai�1; case E of Match1 => E1 | : : : | Matchn => En,Ai+1; : : : ; Am)�!case E ofMatch1 => h(A1; : : : ; Ai�1; E1; Ai+1; : : : ; Am)...| Matchn => h(A1; : : : ; Ai�1; En; Ai+1; : : : ; Am)(b) case E ofMatch1 => h(A1; : : : ; Ai�1; E1; Ai+1; : : : ; Am)...| Matchn => h(A1; : : : ; Ai�1; En; Ai+1; : : : ; Am)�!h(A1; : : : ; Ai�1; case E of Match1 => E1 | : : : | Matchn => En,Ai+1; : : : ; Am)2. (a) case E0 ofMatch'1 => A1...| Match'i => (case E of Match1 => E1 | : : : | Matchn => En)...| Match'm => Am 69

�!case E ofMatch1 => (case E0 ofMatch'1 => A1...| Match'i => E1...| Match'm => Am)...| Matchn => (case E0 ofMatch'1 => A1...| Match'i => En...| Match'm => Am)(b) case E ofMatch1 => (case E0 ofMatch'1 => A1...| Match'i => E1...| Match'm => Am)...| Matchn => (case E0 ofMatch'1 => A1...| Match'i => En...| Match'm => Am)�!case E0 ofMatch'1 => A1... 70

| Match'i => (case E of Match1 => E1 | : : : | Matchn => En)...| Match'm => Am3. (a) letDeclarationsincase E of Match1 => E1 | : : : | Matchn => Enend�!case E ofMatch1 => let Declarations in E1 end...| Matchn => let Declarations in En end(b) case E ofMatch1 => E1...| Matchi => let Declarations in Ei end...| Matchn => En�!letDeclarationsincase E ofMatch1 => E1...| Matchi => Ei...| Matchn => EnendNote that the schemas 1a, 1b and the schemas 2a, 2b are inverses of eachother whereas the schemas 3a, 3b are not. Each a-schema moves the caseoutwards whereas each b-schema moves the case inwards.A move according to schema 2a frequently leads to the introduction of deadcode. Therefore, each such move is immediately followed by dead code elimina-tion, which, for example, is capable of replacing an expressioncase E0 ofMatch'1 => A1 71

...| Match'i => Ej...| Match'm => Amwith some Ak if only the alternative Match'k is activated during executionfor all sample inputs in the speci�cation.A move according to schema 3a frequently leads to the introduction of un-necessary declarations. These are removed by occurrence checking that doesnot require program execution. For example, the expressionlet fun g Xs = f(Xs@Xs@Xs) in Ys@Xs endis replaced by Ys@Xs since g does not occur in Ys@Xs.Schema 2b is rarely used in practice. The experimental experience has shownthat it is very di�cult to anticipate which schemas that are needed and whichare not. This means that it makes sense to also include schemas that seem to betheoretical arti�ce since they may be employed in unexpected and useful ways.In order to explain howmove sequences are generated, we need the concept ofa move graph. Each node D in a move graph is a program. If there is an allowedmove M that transforms D to D0, there is a directed edge, labelled with M ,from node D to node D0. The program to which a CASE-DIST transformationis to be applied corresponds to the start node.A marking scheme is employed to ensure that the moves in a move sequenceare \related". Marking will be explained with respect to the roots of the left andthe right hand sides of the schemas. Note that the RHS root of each a-schemais a case. When an a-schema is applied, the RHS root and its children aremarked. Similarly, when a b-schema is applied, the LHS root and its childrenare marked. The ML type of marked expressions is(bool*'a,'b)e;where the Boolean value is true if and only if the node is marked. The expressiontype constructor e was de�ned in Figure 2.2. The moves emanating from thestart node may use any subexpression of the program that corresponds to thestart node as the LHS root. Other moves are only allowed if the LHS root ismarked or has at least one marked child or parent in the expression tree.The move graph may contain very many nodes, each of which is a programthat requires rather much space to store. Therefore, explicit construction ofthe move graph is too space consuming, which means that we should not usebreadth-�rst search of the graph to �nd move sequences. Since we want to�nd move sequences in order of increasing length, we use iterative-deepening tosearch the graph. It is important to avoid visiting the same node more thanonce. This is achieved by storing the �ngerprint of each visited node in a hash72

table. Fingerprinting was discussed in Subsection 4.2.2. Of course, a �ngerprintusually requires many orders of magnitude less storage space than a programe.g. 8 bytes versus 104 bytes.Before presenting the ML implementation of the iterative-deepening search,we need a few auxiliary functions. The �rst auxiliary function isfun find_children(E : (bool*'a,'b)e, Mark_enable : bool,emit : bool*(bool*'a,'b)e -> unit) : unit = ...The marked expression E is the right hand side of a program. The functionfind children makes the callemit(Dead_code_elim,New_E)for each New E such that there is an edge from the move graph node, thatcorresponds to E, to the node that corresponds to New E. Dead code elim istrue if and only if dead code elimination should be applied to New E.We use a hash table Table. Each entry in Table stores the �ngerprintof an expression together with a pair of the form (No of moves, Found).No of moves is the length of the shortest path, that has been found so far, fromthe start node to the node corresponding to the �ngerprinted expression. Foundis true if and only if the expression has been produced earlier during the currentiteration.We also need the auxiliary function iterate shown in Figure 4.5. Theparameter Move count is the length of the move graph path from the startnode to the node corresponding to D. The parameter Move count limit is themaximum path length, which is deepened iteratively. The rest of the de�nitionof iterate is self-explanatory. It is now easy to de�ne a function iterationthat performs one iteration. This function is called with Move count limit=1; 2; 3; : : :. Since the limit is increased by one from one iteration to the next,Table always contains the length of the shortest path from the start node tothe node corresponding to a �ngerprint. Therefore, the testMove_count+1 < No_of_movesin Figure 4.5 actually never becomes true, but it is still wise to include it inanticipation of future implementation changes. One such change would be to useiterative-deepening with extrapolation as in [Olsson 93], which would reduce thetime wasted on re-expansion. The de�nition of iteration shown in Figure 4.6is easy to understand without any further explanation.In order to determine the normalized costs of CASE-DIST transformations,we �rst do a \dry" iterative-deepening search that does not emit any pro-grams. This dry search is terminated when all allowed move sequences havebeen found or when a search time limit Max time has been exceeded. The func-tion dry search shown in Figure 4.7 returns a pair of the form (N,Cs), where73

fun iterate(D as {func,pat,exp,dec_info} : (bool*'a,'b)d, Move_count,Move_count_limit, emit : (bool*'a,'b)e -> unit) : unit =if Move_count = Move_count_limit thenemit expelselet fun emit'(Dead_code_elim,New_exp) =if not(scope_check(New_exp,func::nil,vars_in_pat pat)) then()elseletval New_D = { func=func, pat=pat, exp=New_exp,dec_info=dec_info }val New_D as {exp=New_exp,...} =if Dead_code_elim then dead_code_elim' New_D else New_Dval Fingerprint = exp_hash(rename(New_exp,true))incase H.peek (!Table) Fingerprint ofNONE => (H.insert (!Table) (Fingerprint,(Move_count+1,true));iterate(New_D,Move_count+1,Move_count_limit,emit))| SOME(No_of_moves,Found) =>if Move_count+1 < No_of_moves orelse(Move_count+1=No_of_moves andalso not Found) then (H.remove (!Table) Fingerprint;H.insert (!Table) (Fingerprint,(Move_count+1,true));iterate(New_D,Move_count+1,Move_count_limit,emit))else()endinfind_children(exp,true,emit')end (* fun iterate *)Figure 4.5: A help function for iterative-deepening.74

fun iteration(D as {func,pat,exp,dec_info} : ('a,'b)d,Move_count_limit : int,emit : ('a,'b)d * pos list -> unit) : unit =letval All_case_poses = all_poses_filter(is_case_exp,#exp D)val exp = to_marked expval pat = to_marked patinTable := H.transform(fn(Move_count,_) => (Move_count,false))(!Table);map(fn Case_pos => iterate({func=func,pat=pat,exp=mark_exp_at_pos(exp,Case_pos),dec_info=dec_info} :(bool*'a,'b)d,0,Move_count_limit,fn New_exp => emit({func=func,pat=from_marked pat,exp=from_marked New_exp, dec_info=dec_info} : ('a,'b)d,marked_poses New_exp)),All_case_poses);()end Figure 4.6: Performing one iteration.
75

fun dry_search(D : ('a,'b)d, Max_time : real) : int * array =letval Class_cardinalities = array(50,0)val Max_move_count_limit = ref 0val Emitted = ref truefun emit(New_D,_) = (update(Class_cardinalities,!Max_move_count_limit,sub(Class_cardinalities,!Max_move_count_limit)+1);Emitted := true)fun run() = if not(!Emitted) then () else (Emitted := false;inc Max_move_count_limit;iteration(D,!Max_move_count_limit,emit);run())ininit_hash_table(#exp D);timeLimit (real_to_time Max_time) run ()handle Time_out => ();(!Max_move_count_limit - 1, Class_cardinalities)end Figure 4.7: Dry search that is needed to determine costs.
76

the dynamic array Cs contains the number of nodes at distance i from the startnode for each i in f1; 2; : : : ; Ng.A so-called class consists of all nodes at the same distance from the startnode. All programs in a given class are assigned the same cost, which increaseswith the distance from the start node. Let c1; : : : ; cN be the elements in thedynamic array Cs. Let �1; : : : ; �N be the sequence of cumulative sums of Csi.e., �k = kXi=1 ci:The cost of each program in class number k is chosen to be proportional to �k.In practice, it is common that ck grows exponentially with k. If we assumeck = bk for some branching factor b, we have�k = bk+1 � 1b� 1 � 1;which gives �k+1=�k �b. However, it may occasionally happen that ck decreaseswith k. If we chose the program cost of class number k to be proportional to ck,decreasing ck would mean that programs produced with long move sequenceswould be cheaper than programs produced with short move sequences. Sincethis is undesirable, we use proportionality to �k instead of proportionality tock. Assuming that K is the normalizing factor, we requiremXi=1 ciK�i = 1;where m is the greatest class index such thatK�m < Cost limit:As for all other transformations, Cost limit is the speci�ed maximumcost of aCASE-DIST transformation. Cost computation is implemented by the followingfunction.fun cost_comp(Cost_limit : real, Max_move_count_limit : int,Class_cards : array) : int * (int->real) = ...This function returns the pair (m;'), where the cost function ' is such that'(i) =K�i for each class index i. We now have all auxiliary functions thatare needed to implement the CASE DIST trfs function, which is shown in Fig-ure 4.8. The only parameter to CASE DIST trfs that has not been discussed isCASE DIST cost limit, which says how much work that is to be expended on�nding move sequences. 77

fun CASE_DIST_trfs(D : ('a,'b)d, Cost_limit : real,CASE_DIST_cost_limit : real,emit : ('a,'b)d * atomic_trf_record list * real -> unit): unit =letval (Max_move_count_limit,Class_cards) =dry_search(D,0.4*CASE_DIST_cost_limit*synt_and_eval_time_per_exp())val (Max_move_count_limit,Cost_comp) =cost_comp(Cost_limit,Max_move_count_limit,Class_cards)ininit_hash_table(#exp D);map(fn Move_count_limit =>let fun emit'(New_D,Active_poses) =emit(New_D, CASE_DIST{activated_poses=Active_poses}::nil,Cost_comp Move_count_limit)initeration(D,Move_count_limit,emit')end,fromto(1,Max_move_count_limit));()endFigure 4.8: The implementation of the CASE-DIST transformation.
78

fun zeroth_order_ground_types(ty_con_exp("->", Domain::Range::nil)) =zeroth_order_ground_types Domain @zeroth_order_ground_types Range| zeroth_order_ground_types(ty_con_exp("tuple", Comp_types)) =flat_map(zeroth_order_ground_types, Comp_types)| zeroth_order_ground_types(T as ty_con_exp(_,Comp_types)) =T :: flat_map(zeroth_order_ground_types, Comp_types)| zeroth_order_ground_types _ = nilFigure 4.9: The ML de�nition of zeroth order ground types.4.2.5 The EMB Transformation AlgorithmThis algorithm needs to make the following choices.1. The let-function that is to be embedded.2. If the domain or the range is to be embedded.3. Whether to use way 1 or way 2 of embedding tuple types.4. If way 1 was chosen, the algorithm chooses 'a to a so-called zeroth orderground type that occurs in the program to be transformed. This conceptis de�ned below. If way 2 was chosen, the algorithm chooses the index iof the tuple type component Ti, the data type de�nition to be used andalso a Tj;k in the RHS of that de�nition.5. One newly synthesized expression for each ? emb constant.We will now discuss each of these choices.1. If there are l let-functions that may be embedded, each let-function isassigned the normalized cost l.2. Both choices are assigned the normalized cost 2.3. Both choices are assigned the normalized cost 2.4. Way 1. The concept \zeroth order ground type" is de�ned by the func-tion shown in Figure 4.9, which extracts the zeroth order groundtypes that occur in a type expression. Recall that the representationof types was shown in Figure 4.1. The auxiliary flat map functionis de�ned as usual in functional programming i.e.,fun flat_map(f, Xs) =case Xs of nil => nil | X1::Xs1 => f(X1)@flat_map(f,Xs1)79

Assume that RHS is the right hand side of the program to be trans-formed. The set of allowed 'a choices is given byhash_make_set(exp_flat_map(zeroth_order_ground_types o type_of_exp, RHS))The auxiliary exp flat map function is analogous to flat map butde�ned on the type ('b,'c)e instead of the type 'd list. Eachallowed choice of 'a is assigned a normalized cost equal to the numberof allowed choices.Way 2. Given that the tuple type is T1 � : : : � Tn, the normalized costof choosing Ti is n. Each choice of a data type de�nition, that maybe employed to embed Ti, is assigned a normalized cost equal to thenumber of choices, which usually is only 1 or 2. Similarly, each Tj;kin the RHS of the de�nition is assigned a normalized cost equal tothe number of Tj;k's in the RHS that match Ti.5. This part of the implementation is somewhat more complicated than thefour parts above. There are two issues, namely(a) How to �nd a list of candidate expressions for each ? emb constant.Assume that there are m ? emb constants i.e., that m lists are to befound.(b) How to combine the expressions in the m lists to expression sequencesof length m and how to de�ne the costs of these sequences.We �rst consider issue a and then issue b.Issue a is solved using the expression synthesizing Replace.replace func-tion that also was used in the implementation of R trfs in Figure 4.2.Figure 4.10 shows the implementation of a function find emb expss thatreturns a list containing the m lists that are to be found. The parame-ter EMB cost limit, that says how much work that is to be expended onexpression synthesis, is uniformly distributed on the m ? emb positions inthe parameter Q emb poses. A priority queue, implemented as a heap, isemployed to ensure that each of the m lists are sorted in order of increasingsyntactic complexity. In order to save memory space, the current imple-mentation has an upper limit of 500 on the cardinality (Max heap size)of the heap.We now turn to issue b. Empirically, we have noted that the synthesizedexpressions that are needed usually are very small. For example, if thedomain of g is embedded in way 1, each call g(E1; : : : ; En) is changed tog(E1; : : : ; En,? emb), where the expression that is to replace the ? embusually is very small. The synthesized expressions that are needed for R80

exception Find_emb_expssfun find_emb_expss(D : dec, EMB_cost_limit : real,Q_emb_poses : pos list) : exp list list =if null Q_emb_poses then raise Find_emb_expss elseletval Cost_limit = EMB_cost_limit / real(length Q_emb_poses)fun find_emb_exps(Q_emb_pos : pos) : exp list =letval Es = ref(Heap.heap_nil)fun emit(New_D:dec,Cost,Not_activated_syms) =letval E = pos_to_sub(#exp New_D,Q_emb_pos)val Complexity = Evaluate.syntactic_complexity New_DinEs := Heap.heap_insert((E,Complexity), !Es);if Heap.heap_size(!Es) > Max_heap_size thenEs := (case Heap.heap_delete_min(!Es) ofSOME(_,New) => New)else()endinReplace.replace(D, Q_emb_pos, nil,Cost_limit, nil, emit);rev(map(#1,Heap.heap_report(!Es)))endinmap(find_emb_exps, Q_emb_poses)end Figure 4.10: Finding a list of lists of candidate expressions.81

and REQ transformations are generally bigger. Recall that the unnormal-ized cost of a REQ sequence of length n was chosen tonYi=1(xi + 3);where xi is the order number of REQ number i in the sequence. Theunnormalized cost of an EMB expression sequence of length m is chosento mYi=1(xi + B)2;where B is a constant that is chosen to 7 in the current implementation.Thus, the EMB cost measure penalizes high order numbers more than theREQ cost measure. This is illustrated by the following example.Example. Assume n = m = 2. Since xi � 1, the lowest unnormalizedREQ cost is 42 and the lowest unnormalized EMB cost is 84. Let us de�neCREQ(x1; x2) = (x1 + 3)(x2 + 3)42and CEMB(x1; x2) = ((x1 + 7)(x2 + 7))284 :The functions CREQ and CEMB give the ratio between the current costand the lowest cost. Therefore, they are useful for illustrating the penal-ization of high order numbers. Note that CREQ and CEMB would notchange if we used normalized costs since the normalization factor wouldbe cancelled out by the division. For example, sinceCREQ(10; 10) � 10:6and CEMB(10; 10) � 20:4;we can say that the EMB cost measure penalizes the order numbersx1 =x2 = 10 about twice as much as the REQ cost measure.Figures 4.11 and 4.12 show contour curves for CREQ and CEMB respec-tively. There are 15 units between two neighbouring curves in each �gure.The bottommost curve in each �gure is for CREQ and CEMB equal to16. For example, it is easy to see that curve number 3 from the bottom inFigure 4.11 approximately corresponds to curve number 15 in Figure 4.12.This means that the order number values, that makeCREQ =1+3�15= 46,make CEMB =1+ 15 � 15= 226. Also note that both �gures show a smallcost ratio if one order number is large and the other small. 282

10 20 30 40 50

10

20

30

40

50

Figure 4.11: Contour curves for CREQGiven that Exp counts is a list containing the lengths of the expressionlists returned by find emb expss, the following function returns the nor-malizing factor.fun compute_factor(EMB_cost_limit : real, Cost_limit : real,Exp_counts : int list) : real = ...The parameter EMB cost limit says how much work that should be spenton �nding an accurate normalizing factor.Figure 4.13 shows the de�nition of a function replace q embs that re-places the ? embs at the positions given by the parameter Q emb poseswith newly synthesized expressions. The auxiliary replace q embs' func-tion is de�ned in Figure 4.14.EMB transformations are implemented by the function EMB trfs, which hasa straightforward but long-winded de�nition. The LHS of the de�nition isfun EMB_trfs(D : dec, Cost_limit : real, EMB_cost_limit : real,top_pos_ok : pos -> bool,emit : dec * atomic_trf_record list * real -> unit): unit = ... 83

10 20 30 40 50

10

20

30

40

50

Figure 4.12: Contour curves for CEMBfun replace_q_embs(D : dec, Cost_limit : real, EMB_cost_limit : real,Q_emb_poses : pos list, emit : dec*real -> unit) : unit =letval Ess = find_emb_expss(D, EMB_cost_limit*0.75, Q_emb_poses)val Factor = compute_factor(EMB_cost_limit*0.25, Cost_limit,map(length,Ess))inreplace_q_embs'(D, Cost_limit, Q_emb_poses, Ess, Factor, emit)end Figure 4.13: Replacing ? embs.84

fun replace_q_embs'(D : dec, Cost_limit : real,Q_emb_poses : pos list, Ess : exp list list,Cost_so_far : real, emit : dec*real -> unit) =if Cost_so_far *real_pow(order_no_cost 1, real(length Q_emb_poses)) >Cost_limitthen()elsecase Q_emb_poses ofnil => emit(D,Cost_so_far)| Pos::Poses =>case Ess of Es::Ess =>letval N = length Esval Cost_left = Cost_limit/Cost_so_farval Max_I =if null Poses thenmin2(op<, N, order_no_cost_inverse Cost_left)elseNinmap(fn(I,E) =>replace_q_embs'(pos_replace_dec(D,Pos, fn _ => E),Cost_limit, Poses, Ess, Cost_so_far*order_no_cost I,emit),combine(fromto(1,Max_I),take(Max_I,Es)));()end Figure 4.14: The auxiliary replace q embs' function.85

Chapter 5Expression Synthesis5.1 Description of the Expression Synthesis Prob-lem and Its ComplexityThe problem of synthesizing expressions may be de�ned as follows. Given a typeT and a set of components, consisting of variables, functions and their types, wewant to produce N expressions of type T . We require that the expressions areproduced in order of increasing syntactic complexity and that they are typedin accordance with the components. Since it would be quite complicated toaccomplish this using the syntactic complexitymeasure speci�ed in Appendix A,which was discussed in Subsection 3.5.1, we use expression size, i.e., the numberof nodes in the expression tree, as the syntactic complexity measure. Thus, we�rst generate all expressions of size 1, then all expressions of size 2 and so forth.The set of all expressions of size less than or equal to some maximum sizesmax is partitioned into equivalence classes such that all expressions in a classhave the same semantics. The di�erence between the total number of expressionsin this set and the number of classes may be enormous as illustrated by thefollowing example.Example. Assume that expressions of type 'a list are to be producedusing the componentsXs : 'a listnil : 'a list@ : 'a list * 'a list -> 'a listThe component Xs is a variable. The other two components are functions thatare prede�ned in Standard ML. Let Tt(smax) be the total number of expressionsof size smax or less. Let Tn(smax) be the number of non-equivalent expressionsof size smax or less. Obviously, an expression tree of size s has (s + 1)=2 leavesand (s � 1)=2 internal nodes. Each leaf is either nil or Xs which gives 2(s+1)=286

possible choices of leaves. The number of binary trees with i internal nodes isa well-known combinatorial function, the so-called i'th Catalan number, whichequals 1i+ 1 � 2ii � � 4i(i+ 1)p�i ;where we obtained the right hand side using Stirling's approximation of thefactorial function. Summing for each number of internal nodes yieldsTt(smax) � (smax�1)=2Xi=0 2i+14i(i+ 1)p�i = (smax�1)=2Xi=0 2 � 8i(i+ 1)p�i :It is easy to see that Tt(smax)=Tt(smax � 2) � 8 for large smax i.e., exponentialgrowth with a branching factor of p8 � 2:8. However, all expressions thatcontain the same number of occurrences of Xs are equivalent. Therefore,Tn(smax) = (smax + 1)=2 + 1;which is one more than the maximum number of occurrences of Xs in an ex-pression tree of size smax.In practice, we usually �nd it acceptable to try about 105 expressions. Ifwe manage to synthesize one and only one expression per equivalence class, wewould, in this example, be able to synthesize expressions of size up to about2 � 105. However, if we need to synthesize all expressions of size smax or less,there is an upper size limit of about 15 as can be seen in Figure 5.1 which showslog10 Tt(smax) = log10 (smax�1)=2Xi=0 2i+1 1i + 1 � 2ii �2 In the example above, Tt(s) is exponential in s whereas Tn(s) is linear in s.It is much more common that both Tt(s) and Tn(s) grow exponentially with s.5.2 Expression Synthesis in ADATEThis section discusses methods and heuristics for expression synthesis that havebeen implemented in ADATE. The next section presents alternatives and ex-tensions to these methods.5.2.1 The Interface to Expression SynthesisWe will �rst describe the top level interface of the expression synthesis imple-mentation, which is the following function.87

5 10 15 20 25 30 max
s

2

4

6

8

10

12

log T

Figure 5.1: The logarithm of expression space cardinality as a function of size.fun replace(D : dec, Top_pos : pos, Bottom_poses : pos list,Cost_limit : real, Min_once : symbol list list,emit : dec*real*symbol list->unit) : unit = ...This function was used under the name Replace.replace in the implementationof R transformations in Figure 4.2 and in the implementation of replacementof ? emb constants in Figure 4.10. It is also employed in the implementationof the find REQs function mentioned in Subsection 4.2.2. The parameters ofreplacewere described in Subsection 4.2.1. To begin with, we need to computethe components that may be used at position Top pos in the program D. Thesecomponents are computed by the call comps at pos(D, Top pos). The im-plementation of comps at pos shown in Figure 5.2 uses the following globalvariables and functions.comps in pat Returns the components in a pattern.pos fold The implementation of this higher order function was given in Fig-ure 2.3.Comps to use Contains the components listed in the speci�cation.Recall that Bottom poses speci�es the positions of the Ei's that occur inthe general replacement transformation schemaH(E1; : : : ; En) �! G(E1; : : : ; En):We require that each Ei occurs exactly once in G(E1; : : : ; En). The expres-sions E1; : : : ; En are represented by special components which we will denoteby �1; : : : ; �n.We will now present variable bindings made by the implementation of replace.88

fun comps_at_pos({func,pat,exp,dec_info=SOME Sch}, Pos : pos): ty_env =let fun g _ = nilfun f(Comps,E,P::_) =case E ofcase_exp{rules,...} =>if P = 0 thenCompselsecomps_in_pat(#pat(nth(rules,P-1))) @ Comps| let_exp{dec_list,...} =>if P < length dec_list thenlet val {func,pat,exp,dec_info=SOME Sch} = nth(dec_list,P)in(func,Sch) :: comps_in_pat pat @ CompsendelseComps| _ => Compsin(func,Sch) :: comps_in_pat pat @pos_fold(f,g,Pos,exp) @ Comps_to_useend Figure 5.2: Finding the components at a given position.
89

Components The list comps at pos(D, Top pos) concatenated with the listof all pairs consisting of �i and its type schema.subst fun A substitution function of type exp -> exp that replaces each �iwith the corresponding Ei.Max once Symbols that only are allowed to occur 0 or 1 times in each synthe-sized expression. Is bound to [�1,: : :,�n].Min once' Symbols that must occur at least once. Is bound to [[�1], : : :,[�n]] @ Min once.emit synted exp A function that takes a synthesized expression G, transformsD and calls emit with the resulting program.With these bindings, the implementation of replace calls a more pure ex-pression synthesis function synt n as follows.synt_n(type_of_exp(pos_to_sub(exp,Top_pos)), Components,subst_fun, D, Top_pos, Max_once, Min_once', emit_synted_exp,Cost_limit)Note that the requirement that each �i occurs exactly once is implementedby putting �i in both Max once and Min once'. The de�nition of synt n hasthe following form.fun synt_n(Type : ty_exp, Components : ty_env, subst_fun : exp->exp,Current_prog : dec, Pos : pos, Max_once : symbol list,Min_once : symbol list list, emit : exp*real*symbol list->unit,N : real) = ...Expressions may be synthesized bottom-up or top-down. Bottom-up syn-thesis determines all the subtrees of a node before the node itself. Top-downsynthesis determines the node before any of its subtrees. Of course, there aremany possible bottom-up and top-down orders of the nodes in a tree. Postorderis an example of a bottom-up order. Preorder is an example of a top-downorder.The function synt n synthesizes expressions top-down since this is easier toimplement than bottom-up. The implementation of synt n and its auxiliaryfunctions consists of about 1100 lines of Standard ML code. Therefore, wewill not present the complete implementation, but try to give a comprehensibleoverview. We start by giving a complete but highly simpli�ed implementationof synt n. Then, we describe additional techniques and heuristics that areemployed in the real implementation. 90

fun exp_size(app_exp{args,...}) =1+int_sum(map(exp_size, args))fun while_list(continue : unit -> bool, Xs, f) : unit =case Xs ofnil => ()| X1::Xs1 =>if continue() then(f(X1); while_list(continue,Xs1,f))else()Figure 5.3: Computing expression size and iterating over lists.5.2.2 A Simpli�ed Implementation of synt nIn order to obtain a simpli�ed implementation, assume that expressions of typeT are to be synthesized and that all components have types of the formT � T � : : : � T->T;where the left hand side contains 0, 1, 2 or more occurrences of the type T .This means that the only di�erence between component types is their arity.The type of a component of arity n is represented as a unit list of lengthn. The synt n parameter Components is a list of (symbol, type) pairs. Forexample, the components Xs, nil and @, that were used in the �rst example inSection 5.1, correspond toComponents = [("Xs",[]), ("nil",[]), ("@",[(),()])]:We also assume that the only parameters of synt n are Components, an emitfunction and N, i.e., the number of expressions to be synthesized.The implementation uses the auxiliary functions exp size and while listshown in Figure 5.3. The former returns the size of an expression. The latteris a list iteration \function" that makes the call f X for each element X in Xs aslong as continue() is true.Given that S max is the maximum size of expressions to be synthesized, theauxiliary function synt, shown in Figure 5.4, makes the call emit E for eachexpression E such that exp size E <= S max.The implementation of synt n shown in Figure 5.5 calls synt with S max =1; 2; 3; : : : until N expressions have been emitted. The total number of synthe-sized expressions is T (1) + T (2) + T (3) + : : : ;91

fun synt(S_max : int, Components : (symbol * unit list) list,emit : exp -> unit, continue : unit -> bool) =if S_max <= 0 then()elsewhile_list(continue,Components,fn (F,Domain_type) =>synt_list(Domain_type, S_max-1, Components,fn Es => emit(app_exp{ func=F, args=Es, exp_info=NONE }),continue))and synt_list(Types,S_max,Components,emit,continue) =case Types ofnil => emit nil| T1::Ts1 =>synt(S_max-length(Ts1), Components,fn E =>synt_list(Ts1, S_max-exp_size(E), Components,fn Es => emit(E::Es),continue),continue)Figure 5.4: Synthesizing all expressions of size S max or less.92

fun synt_n(Components : (symbol * unit list) list, emit : exp -> unit,N : int) : unit =letval So_far = ref 0fun continue() = !So_far < Ninwhile_list(continue,fromto(1,1000),fn S => synt(S, Components,fn E => if S = exp_size E then(inc So_far; emit E)else(),continue))end Figure 5.5: A highly simpli�ed de�nition of synt n.where T (s) is the number of expressions of size s or less. We assume that Tgrows exponentially with s, which implies that this total number is O(N).We will now present some aspects of the \real" implementation of synt n.5.2.3 Restrictions on the Synthesis of Recursive CallsIn the literature, the goal with recursion restrictions is often to guarantee ter-mination. Our primary goal, on the other hand, is to reduce the number ofexpressions that need to be synthesized.To say that a function is terminating or non-terminating is a vague and roughcharacterization of its time complexity. For most purposes, super-exponentialtime complexity is practically as bad as non-termination. Synthesized programswith such bad time complexity do occasionally arise during an inference. Itwould be quite di�cult to do automatic syntactic time complexity analysis ofsynthesized programs. Therefore, we employ a call count limit as discussed inSubsection 3.5.2.One possible restriction on recursive calls would be to only allow primitivelyrecursive de�nitions. However, there are many algorithms, for example Quick-sort, that are di�cult to de�ne in a primitively recursive way without majorloss of e�ciency. We view primitive recursion as being too restrictive to becompulsory, but it could be used as a heuristic guide.The discussion of so-called terminating generator inductive (TGI) de�nitions93

fun f(Xs:int list,Ys) =case Xs ofnil => Xs| X1::Xs1 =>case Ys ofnil => Ys| Y1::Ys1 =>case Y1<X1 oftrue => f(Xs1,Xs@Ys)| false => f(Xs@Xs,Ys1)Figure 5.6: A partially non-terminating de�nition.in [Dahl 92] inspired the following requirement on recursive calls, which is usedin the \real" implementation of synt n. Consider the synthesis of a recursivecall g(A1; A2; : : : ; An) occurring in the declaration fun g(V1; V2; : : : ; Vn) = : : :. At least one Ai is required to be \smaller" than the corresponding Vi. Ai is\smaller" than Vi if and only if Ai occurs in an RHSk in a case-expressioncase Vi of Match1 => RHS1 | : : : | Matchm => RHSm and1. Ai is a proper subexpression of Matchk or2. Matchk contains a variable W such that Ai is \smaller" than W .Like primitive recursion, this requirement is too restrictive to allow e�cientformulation of many interesting algorithms. Future versions of ADATE willuse it only as a guide, for example by allowing up to 50% of the synthesizedexpressions to contain recursive calls that violate the requirement.Note that the requirement does not guarantee termination since it only looksat one recursive call at a time. This is illustrated by the following example.Example. Assume that f : int list * int list -> int list is de-�ned as in Figure 5.6 The call f([2,2], [1,3]) is non-terminating eventhough each recursive call in the de�nition of f satis�es the requirement. How-ever, this is no problem since ADATE employs a call count limit. 2Also note that the requirement is purely syntactic. A less restrictive require-ment would be to evaluate Ai and check if the evaluation result has a smallersize than the value of Vi. Of course, this check would be more time consumingthan the purely syntactic check currently employed by ADATE.5.2.4 Restrictions on the Synthesis of case-expressionsAssuming that no A or E contains any case, only the following three forms ofexpressions are synthesized. 94

1. E.2. case A of Match1 => E1 | : : : | Matchn => En3. case A ofMatch1 => E1...| Matchi => case A0 of Match'1 => E01 | : : : | Match'n0 => E0n0...| Matchn => EnThus, a synthesized expression contains 0, 1 or 2 cases such that each caseoccurrence either is the root or a child of the root of the expression. If Nexpressions are to be synthesized, N=3 expressions are chosen according to form1, N=3 according to form 2 and N=3 according to form 3.A case-analyzed expression A is sometimes such that the values of A cannotmatch one or more alternatives in the datatype de�nition of A. This means thatone or more case-rules are redundant. The implementation of synt n avoidssuch redundancy as follows.Assume that case A of Match1 => Unknown1 | : : : | Matchn => Unknownnis a partially synthesized case-expression where each Unknowni is a \dummy"constant that later is to be replaced with a synthesized expression.The program to be transformed contains a subexpression Sub = H(E1; : : : ; Em)that is to be replaced by a �nished synthesized expression. In order to check ifthe incomplete case-expression should be discarded, Sub is replaced with the ex-pression (case A of Match1 => Unknown1 | : : : | Matchn => Unknownn; Sub). The resulting program is then executed for all sample inputs. Recall thatan expression is said to be activated if and only if it was evaluated during thisexecution. The entire case-expression is discarded if only one Unknowni was ac-tivated and the corresponding Matchi does not contain any variable. Otherwise,the �nished case-expression is produced by replacing each activated Unknowniwith a synthesized expression and each non-activated Unknowni with the specialNot activated constant.This activation requirement is supplemented by requiring that the root of Ais not a data type constructor e.g., false, true, nil or ::.5.3 Alternative Strategies for Expression Syn-thesis5.3.1 Equivalence CheckingThe problem of equivalence checking may be stated as follows. Given n synthe-sized expressions E1; : : : ; En and a newly synthesized expression E0, is there any95

Ei such that E0 and Ei are equivalent in a given environment according to thesemantics of Standard ML? In general, this question is undecidable. However,an equivalence checking algorithm may be quite useful even if it errs occasion-ally.Equivalence checking is primarilyuseful if expressions are synthesized bottom-up and in order of increasing size. Let the order <synt be such that Ei <synt Ejholds for any two expressions Ei and Ej if and only if Ei is synthesized beforeEj by the synthesis algorithm. Bottom-up is preferable to top-down since wecan discard each partially synthesized subexpression that is equivalent to someother expression that precedes it in the <synt-order. Thus, bottom-up synthesisallows earlier cut-o� than top-down synthesis. This shallow backtracking maylead to substantial reductions of the e�ort spent on searching for non-equivalentexpressions.An algorithm that needs to ask the question \Is E0 equivalent to Ei?" foreach i in f1; 2; : : : ; ng would take time
(n) to determine if there is any equiva-lent Ei. If we ran this algorithm for each newly synthesized expression, the totaltime required for equivalence checking would be
(n2). Since n may be large,e.g. greater than 105, this quadratic time complexity is unacceptable. There-fore, methods such as inductive Knuth-Bendix completion [Kirkerud 92] seemto be fairly useless for equivalence checking.Another possibility is to use a set of rewrite rules to try to obtain a canonicalform for each newly synthesized expression. We could then use a hash table todetermine if this form has been seen before, thus avoiding
(n) equivalencechecks.Alternatively, we could employ rewrite rules to try to simplify a newly syn-thesized expression. Assuming that simpli�cation implies size reduction andthat expressions are synthesized in order of increasing size, we can discard eachexpression that can be simpli�ed.A major problem is to �nd suitable rewrite rules. Since synthesized ex-pressions may contain occurrences of let-functions that have been de�ned byADATE, the rewrite rules should be determined by ADATE based on the de�ni-tions of these let-functions, which may be rather arbitrary and general recursivefunctions. With the current state-of-the-art in rewrite systems research, this isunfeasible. Therefore, we do not consider employing rewrite rules or other purelydeductive methods for equivalence checking.We will now discuss a heuristic and more feasible equivalence checking method.Assume that the free variables, that may occur in a synthesized expression, areX1; : : : ; Xm. Also assume that we have a set of sample values fJ1; : : : ; J#Jg,where each Jk is an m-tuple that is to be substituted for (X1; : : : ; Xm). Thenewly synthesized expression E0 is considered to be equivalent to a previouslysynthesized expression Ei if and only ifE0(Jk) = Ei(Jk) for all k in f1; : : : ;#Jg.Example. Consider the expression synthesis problem in Section 5.1, wherethe components were the variable Xs and the functions nil and @. Obviously,m = 1 and X1 = Xs. Let #J = 1 and J1 = [10]. It is easy to see that two96

expressions E0 and Ei are equivalent if and only ifE0([10]) = Ei([10]):For example, (Xs@Xs)@Xs is equivalent to Xs@(Xs@Xs) since both expressionsevaluate to [10,10,10] with Xs = [10]. 2An implementation should compare the �ngerprints offE0(J1); : : : ; E0(J#J)gand fEi(J1); : : : ; Ei(J#J)ginstead of comparing the two sets directly since it would require too much spaceto store n expression sets for large n. By storing the n �ngerprints in a hashtable, it is easy to compare the �ngerprint of the �rst set with the �ngerprintsof all the n sets of the second form in time O(1).There are two reasons why this sample value based equivalence checking mayerr.1. The �ngerprinting may err.2. The set of sample values fJ1; : : : ; J#Jg may not contain any Jk such thatE0(Jk) 6= Ei(Jk) even though E0 and Ei are non-equivalent.In Subsection 4.2.2, we have seen that the �rst cause of failure is extremelyunlikely. The probability of the second cause may be reduced by a careful choiceof sample values.Assume that each synthesized expression is to be used at position Pos inthe program to be transformed. The variables X1; : : : ; Xm, that may occur freein synthesized expressions, depend on Pos. We can use each value of the tuple(X1; : : : ; Xm), that arises during execution of the program for all sample inputsin the speci�cation, as a Jk. Additionally, we may add a few random values tothe set of sample values. Then, we need a probability distribution on the setof values given by the type of (X1; : : : ; Xm). An example of such a distributionis to say that each sample value size s not exceeding some maximum smax isequally likely and that all values of size s also are equally likely.However, the current implementation does not employ any of the equivalencechecking methods discussed in this subsection. The reason is the following gen-eral problem with equivalence checking of synthesized expressions that are toappear in an \un�nished" program. Since the program is un�nished, the func-tion f , which is the function to be inferred, and the let-functions de�ned in theprogram may have incomplete de�nitions. Since one or more of these functionsusually may occur in a synthesized expression E, the values E(J1); : : : ; E(J#J)may be quite di�erent for the �nal program and the current, un�nished pro-gram. The most common case is that there is a k such that E0(Jk) = Ei(Jk) for97

fun v count nil = 0| v count(Sub::Subs) =if Sub is canonical thenv count Subselse1 + v count(Subs with all occurrences of Sub replacedby the canonical form of Sub)Figure 5.7: An operational de�nition of the number of violations.the un�nished program whereas E0(Jk) 6= Ei(Jk) for the �nal program. This isillustrated by the following example, where f = sort.Example. Consider the following un�nished program, which appeared inSubsection 3.5.3 where we showed why this program is better than the identityfunction.fun sort Xs =case Xs ofnil => Xs| X1::Xs1 =>case Xs1 ofnil => Xs| X2::Xs2 => XsNo matter how we choose the values J1; : : : ; J#J , a call of the form sort Awould be considered to be equivalent to A for all expressions A. 2In spite of this problem, there are many situations where equivalence check-ing based on sample values would be useful, but it is di�cult for ADATE torecognize these situations.A rather straightforward heuristic is to allow a controlled number of viola-tions of the non-equivalence requirement as follows. We say that an expressionis canonical if and only if it is the �rst synthesized expression in its equivalenceclass, i.e., the least class element according to the total order <synt. Assumethat Subs is a bottom-up listing of the subexpressions of a synthesized expres-sion E. The number of violations in E is v count Subs, where v count maybe de�ned as shown in Figure 5.7. Note that the substitution in the last call tov count also includes subexpressions of the subexpressions in Subs. The pur-pose of this substitution is to count a violation only once. Also note that it iseasy to count the number of violations produced thus far during the bottom-upsynthesis of an expression and to cut o� when this number becomes too big. Thenumber of expressions of size s that contain at most v violations often growsrapidly with v. 98

Example. Assume that expressions are synthesized using the componentsf Xs, g1, g2, g3, g4 g, that the type of Xs is int and that the type of eachgi is int -> int. Also assume g1=g3 and g2=g4. The number of expressions ofsize s with 0 violations is 2s�1 whereas the number of expressions with at most1 violation is 2s�1 + (s � 1) � 2s�1 = s � 2s�1. The number of expressions withat most v violations is 2s�1 �Pvi=0(s�1i): 2An empirical observation is that the best synthesized expressions normallycontain no more than a few violations, which means that the number of ex-pressions, that need to be synthesized and examined, can be greatly reduced byfocussing on expressions with few violations. Recall that N is the number ofexpressions to be synthesized. For example, the synthesis algorithm could striveto produce 0:25N expressions with 0 violations, 0:15N expressions with exactly1 violation and 0:1N expressions with exactly 2, 3, 4, 5, 6 or 7 violations.Another problem with equivalence checking is that it requires too much timeper synthesized expression. For example, we expect that the average synthesistime per expression would increase at least 10 times for the current implementa-tion of ADATE if we employed sample value based equivalence checking. Sincesynthesized expressions typically are very small, the reduced branching factorwould not compensate this increase, at least not for the inferences tried so far.However, we may choose to include such equivalence checking in future versionsof ADATE, particularly if the ability of searching large expression spaces is tobe improved.5.3.2 RandomizationThe goal with randomized expression synthesis is to pick only one or a fewexpressions in each equivalence class. For example, assume that N expressionsare to be chosen from an expression space with total cardinality T . Let Dbe the cardinality of the equivalence class that contains desirable expressions.Randomized expression synthesis is primarily useful for big D. Assume that wechoose expressions according to a uniform distribution on the expression space.For each random choice, the probability of choosing a desirable expression isD=T . If we makeN choices, the probability that we choose at least one desirableexpression is one minus the probability that we do not choose any desirableexpression i.e., 1� (1� DT)N. Let us de�ne k so that N = kT=D and assume that T=D is large, which meansthat the probability is1� (1� DT)k TD = 1� ((1 � 1TD) TD)k � 1� e�k:For example, if we choose N so that N = 5T=D, we will try at least one desirableexpression with a probability greater than 99.3%.99

Assume that a �nished program is built from n di�erent synthesized expres-sions and that we need to make n sequential choices of synthesized expressionsto obtain this program. Also assume that an appropriate choice of each one ofthese expressions is found by random expression synthesis with the probability1 � e�k and that the choices are so independent that the the probability of�nding n appropriate choices is (1 � e�k)n. If we want this overall probabilityto exceed a con�dence limit �, we havee�k < 1� � 1n ;which gives k > � ln(1� � 1n):Assume that n is large and that � is close to 1, which means that 1 � � 1n isclose to 0. A �rst order Maclaurin series expansion gives1� � 1n = � ln�n +O(1n2):Ignoring O(1=n2) yieldsk > � ln(� ln�n) = lnn� ln(� ln�):For example, with � = 0:95, we have k > lnn+2:97. Even for very big programsi.e., large values of n, we can choose reasonably small k. For example, if the�nal program consists of one million synthesized expressions, we obtain 95%con�dence with k = 16:8.The ratio T=D indicates the hardness of an expression synthesis problem.In practice, this ratio varies widely.Example. Let us add the 'a list variable Ys to the components in the �rstexample in Section 5.1 in order to obtain a more realistic expression synthesisproblem. Thus, the components are Xs, Ys, nil and @. Let the expression spaceconsist of all expressions of a size not exceeding smax. Assume that the functionl is such that l(E) is the preorder listing of the function and variable symbolsin an expression E with all occurrences of nil and @ removed e.g.l(Xs@(nil@Ys)) = [Xs,Ys]:The equivalence classes are given by the equivalence relation eq de�ned byeq(E1; E2) = (l(E1) = l(E2)):We will now examine the ratior(smax; L) = T (smax)D(smax; L) ;100

5 10 15 20 25 30 max
s

2
4
6
8
10
12
14

log T

Figure 5.8: The total cardinality as a function of size.where L is the length of the l-value of the class of desirable expressions.It is easy to see thatT (smax) = (smax�1)=2Xi=0 3i+1i+ 1 � 2ii � :For a given expression size s such that the number of leaves, (s + 1)=2,is greater than or equal to L, the number of combinations of the leaves of adesirable expression is � (s + 1)=2L �. The number of desirable expressionswith i internal nodes is � i+ 1L � 1i+ 1 � 2ii � ;which means thatD(smax; L) = (smax�1)=2Xi=L�1 � i + 1L � 1i + 1 � 2ii � :Figure 5.8 shows log10 T (smax) for 1 � smax � 31. Figure 5.9 shows log10 r(smax; L)for 1 � smax � 31 with one curve for each L in f1; 2; : : :; 15g. Thus, Figure 5.8shows the number of expressions that need to be synthesized with exhaustivesearch whereas the curves in Figure 5.9 show the number of expressions gener-ated by random search divided by a small constant. For example, for smax = 30,the exhaustive search would produce about 1014 expressions whereas we would101

5 10 15 20 25 30 max
s

1
2
3
4
5
6
7

log r

Figure 5.9: The hardness of random synthesis as a function of size.expect the randomized search to produce between 104 and 108 expressions de-pending on L and k. Note that D(smax ; L) varies widely with L. 2A fundamental problem with randomized expression synthesis seems to bethat we do not know D. However, using the simple strategy described below,this lack of knowledge causes the expected run time to be multiplied by no morethan a small factor. We assume that both r = T=D and T have approximatelyexponential growth i.e., r � Bsmaxr and T � BsmaxT for constant branching factorsBr and BT . Practical expression synthesis problems are so hard that we canassume Br � p2 i.e., min(Br) = p2.Our search strategy is as follows. Given N , i.e., the number of expressionsto be synthesized, we choose smax todlogmin(Br)Ne = 2dlog2Ne:We only synthesize expressions of sizes given by the set � which is the set of allsizes s such that there exists expressions of size s and 1 � s � smax. Let �(s)be the number of expressions of size s that are to be synthesized. Obviously,we require N =Ps2� �(s). Our strategy is to distribute N uniformly on � i.e.,choose �(s) to bN=#�c for each s in �.Example. If N = 105 and the components are Xs, Ys, nil and @, we obtain� = f1; 3; 5; 7; : : :; 2dlog2 105e � 1g = f1; 3; 5; 7; : : : ; 33gand �(s) = b105=17c = 5882:2 102

Even if we actually did know D and used this knowledge to determine �(s),we would certainly have �(s) � N for all s. Thus, no �(s) value decreases bymore than a factor 1=(2dlog2Ne) just because we do not know D. Note that2dlog2Ne is an upper bound. The average performance of randomized searchis better, but di�cult to determine.Recall that the con�dence interval of randomized search is determined by thefactor k, which we de�ned so that N = kr. The uniform distribution strategygives a k-value that varies with size. We \over-sample" small sizes, which givesa high k-value and high con�dence. The space of expressions of a size close tosmax is sampled more sparsely, which gives low k and low con�dence. We let kbe determined implicitly in this manner and do not try to compute k. Here isan example that illustrates \over-sampling".Example. With N = 105 and the components Xs, Ys, nil and @, weobtained �(1) = 5882. Assume that exactly one of the three expressions ofsize 1 is desirable, which means that k = 5882=3 for size 1. The probability of�nding a desirable expression of size 1 is1� (23)5882 � 1� 10�1036:2 Intuitively, over-sampling provides extra insurance against extremely badluck. One may gain a factor of two or three by trying to avoid over-sampling.Since the gain is small, we do not discuss how to avoid over-sampling.The algorithm for randomized expression synthesis chooses �(s) random ex-pressions according to a uniform distribution on the space of all expressions ofa given size s. One way of choosing a random expression is as follows.1. Let t(s) be the cardinality of the space of expressions of size s, i.e., t(s) =T (s) � T (s � 1).2. Choose a random number � according to a uniformdistribution on f1; 2; : : :; t(s)g.3. Convert � to the corresponding expression according to some suitable enu-meration of the space of expressions of size s.The most di�cult problem is how to enumerate the expression space. Here is anexample of randomized synthesis with top-down enumeration of the expressionspace.Example. We want to synthesize expressions of type (int*int) list usingthe following components.X : intY : int+ : int*int -> intXs : (int*int) listnil : 'a list 103

:: : 'a * 'a list -> 'a list@ : 'a list * 'a list -> 'a listLet t(Ty; s) be the number of expressions of type Ty and size s. We now chooseto de�ne the size of an expression to be the number of occurrences of variablesand functions, including all occurrences of implicit tuple constructors. Thus, thesize of Xs@Xs is 4, not 3. The components above give the following de�nition oft.t(int; 1) = 2.t(int; s) = t(int*int; s� 1) when s � 4.t(int*int; s) =Ps�2i=1 t(int; i) � t(int; s � 1� i) when s � 3.t((int*int) list; 1) = 2.t((int*int) list; s) =Ps�3i=1 t(int*int; i) � t((int*int) list; s � 2� i)+Ps�3i=1 t((int*int) list; i) � t((int*int) list; s� 2� i)when s � 4.If none of these equations apply, t(Ty; s) is 0. Note that each summation corre-sponds to a component. For example, the �rst summation in the last equationcorresponds to :: whereas the last summation corresponds to @.Before starting random synthesis, we tabulate t in order to allow quick com-putation of t(Ty; s). The table for s � 22 is shown in Figure 5.10. Using t, itis easy to convert an order number � to the corresponding expression. We willnow discuss the de�nition of a function nat to exp such that the value ofnat to exp(Ty; s; �)is the expression of type Ty and size s with order number �. In order to simplifythe de�nition, we let 0 be the �rst order number. Assume that Ty is (int*int)list. If s = 1, we must have � = 0 or � = 1, where we can say that � = 0corresponds to Xs and that � = 1 corresponds to nil. If s � 4, the root is :: if� < s�3Xi=1 t(int*int; i) � t((int*int) list; s� 2� i)and @ otherwise. Assume that the root is @. Let �0 be� � s�3Xi=1 t(int*int; i) � t((int*int) list; s� 2� i):Then, we compute the greatest size s0 such that�0 � s0�1Xi=1 t((int*int) list; i) � t((int*int) list; s� 2� i) � 0104

s t(int; s) t(int*int; s) t((int*int) list; s)1 2 0 22 0 0 03 0 4 04 4 0 45 0 0 06 0 16 87 16 0 168 0 0 09 0 80 8010 80 0 8011 0 0 3212 0 448 67213 448 0 44814 0 0 64015 0 2688 537616 2688 0 281617 0 0 870418 0 16896 4224019 16896 0 2099220 0 0 10035221 0 109824 32998422 109824 0 190208Figure 5.10: Expression space cardinality as a function of size and type.
105

and set �00 to this di�erence. Let �l and �r be the order numbers of the left andthe right subtree respectively. If we write �00 as�l � t((int*int) list; s� 2� s0) + �r;we get �l = b�00=t((int*int) list; s � 2� s0)cand �r = �00 mod t((int*int) list; s � 2� s0):The left subtree is nat to exp((int*int) list; s0; �l):The right subtree isnat to exp((int*int) list; s� 2� s0; �r):2 We have only discussed the de�nition of nat to exp for the components inthe example above. It is somewhat tedious, but not too di�cult, to give animplementation of nat to exp that is parameterized by the components. Thecurrent version of ADATE does not employ random synthesis since the enumer-ative heuristic search presented in Section 5.2 su�ce for the small expressionsynthesis problems that we have encountered in practice.
106

Chapter 6Synthesis of CompoundTransformationsRecall that a compound transformation is a sequence t1 : : : t#t where eachatomic transformation ti is one of the following.R. Replacement.REQ. Replacement that does not make the program \worse".ABSTR. Abstraction.CASE-DIST. case-distribution.EMB. Embedding.6.1 Compound Transformation FormsThe choice of an atomic transformation ti, i � 2, depends on the previouslychosen transformations t1 : : : ti�1. No transformation except the �rst may bechosen freely. The dependency is speci�ed with so-called coupling rules whichare employed to produce all possible compound transformation forms.Example. Consider the last compound transformation in the inference ofsort presented in Subsection 4.1.2. The form of this compound transformationis ABSTR REQ REQ R where both the REQs and the R are coupled to theABSTR as described below. 2Assume that t1 : : : ti�1 have been chosen so far and that ti is to be chosennext. A \weak" coupling rule t0 ! t00 means that ti may be chosen to t00 ift0 2 ft1; : : : ; ti�1g. A \strong" coupling rule t0) t00 means that ti may bechosen to t00 if t0 = ti�1. When a rule t0 ! t00 or t0) t00 is used with t0 equalto some tk, ti is said to be coupled to tk. If a t00 is followed by an ! mark in a107

coupling rule, no subsequent transformation may be coupled to t00. No rule maybe used more than once during the production of a form, which means that thereare a �nite number of possible forms. These forms are computed immediatelyafter system start up and remain unchanged during the entire execution.Transformation t1 is chosen to R, REQ, ABSTR, CASE-DIST or EMB. Aform is required to have t#t = R and ti 6= R for each i < #t. Each transfor-mation ti, i � 2, is chosen with one of the coupling rules below. Each t00 in acoupling rule is constrained by the applicability requirement listed after eachrule.1. REQ) R. The R is applied in the expression introduced by the REQ.2. REQ) ABSTR. The ABSTR is such that the expression introduced bythe REQ occurs in the H(E1; : : : ; En) used by the ABSTR but not entirelyin H.3. ABSTR ! R. The R is applied in the the right hand side H(V1; : : : ; Vn)of the let-de�nition introduced by the ABSTR.4. (a) ABSTR ! REQ! or (b) ABSTR ! REQ! REQ!. The REQ(s) areapplied in H(V1; : : : ; Vn).5. ABSTR) EMB!. The let-function introduced by the ABSTR is embed-ded.6. CASE-DIST)ABSTR. The ABSTR is such that the root ofH(E1; : : : ; En)was marked by the CASE-DIST.7. CASE-DIST) R. The R is such that the root of the expression Sub,which is replaced by the R, was marked by the CASE-DIST.8. EMB ! R. The R is applied in the right hand side of the de�nition of theembedded function.Combining these 8 rules in all possible ways yields the 22 forms shown inFigure 6.1. For example, the form ABSTR REQ REQ R is produced by �rstchoosing t1 to ABSTR and then applying coupling rules 4b and 3. The 8coupling rules above were found empirically and may need to be extended.Since coupling rules normally focus a compound transformation within asmall part of the program, they are particularly important for the transforma-tion of very large programs. For example, assume that a program contains Nsubexpressions and that an ABSTR is applied so that H(V1; : : : ; Vn) containsNRHS subexpressions. Consider the form ABSTR REQ REQ R. Assume thateach of the last three transformations needs to choose exactly one subexpression.Without coupling, there would be about N3=2 such choices whereas there areabout N3RHS=2 choices with coupling, which means that coupling is particularlyimportant for small NRHS=N ratios. The denominator 2 is used since the �rst108

REMB RREQ ABSTR REQ RREQ ABSTR REQ REQ RREQ ABSTR EMB REQ RREQ ABSTR EMB REQ REQ RREQ ABSTR EMB RREQ ABSTR RREQ RCASE-DIST ABSTR REQ RCASE-DIST ABSTR REQ REQ RCASE-DIST ABSTR EMB REQ RCASE-DIST ABSTR EMB REQ REQ RCASE-DIST ABSTR EMB RCASE-DIST ABSTR RCASE-DIST RABSTR REQ RABSTR REQ REQ RABSTR EMB REQ RABSTR EMB REQ REQ RABSTR EMB RABSTR R Figure 6.1: All forms.
109

REQ and the second REQ may be interchanged without changing the result ofa compound transformation. The actual number of choices is often smaller thanN3RHS=2 since REQs only are found for some of the NRHS subexpressions.6.2 Syntactic Checking and Pruning of Pro-gramsIn addition to the checks performed during the synthesis of an atomic transfor-mation, there are heuristic checks that depend on the preceding atomic trans-formations. We have chosen to apply these checks during the synthesis of com-pound transformations. The current implementation of ADATE employs thefollowing two checks.1. Static case checking.2. Pattern occurrence checking.We will now discuss these two checks.6.2.1 Static case CheckingConsider a function de�ntion of the formfun g(V1; : : : ; Vn)=RHS:A subexpression of RHS that does not depend on V1; : : : ; Vn is said to be static.The static case check does not allow static case-analyzed expressions since theoutcome of a static case-analysis is the same for each recursive call to g.Example. Consider the expression X2<X1 that is case-analyzed in both ofthe following two programs.fun sort Xs =case Xs of nil => Xs| X1::Xs1 =>let fun g V1 =case sort Xs1 of nil => V1| X2::Xs2 => case X2<X1 of true => ? | false => Xsing(sort Xs1)endfun sort Xs =case Xs of nil => Xs| X1::Xs1 =>let fun g V1 = 110

fun static_case_check(D as {func,pat,exp,...} : dec) : bool =scc(exp,vars_in_pat pat)and scc(E,Vars) =case E ofapp_exp{args,...} => forall(fn Arg => scc(Arg,Vars), args)| case_exp{exp,rules,...} =>not(null(intersection(Vars,zero_arity_apps exp))) andalsoscc(exp,Vars) andalsoforall(fn{pat,exp} => scc(exp,vars_in_pat pat @ Vars), rules)| let_exp{dec_list,exp,...} =>scc(exp,Vars) andalsoforall(static_case_check,dec_list)Figure 6.2: The implementation of static case checking.case V1 of nil => Xs| X2::Xs2 => case X2<X1 of true => ? | false => Xsing(sort Xs1)endThe occurrence of X2<X1 in the �rst program is static whereas the occurrencein the last program is not static. 2The static case check is quite simple to implement as shown in Figure 6.2.The auxiliary function zero arity apps returns the leaves in an expression.To avoid too much pruning, the static case check is only used when thecoupling rule ABSTR ! R is applied. Just before the R, ADATE requires thatthe current version D of the let-de�nition introduced by the ABSTR is suchthat static case check D = true:6.2.2 Pattern Occurrence CheckingThe goal with pattern occurrence checking is to eliminate some futile REQs. AREQ, that preserves semantics no matter what context it appears in, is rathermeaningless. For example, since addition of integers is commutative, it is ratherfutile to replace X+Y with Y+X. Subsection 4.1.2 showed some REQs that are notfutile. For example, the REQ that replaces an occurrence of the int listvariable Xs with X1::nil, where X1 = hd Xs, makes sense since the values ofthe occurrence of Xs might not remain singletons when the program is furthertransformed. 111

fun remove_as Pat = exp_map(fn as_exp{var,pat,exp_info} =>app_exp{func=var,args=nil,exp_info=exp_info}| Sub => Sub,Pat)fun prohibited_exps Pat =let val As_subs =exp_filter(fn as_exp{...} => true | _ => false, Pat)inmap(fn as_exp{pat,...} => remove_as pat, As_subs)endFigure 6.3: Two auxiliary functions for pattern occurrence checking.Consider a case-expression of the following form.case A of Match1 => E1 | : : : | Matchn => En:Inside Ei, it is obvious that A and Matchi are equivalent. Pattern occurrencechecking only allows the smallest of the expressions A andMatchi to occur in anexpression introduced by a REQ inside Ei. Note that it is necessary to convertMatchi to an ordinary expression by removing as-patterns from Matchi.In order to implement pattern occurrence checking, we need the two helpfunctions in Figure 6.3. Recall that exp map and exp filter are analogous tothe functions map and filter on lists. It is easy to see that remove as Patis Pat with all subpatterns of the form V as Sub replaced by V . Since thesubpattern Sub has a greater size than the variable V in an as-pattern V asSub, we say that Sub is prohibited. The function prohibited exps �nds allsuch prohibited subpatterns in a pattern.Assume that fun f Pat = RHS is the program being transformed and thatTop pos is the position of a REQ in RHS. Pattern occurrence checking is per-formed with the callpattern occurrence check(RHS, prohibited exps Pat, Top pos)for each REQ position Top pos. Figure 6.4 shows the de�nition of pattern -occurrence check. Like the static case check, the pattern occurrence check isapplied just before the R in the coupling rule ABSTR ! R.112

fun pattern_occurrence_check(E : exp, Prohibited : exp list,Pos : pos) : bool =letfun g _ = nilfun f(Pats,E_sub,P::_) =case E_sub ofcase_exp{exp,rules,...} =>if P=0 thenPatselselet val Pat = #pat(nth(rules,P-1))val Stripped_pat = remove_as Patin(if exp_size exp < exp_size Stripped_pat thenStripped_patelseexp) ::prohibited_exps Pat @ Patsend| _ => Patsval Pats = pos_fold(f,g,Pos,E)val E_sub = pos_to_sub(E,Pos)inforall(fn Pat => null(exp_filter(fn Sub => Sub=Pat, E_sub)),Prohibited@Pats)end Figure 6.4: The implementation of pattern occurrence checking.113

6.3 Using the Forms to Produce ProgramsGiven a current program P and a form t1 : : : t#t, P is the input of atomictransformation t1. The output program from atomic transformation ti is theinput of atomic transformation ti+1 for each i in f1; : : : ;#t� 1g. The outputprogram from t#t is sent to the \population control" algorithm described inChapter 7.6.3.1 Cost Limit Computation for FormsAssuming that the cost limit before each ti is Cost limiti and that each ti hascost Ci, we have Cost limiti+1 = Cost limiti=Ci. If there was no pruningdue to static case and pattern occurrence checking, it would be possible to usethe same Cost limit1 for all forms. Let Wtot be the work goal for all formstaken together. Let Nforms be the number of forms i.e., 22. Since pruning isemployed, we have chosen a work goal of Wtot=Nforms programs for each form.Thus, all forms are supposed to produce equally many programs.The form cost limit Cost limit1 is deepened iteratively with a branchingfactor �. The choice of branching factor is discussed in Chapter 7. The �rstiteration has Cost limit1 = 100. This means that iteration number i hasCost limit1 = 100��i, where it is assumed that the �rst iteration has number 0.The �rst iteration is run for all forms. When more thanWtot=Nforms programshave been produced using a speci�c form during some subsequent iteration, theform is not used any more to produce children of the current program P .Recall that t#t always is R and that there is no i < #t such that ti is R.Therefore, the expression synthesis algorithm does not need to normalize thecosts of synthesized expressions, which means that it is reasonable to choose theactual cost of synthesized expression number i to i. As discussed in Section 4.2,atomic transformation algorithms other than the R algorithm, that employ ex-pression synthesis, contain their own normalization methods and do not neednormalized costs of synthesized expressions.Since we choose the cost of synthesized expression number i to i, a formcost limit Cost limit1 would normally lead to the production of Cost limit1children if no pruning is used. With static case and pattern occurrence pruning,there may be a production of only 0:1Cost limit1 children. However, there arecombinations of current programs and forms such that the production is evenlower. For example, the form EMB R cannot be used to produce any childrenat all if the current program P does not contain any let-function. Therefore,the maximum Cost limit1 to be used during the iterative-deepening is chosento 20Wtot=Nforms. 114

6.3.2 Computation of REQ, EMB and CASE-DIST CostLimitsWe only discuss the computation of REQ cost limits below, but EMB andCASE-DIST cost limits are computed in exactly the same way. Therefore, alloccurrences of REQ in the following discussion may be replaced with EMB orCASE-DIST as appropriate.Recall that a REQ cost limit determines how much work that should bespent on �nding REQ transformations. Since the cost of synthesized expressionnumber i is i, the amount of work that will be spent on �nding REQs equalsthe REQ cost limit. If the REQ cost limit is too small, we run the risk ofmissing REQs with good peREQ values. If the REQ cost limit is too large, REQtransformations will require a too large fraction of the overall execution time.Given a form t1 : : : ti : : : t#t, where ti is REQ, let w(Cost limiti) be theexpected work, excluding the work spent on �nding REQs, that will be doneusing the remaining part ti : : : t#t of the form and cost limit Cost limiti. Ift1 : : : t#t contains only one REQ sequence, we choose REQ cost limit for ti tow(Cost limiti). Otherwise, we choose it to 0:7w(Cost limiti). The reasonthat the latter REQ cost limit is slightly lower is that we do not want the totalwork spent on �nding REQs for a given form to be too much greater than thetotal other work for the form.The remaining question is how to compute the expected workw(Cost limiti).Let �i be the sum of the Cost limiti cost limits that have been used duringprevious employments of the form part ti : : : t#t. Let �0i be the correspondingsum of the non-REQ work that actually was done. If �0i < 100, we assume thatit is too small to be used for statistical forecasting and choose w(Cost limiti)to a default value of 0:3Cost limiti. Otherwise, we choosew(Cost limiti) = max(�0i�i ; 120)Cost limiti;where the last argument of the max function ensures that a reasonable amountof work will be spent on �nding REQs even if �0i=�i is quite small i.e., if pruninghas been hefty. Separate �0i and �i sums are maintained for each ti that is a REQin each form. When the compound transformation algorithm is restarted with anew current program P , all such sums are initialized to 0 in order to adapt themindividually to each program P . Also note that the iterative-deepening of theform cost limit Cost limit1 contributes to good estimation of w(Cost limiti).6.3.3 Match Error HandlingAssume that program Pi+1 is an output from an atomic transformation ti insome form t1 : : : t#t, where t#t always is R. The expression that is insertedinto P#t by t#t may contain special Not activated constants as described inSubsection 5.2.4. These constants, however, may become activated in P#t+1.115

Example. Consider the synthesis of the list concatenation function @ usingthe single sample input([1,2,3,4,5], [6,7,8,9]).Assume that #t = 1, t1 = R and that P1 is fun @(Xs,Ys) = ?. The bestsynthesized expression produced by synt n iscase Xs of nil => Not activated | X1::Xs1 => X1::@(Xs1,Ys):This expression is produced from the following un�nished case-expression.case Xs of nil => Unknown1 | X1::Xs1 => Unknown2:The program used for activation checking isfun @(Xs,Ys) =(case Xs of nil => Unknown1 | X1::Xs1 => Unknown2; ?)Unknown1 will be replaced by Not activated whereas Unknown2 will be re-placed by synthesized expressions, for example X1::@(Xs1,Ys). The resultingprogram isfun @(Xs,Ys) =case Xs of nil => Not activated | X1::Xs1 => X1::@(Xs1,Ys)Due to recursive calls, the Not activated constant will be activated duringthe execution of this program. This is called a match error. 2.When a match error has been detected during the execution of a program,ADATE tries to �x the error by replacing the occurrence of Not activated, thatcaused the error, with synthesized expressions. Frequently, these expressionsare supposed to handle a recursive \base case". The current implementation isnot able to handle more than one match error at a time.Assume that M match errors and W programs have been produced so far.The cost limit employed when replacing a Not activated constant is chosen to0:1W=(M+100) in order to avoid spending too much time on such replacements.For example, if we on average have one match error per �ve hundred programs,the cost limit will be about �fty for large W and M . Both W and M areinitialized to 0 when the compound transformation algorithm is restarted witha new current program P .Since the cost limit depends only on the match error ratio W=(M + 100),this scheme for handling match errors may not be su�ciently general. It wasprimarily designed to handle quite small recursive base cases. However, thereis no general rule saying that recursive base cases have to be small, but theydo tend to be small in practice. A more general scheme would be to make thecost limit directly dependent on Cost limit#t and the order number of thesynthesized expression inserted by the atomic transformation t#t, which alwaysis R. 116

Chapter 7The Overall Search forProgramsThe algorithm for overall search maintains a population of programs. It re-peatedly selects a program from the population, sends it to the algorithm forsynthesis of compound transformations and receives transformed children pro-grams from this algorithm. We say that such a selected program is expanded.7.1 Population StructureInitially, the population consists of a single copy of the initial program i.e., a pro-gram of the form fun f Pat = ?, where the tuple pattern Pat is automaticallyconstructed by ADATE using the domain type of f.The population is partitioned into classes such that all programs in a classcontain the same number of case-expressions. Each class is partitioned intosubclasses such that all programs in a subclass contain the same number oflet-expressions. The purpose of this partitioning is to maintain diversity byensuring that programs with low case or let counts are not \killed" by superiorprograms with higher case or let counts.Each subclass contains three programs. Program number i in subclass num-ber l of class number c is the best program found so far according to programevaluation function pei that contains exactly c case-expressions and l let-expressions. 117

7.2 Selection and Insertion of Programs7.2.1 SelectionLet (cP ; lP) be the case and let counts of a program P in the population. Let�(P) be the set of all programs in the population with (c; l) values such thatc < cP _ (c = cP ^ l < lP):The program to be expanded next is chosen to a program P with a minimum(cP ; lP) value such that P is better than all programs in �(P) according to atleast one program evaluation function pei. Of course, P is expanded only onceusing the same Wtot work goal.Assume that cbesti is the case count of the best program found so far asjudged by pei. ADATE tries to avoid futile expansions by only expandingprograms with a case count that does not exceeddmax(1:2cbest1 ; 1:2cbest3)e:The case count cbest2 is omitted since pe2 prefers low call count to small syn-tactic complexity. If the arguments of the max function above also included1:2cbest2 , this preference may lead to very big programs through sequences ofR-transformations that unfold function calls.7.2.2 InsertionLet Q be a program that is a candidate for insertion into the population i.e.,that has been received from the compound transformation algorithm. First, weapply a quick rejection test to Q. This test is meant to quickly determine if Qis good enough to be worth further and more time consuming processing. Qfails the quick rejection test if and only if it is worse than all programs in thesubclass (cQ; lQ) according to the program evaluation function peREQ.If Q passes the test, it is subjected to dead code elimination and eliminationof redundant de�nitions of let-functions, which yields a program Q0. A let-function g is considered to be redundant if and only if it is non-recursive and ifunfolding of all calls to g and removal of the de�nition of g does not increasethe syntactic complexity of the program.We choose to discard Q0 if it is not better than all its proper ancestorsaccording to at least one program evaluation function pei. The concept properancestor is de�ned as follows. If Q is produced from P using a compoundtransformation, P is the parent of Q. A proper ancestor of Q is either P or oneof P 's proper ancestors.The next question is if any of the three programs in the subclass (cQ0 ; lQ0)should be replaced by Q0. If there is any i such that Q0 is better than programnumber i in the subclass according to program evaluation function pei, ADATEreplaces program number i with Q0. 118

7.3 Iterative-Deepening SearchThe work goalWtot is deepened iteratively using a branching factor �. Iterationnumber 0 has Wtot = 10000. Iteration number i has Wtot = 10000�i. Duringan iteration, programs are selected from the population and inserted into thepopulation as described above. An iteration terminates when no program in thepopulation is eligible for expansion.Recall that the algorithm for synthesis of compound transformations usesiterative-deepening of the initial cost limit Cost limit1. An \overall" iterationwith a given work goal Wtot will be called a primary iteration whereas aniteration made by the algorithm for synthesis of compound transformations willbe called a secondary iteration. Note that many secondary iterations are madeduring one primary iteration.We will now discuss the choice of the primary branching factor � and thesecondary branching factor �. We assume that there is a minimum cost Csuch that a desirable program certainly will be found if Wtot is so large thatsecondary iterations with Cost limit1 � C are run completely. Remember thata secondary iteration using a given form is terminated i.e., not run completely,when the number of programs that have been produced with the form exceedsWtot=Nforms. Assume that there is a critical parent program P such thatsu�ciently good children can be found only if Cost limit1 � C. Intuitively, Pis the bottle-neck of a genealogical path that leads to a desirable program. Thecritical secondary iterations are the ones that expand P .Let n be the number of the last critical secondary iteration, which is the onethat produces a su�ciently good child. To simplify the following discussion, weassume that both the �rst primary iteration and the �rst secondary iterationare run with an initial limit of 1 instead of 10000 and 100 respectively. Thismeans that secondary iteration number i is assumed to have Cost limit1 = �i.Obviously, n is the smallest value such that �n � C, which implies n = dlog� Ce.The degree of pruning made by the algorithm for synthesis of compoundtransformations depends on the current program, the form and the Cost limit1value of the current secondary iteration. For each form number i, we as-sume that the ratio between the number of programs synthesized using formi and Cost limit1 rather rapidly approaches some limit i when Cost limit1grows i.e., that a constant fraction 1� i of the programs are pruned for largeCost limit1 values. One could relax this assumption and for example studythe e�ects of oscillating ratios. However, based on limited experiments, we feelthat such e�ects are negligible and do not study them here.Since the last iterations produce many more programs than the �rst, wecan assume that the number of programs produced by the n �rst secondaryiterations using form i isi�0 + i�1 + : : :+ i�n�1 = i �n � 1� � 1 :119

Let us now for a moment assume that no pruning is used and that the �rstsecondary iteration is run with cost limit i. It is easy to see that this situationis equivalent to using pruning and limit 1 for the �rst secondary iteration. Sincethe expected overall number of produced programs is essentially the same evenif the initial cost limit for a given form is any reasonable number, say between10�3 and 103, we can ignore pruning altogether. In the following discussion, wetherefore assume i = 1 for all i.Let m be the number of the �rst primary iteration that may be good enoughi.e., with �m > �n � 1� � 1 :Let m0 be the number of the �rst primary iteration that is certain to be goodenough i.e., with �m0 � �n+1 � 1� � 1 :Primary iteration number m is such that the cost interval]�n�1; �n] may beonly partly covered whereas this interval will be fully covered during primaryiteration number m0. It is easy to see thatm � dlog� �n � 1� � 1 eand m0 � dlog� �n+1 � 1� � 1 e:Let pi be the probability that primary iteration number i is the �rst one thatproduces a su�ciently good child of P . The total work spent on expanding Pduring iterations number 0; 1; : : : ; i is�i+1 � 1�� 1 :The expected total work WP (C;�; �) ism0Xi=m pi�i+1 � 1�� 1 :The children programs produced by primary iteration number j are a superset ofthe children programs produced by primary iteration number j�1. This meansthat the probability qi�1 that a desirable program is not found during primaryiterations number 0; 1; : : : ; i�1 equals the probability that a desirable program isnot found during primary iteration number i�1. Assume that primary iterationnumber i is about to be started. The probability qi�1 depends on how large a120

part of the interval]�n�1; �n] that has been covered so far. Assuming that eachprogram in the interval is equally likely to be covered, we haveqi�1 = 1� Cardinality of part covered so farCardinality of the entire interval ;which equals1� max(0;min(�n; �i�1 � �n�1��1))��1��n � �n�1 = 1� max(0;min(�n; �i�1� �n�1��1))�n :Let ri be the probability that iteration number i discovers a desirable programeven though iterations number 0; 1; : : : ; i � 1 did not discover any desirableprogram. Note that pi = qi�1ri, where we haveri = Cardinality of part only covered by iteration number iCardinality of part not covered by iteration number i � 1 ;which ismax(0;min(�n; �i � �n�1��1))��1� �max(0;min(�n; �i�1 � �n�1��1))��1��n � �n�1 �max(0;min(�n; �i�1 � �n�1��1))��1� =max(0;min(�n; �i � �n�1��1))�max(0;min(�n; �i�1 � �n�1��1))�n �max(0;min(�n; �i�1� �n�1��1)) :We want to determine � and � so that the expected ratio WP (C;�; �)=C isminimized. Therefore, we need to know the distribution of the random variableC i.e., the minimum \bottle-neck" cost. We assume that computers are so slowthat is unreasonable to have C > 108 and that they are so fast that there is noneed to worry about C < 105. These computing speed assumptions motivatedchoosing Pr(C = X) = 1K(X + 105) ;where K is a normalizing constant that equals108XX=1 1X + 105 � 6:90875:Given � and �, the expected WP (C;�; �)=C ratio isE(�; �) = 108XX=1Pr(C = X)WP (X;�; �)X :121

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 7.1: A coarse map of E(�; �).
122

3 3.5 4 4.5 5

3

3.5

4

4.5

5

Figure 7.2: A �ne map of E(�; �).
123

localfun best_list_prune1(Min_call_count,Xs:best_type list) =case Xs ofnil => nil| X1::Xs1 =>if #call_count X1 < Min_call_count thenX1::best_list_prune1(#call_count X1,Xs1)elsebest_list_prune1(Min_call_count,Xs1)infun best_list_prune(X1::Xs1) =X1::best_list_prune1(#call_count X1,Xs1)end (* local *)Figure 7.3: The ML function for pruning Best list.Figure 7.1 shows a contour plot of E(�; �) for 2 � � � 16 and 2 � � � 16with � on the vertical axis and � on the horizontal axis. Black representsthe smallest E(�; �) values whereas white represents the greatest values. Bystudying the numerical data, we found that the region 3 � � � 5 and 3 � � � 5contained the best E(�; �) values. This region is shown in Figure 7.2, wherethe best E(�; �) values are approximately located along the line � = �. Sincesmaller � and � values give less variance for the ratio WP (C;�; �)=C, we chosea good (�; �) value not too far from (0; 0), namely � = 3:88 and � = 3:77. SinceE(3:88; 3:77)� 3:93, the average execution time of ADATE increases about 3.93times because we cannot employ a �xed, minimum Cost limit1 value.7.4 Which are the Best Synthesized Programs?Let peREQ�min be the best peREQ value of any program that has been foundso far. During the entire execution, ADATE maintains a list Best list thatonly contains programs with peREQ = peREQ�min. Each synthesized program isconsidered for insertion into Best list. Let (S1; T1); (S2; T2); : : : ; (Sn; Tn) bethe syntactic complexity and call count values of the programs in Best list,which is sorted so that (S1; T1) � (S2; T2) � : : : � (Sn; Tn). When a new pro-gram with peREQ = peREQ�min has been found, it is inserted into the appropriateposition in Best list, which is then pruned so that the T1; T2; : : : ; Tn values arestrictly decreasing. The pruning function is shown in Figure 7.3. The purpose124

of this pruning is to ensure that a greater syntactic complexity always is com-pensated by a smaller call count. When ADATE synthesizes a program with apeREQ value that is better than any other peREQ value found so far, Best listis set to the singleton list that only contains this program.The execution of ADATE is viewed as a perpetual process i.e., the moreexecution time the better. It is up to the user to decide when execution is tobe terminated. The output of ADATE is the contents of Best list.

125

Chapter 8Sample Speci�cations,Inferred Programs andRun TimesPolynomial simpli�cation. This problem was discussed in Section 3.4. Thespeci�cation consisted of1. The type int and the type declaration datatype 'a list = nil | ::of 'a * 'a list.2. The primitive = : int * int -> bool.3. The type of the function to be inferred i.e., (int*int) list -> (int*int)list. Recall that a polynomial is represented as a list of (coe�cient,exponent)pairs.4. The following sample inputs.I1 = []I2 = [(3,2)]I3 = [(3,2), (5,2), (12,2), (11,2)]I4 = [(57,0), (71,4), (37,3), (117,1), (13,2), (19,4), (31,0),(53,1), (67,3), (87,4)]5. The output evaluation function shown in Figure 3.1.Note that these 4 sample inputs were chosen to facilitate incremental infer-ence. I1 is an empty polynomial. I2 consists of only one term. All terms in I3have the same degree. I4 is a \random polynomial". Thus, I1, I2 and I3 are126

special cases which it may be advantageous to learn to simplify before trying tosimplify general polynomials such as I4.With this speci�cation, ADATE inferred a polynomial simpli�cation pro-gram which below is shown exactly as it was printed by the system.fun f (V3_0) =case V3_0 ofnil => V3_0| ((V4996_0 as (V4997_0, V4998_0)) :: V4999_0) =>letfun g5011724_0 (V5011725_0) =case V5011725_0 ofnil => (V4996_0 :: nil)| ((V5000_0 as (V5001_0, V5002_0)) :: V5003_0) =>case (V5002_0 = V4998_0) oftrue => (((V4997_0 + V5001_0), V4998_0) :: V5003_0)| false =>(V5000_0 :: g5011724_0(V5003_0))ing5011724_0(f(V4999_0))endThis program is equivalent to the one below in which identi�ers generatedby the system have been replaced by more readable identi�ers.fun simplify Xs =case Xs of nil => Xs| (X1 as (X1c,X1e)) :: Xs1 =>let fun g Ys =case Ys of nil => X1::nil| (Y1 as (Y1c,Y1e)) :: Ys1 =>case Y1e = X1e of true => (X1c+Y1c, X1e) :: Ys1| false => Y1 :: g Ys1ing(simplify Xs1)endThe auxiliary function g, which was invented by the system, is such that thecall g Ys tries to merge X1 with a term in YsRectangle intersection. This is one of the few problems for which an input-output pair speci�cation is adequate. The rectangles may be viewed as windowsoccurring in a graphical user interface. The overlap between a foreground win-dow and a background window needs to be updated when the latter is moved127

A B(Ap1x, Ap1y) (Ap2x, Ap2y)(Bp1x, Bp1y) (Bp2x, Bp2y)Figure 8.1: Two non-intersecting rectangles and their coordinates.
Figure 8.2: The set of input rectangles.into the foreground i.e., made entirely visible. Each rectangle is represented bya pair of points which in turn are pairs of integers specifying the coordinates ofthe lower left and the upper right corners. Figure 8.1 shows the representationof two rectangles A and B.The speci�cation contained1. The type int and the type declaration datatype 'a option = none |some of 'a.2. The primitive < : int * int -> bool.3. The type of the function to be inferred. The type is((int*int)*(int*int)) * ((int*int)*(int*int)) ->((int*int)*(int*int)) option.4. A set of 50 sample inputs consisting of each pair of rectangles such thatthe big rectangle in Figure 8.2 is either the �rst or the second rectangleand such that the other is one of the 25 small rectangles.5. An output evaluation function that knows the correct output for eachsample input.The value returned by a correct rectangle intersection program is none ifthe two input rectangles do not intersect and some C if their intersection is therectangle C. After renaming, the inferred program is as follows.128

fun rect_is(I as (A as (Ap1 as (Ap1x,Ap1y),Ap2 as (Ap2x,Ap2y)),B as (Bp1 as (Bp1x,Bp1y),Bp2 as (Bp2x,Bp2y)))) =case Ap1x<Bp2x oftrue =>(case Ap2x<Bp1x of true => none| false =>case Ap1y<Bp2y oftrue =>(case Ap2y<Bp1y of true => none| false =>some((case Bp1x<Ap1x of true => Ap1x | false => Bp1x,case Ap1y<Bp1y of true => Bp1y | false => Ap1y),(case Bp2x<Ap2x of true => Bp2x | false => Ap2x,case Ap2y<Bp2y of true => Ap2y | false => Bp2y)))| false => none)| false => noneIf two input rectangles A and B intersect, the output of this program issome((max(Ap1x,Bp1x),max(Ap1y,Bp1y)), (min(Ap2x,Bp2x),min(Ap2y,Bp2y)))This algorithm is not obvious even though both the algorithm and the speci�-cation are simple.BST deletion. The problem is to delete an element from a binary search treewith integers in the nodes. The speci�cation contained1. The type int and the type declaration datatype 'a bin tree = bt nil| bt cons of 'a * 'a bin tree * 'a bin tree2. The primitive < : int * int -> bool .3. The type of the function to be inferred i.e., int * int bin tree -> intbin tree.4. Eight sample inputs. Assume that the element X is to be deleted from theBST Xs and that bt cons(X,Ls,Rs) is a subtree of Xs. The inputs coverthe following four cases.Ls Rsbt nil bt nilbt nil bt cons(, ,)bt cons(, ,) bt nilbt cons(, ,) bt cons(, ,)5. An output evaluation function that uses inorder listing and deletion forlists to check that the correct element is deleted. Note that it is possible129

to de�ne this function without knowing any good way to delete an elementfrom a BST. The output evaluation function oe uses the following auxiliaryde�nitions.fun inorder bt_nil = nil| inorder(bt_cons(RoXs,LeXs,RiXs)) =inorder LeXs @ RoXs::inorder RiXsfun depth bt_nil = 0| depth(bt_cons(_,LeXs,RiXs)) = 1+max(depth LeXs,depth RiXs)fun delete_one(_,nil) = nil| delete_one(X,Y::Ys) = if X=Y then Ys else Y::delete_one(X,Ys)Given input (X,Xs) and output Ys, oe checks thatinorder Ys = delete_one(X,inorder Xs) andalso depth Ys <= depth Xs.If the depth requirement depth Ys <= depth Xs is omitted, ADATE infersa BST deletion program that produces very unbalanced outputs. With thedepth requirement, the following program was inferred.fun bst_del(I as (X,Xs)) =case Xs of bt_nil => Xs| bt_cons(RoXs,LeXs,RiXs) =>case RoXs<X of true => bt_cons(RoXs,LeXs,bst_del(X,RiXs))| false =>case X<RoXs of true => bt_cons(RoXs,bst_del(X,LeXs),RiXs)| false =>let fun g Ys =case Ys of bt_nil => LeXs| bt_cons(RoYs,LeYs,RiYs) =>case LeYs of bt_nil => bt_cons(RoYs,LeXs,bst_del(RoYs,RiXs))| bt_cons(RoLeYs,LeLeYs,RiLeYs) => g LeYsing RiXsendThe most innovative part of this program is the let-expression, which de-termines what to do when the element to be deleted has been found.BST insertion. This problem is to insert an integer into a binary searchtree. In addition to the datatype-de�nition for binary trees, the speci�cationcontained the relation < on integers. No auxiliary function was needed.130

List reversal. The speci�cation contained the datatype-de�nition for lists.An auxiliary function that inserts an element last in a list was inferred.List intersection. The problem is to compute the intersection of two lists ofintegers. The speci�cation contained the datatype-de�nition for lists and therelation = on integers. An auxiliary function, that checks if an element occursin a list, was inferred.List delete min. The problem is to delete exactly one occurrence of theminimumelement in a list. The speci�cation contained the datatype-de�nitionfor lists and the relation < on integers. The sample inputs and the inferredprogram were presented in Subsection 4.1.4.Permutation generation. The problem is to compute all permutations ofa list of integers. The speci�cation contained the datatype-de�nition for listsand the function @ that concatenates two lists. The output evaluation functionmeasured the number of di�erent permutations occurring in the output andchecked that the output only consisted of permutations. The inferred programcontains one auxiliary function.List sorting. The speci�cation contained the datatype-de�nition for lists andthe relation < on integers. The sample inputs were given in Subsection 4.1.1.Subsection 4.1.2 contains the inferred program. Appendix B shows the completeoutput of ADATE for this sample inference.List splitting. The speci�cation contained the datatype-de�nition for lists.The output evaluation function was described in Section 3.3.The run times shown in Table 8.1 were obtained using the Standard MLof New Jersey compiler, version 0.93, and IBM RS6000-580 and RS6000-590workstations running only ADATE and AIX processes. Most of the experimentswere run on the 590 but some were run on the 580. For the latter experiments,the table shows the equivalent run times on the 590. We found that the ratiobetween 580 and 590 run times is 1.5. The equivalent times on SUN SparcStation10's or DECStation 5000's are two to three times longer.Note that the table shows the times required to �nd correct programs. Ingeneral, there is no guarantee that a correct program also is small and e�cient.131

Table 8.1: Run times.Problem Run time in hours:minutesPolynomial simpli�cation 22:56Rectangle intersection 4:35BST deletion 70:51BST insertion 16:23List reversal 0:4List intersection 5:10List delete min 12:7Permutation generation 22:35List sorting 0:27List splitting 0:3
132

Chapter 9Related WorkWe will discuss the following four categories of work that is related to ADATE.1. Program synthesis using computation traces.2. Inductive logic programming.3. Genetic programming.4. Program transformation.Category 1 is older and less interesting than categories 2, 3 and 4. Therefore,we will only discuss it briey. The most interesting work in category 1 is theinference of LISP programs from input-output pairs as surveyed by D.R. Smith[Smith 82]. Smith writes that the methods in his survey stem from Summer's[Summers 77] insight that a semi-trace of a computation can be constructedfrom well chosen input-output pairs. Summer's THESYS system then uses thesemi-trace to construct the corresponding LISP program.Example. Assume that the input-output pairs are ([1],1), ([1,2],2)and ([1,2,3],3). If the input is Xsi, each output Yi can be described asfollows using Standard ML notation.Y1 = hd Xs1 Y2 = hd(tl Xs2) Y3 = hd(tl(tl Xs3))THESYS notes that Yi equals Yi�1 with tl Xsi substituted for Xsi�1. Thisrecurrence relation is then employed to infer a function that �nds the last ele-ment in a list. 2The inference method used by THESYS is highly specialized and requiresthat the structure of the input-output pairs directly corresponds to a speci�cprogram.Categories 2, 3 and 4 are rarely discussed together in the literature eventhough they all study automatic inference of programs. One reason for thisseparation is that categories 2 and 3 are only a few years old. We will use thefollowing criteria to evaluate categories 2, 3, 4 and ADATE.133

Speci�cation form. What is the ratio between the di�culty of writing a spec-i�cation and the di�culty of writing a program that satis�es it?Degree of automation. How much interaction between the system and theuser is required?Creativity. Can the system create good programs that are novel, non-trivialand unexpected?Inventivity. Can the system invent new functions and data types?Program constraints. What are the forms of inferred programs? For exam-ple, can the system deal with recursion and real-valued constants?E�ectiveness in various domains. For which types of problems is the sys-tem suitable? Which class of algorithms can be inferred in each domain?E�ciency. Time and space complexity for1. the inference system and2. inferred programs.Next, we present categories 2, 3, 4 and discuss them with respect to thesecriteria. We will use the criteria to evaluate ADATE in Chapter 10. Thesethree categories and ADATE have disjoint capabilities and somewhat di�erentgoals, which means that it is di�cult to compare them directly using a commonset of criteria. Each category is interesting and unique from several points ofview. It is desirable to keep this in mind when reading the following criticalpresentations.9.1 Inductive Logic ProgrammingA system in this category uses speci�cations consisting of1. Background knowledge K, which in the most general case is a set of usersupplied predicate de�nitions.2. Positive examples "+, which are ground atoms.3. Negative examples "�, which also are ground atoms.The system tries to �nd a set of clauses H such that "+ can be inferred fromH and K using SLD-resolution with a depth-�rst search strategy and such that"� cannot be inferred. The following example illustrates ILP speci�cation.Example. Consider the problem of �nding a de�nition of a predicate sortsuch that sort(Xs,Ys) holds if and only if the list of integers Ys is a sortedpermutation of the list Xs. Here is a typical ILP speci�cation that facilitatesthe inference of insertion sort. 134

1. Background knowledge.insert(X,[],[X]).insert(X,[Y|Ys],[X,Y|Ys]) :- X<=Y.insert(X,[Y|Ys],[Y|Zs]) :- Y<X, insert(X,Ys,Zs).2. Positive examples.sort([],[]).sort([1],[1]).sort[2],[2])....sort([3,1,2],[1,2,3])....3. Negative examples.sort([],[1]).sort([],[2])....sort([3,1,2],[3,1,2])....Using this speci�cation, an ILP system would hopefully infer the followingde�nition.sort([],[]).sort([X|Xs],Ys) :- sort(Xs,Zs), insert(X,Zs,Ys).The negative examples are not needed if the closed world assumption isused. This assumption means that each example that is not in "+ is assumedto be in "�. This is controversial since "+ usually contains only a small fractionof all positive examples. Normally, there are in�nitely many possible positiveexamples whereas "+ is �nite and explicitly listed in the speci�cation. Here isa critical evaluation of ILP with respect to the criteria listed above.Speci�cation form. We have discovered four fundamental problems with ILPspeci�cations. Here are the four problems together with illustrative ex-amples.Problem 1. Typically, an ILP speci�cation requires1. extremely many examples or2. very well chosen examples.135

In the above speci�cation, for example, "+ must contain two examplese1 and e2 such that sort(Xs,Zs)(mgu(e1,sort([X|Xs],Ys)))= e2e.g. e1 =sort([3,2,1],[1,2,3])and e2 =sort([2,1],[1,2]). Thus,e2 is the recursive call that sort makes when working on e1. Twoalternative ways of ensuring that "+ contains e1 and e2 are1. to list all possible examples up to some maximum size or2. to have a clever user who can anticipate the forms of recursivecalls and choose examples accordingly.Alternative (1) was chosen in the speci�cation of sort above, whichhas "+ ["� = fsort(As1;As2) : j Asi j� 3 and Asi � f1; 2; 3gg,which gives j "+ ["� j= (1 + 3 + 9 + 27)2 = 1600.Both alternatives are often unfeasible.Alternative (1) is unfeasible since j "+ ["� j often grows super-exponentially with the maximum size Smax and since Smax in generalonly can be kept small for \toy examples". In the speci�cation above,j "+["� j= (PSmaxS=0 SSmax)2 which is
(S2Smaxmax). With the closed worldassumption, j "+ ["� j=j "+ j= PSmaxS=0 SSmax which is
(SSmaxmax).Alternative (2) is undesirable since a user who can anticipate allforms of recursive calls most likely also is able to write the programto be inferred and thus does not need an inference system. This\call anticipation problem" is not well studied by the ILP communityeven though it seems to impose a fundamental limit on ILP systemswhen it comes to inferring recursive programs. Unfortunately, thecall anticipation problem appears over and over again.Example. A predicate bst del is such that bst del(X,Xs,Ys)holds if and only if deletion of the integer X from the binary searchtree (BST) Xs yields the BST Ys. The binary tree constructors arebt nil and bt cons. A bt cons term has the form bt cons(Root,Left sub tree, Right sub tree). For example, assume that thefollowing de�nition of bst del is to be inferred.bst_min(bt_cons(Ro,bt_nil,_), Ro).bst_min(bt_cons(_,Le,_), M) :- bst_min(Le,M).bst_del(X, bt_nil, bt_nil).bst_del(X, bt_cons(Ro,Le,Ri), bt_cons(Ro,Le',Ri)) :-X<Ro, bst_del(X,Le,Le').bst_del(X, bt_cons(Ro,Le,Ri), bt_cons(Ro,Le,Ri')) :-Ro<X, bst_del(X,Ri,Ri').bst_del(X, bt_cons(X,bt_nil,Ri), Ri).bst_del(X, bt_cons(X,Le,bt_nil), Le).bst_del(X, bt_cons(X,Le,Ri), bt_cons(M,Le,Ri')) :-bst_min(Ri,M), bst_del(M,Ri,Ri').136

Also assume that 20 is to be deleted from the BST105 202 7 15 2522 2721 23...The recursive call bst del(M,Ri,Ri') is then made with M = 21 andRi = 2522 2721 23.. This means that "+ would need to contain the examplebst del(21, 2522 2721 23.. ,).2522 2723.. ..A user of an ILP system unfortunately needs to know the bst delprogram before it is inferred in order to anticipate the need for thisexample.Problem 2. Many speci�cations should not contain any outputs at allsince the outputs reect the user's knowledge of a particular al-gorithm. This is also illustrated by the BST deletion speci�cationabove. Thus, it is better to specify a requirement that the outputmust satisfy e.g.bst_del(X,Xs,Ys) :-inorder(Xs,Xs_nodes), inorder(Ys,Ys_nodes),del_one(X,Xs_nodes,Ys_nodes).The call inorder(Zs,Nodes) puts the inorder listing of the tree Zs inthe list Nodes. The call del one(Z,Zs,Zs') deletes one occurrenceof Z from the list Zs yielding Zs'. Note that the predicates inorder137

and del one may be easily de�ned by the user without knowledge ofany good BST deletion algorithm.Problem 3. A serious limitation of ILP speci�cations is that they do notuse continuous grading of output quality and program time and spacecomplexity. For example, the bst del program should produce anoutput BST of small \average" depth in time O(logn), where n isthe number of nodes in the input BST, which is assumed to havedepth O(logn). A powerful inference system would perhaps be ableto utilize the depth and time grades to infer a BST deletion algorithmthat uses techniques similar to Tarjan's [Tarjan 83] splay heuristic.However, this algorithm would be much more complicated than theone above.Problem 4. Most ILP systems need to have the background knowledgein the form of ground facts. There are two ways of achieving this,namely1. To require that the user provides ground facts instead of clauses.This method is used by FOIL [Cameron-Jones and Quinlan 94].2. To convert clauses to ground facts as in GOLEM[Muggleton and Feng 92]. This method is problematic since thenumber of ground facts needs to be limited by only allowing amaximum of h binary resolutions when producing a fact. Thenumber of ground facts grows exponentially with h even for verysimple and common examples.Example. Consider a predicate is bt which holds if and onlyif its argument is a binary tree. For simplicity, assume that noinformation is stored in the tree nodes, which gives the followingde�nition of is bt.is_bt(bt_nil).is_bt(bt_cons(Le,Ri)) :- is_bt(Le), is_bt(Ri).It is obvious that the number of binary trees with h nodes growsexponentially with h.Thus, we have identi�ed the following four drawbacks of ILP speci�cation.1. The need for either extremely many examples or call anticipation.2. The need for outputs that mirror a particular algorithm.3. Inability to utilize continuous grades.4. Conversion of background knowledge to ground facts.An ILP system, that su�ers from one or more of these speci�cation prob-lems, will never become an e�ective tool for general purpose logic pro-gramming. All systems in the literature su�er from at least three of theproblems. 138

Degree of automation. Some ILP systems, such as MIS [Shapiro 83], CIGOL[Muggleton and Buntine 88] and SIERES [Wirth and O'Rorke 92], ask theuser questions during the inference process. An example of such a questionis \Give me a Ys such that insert(4,[1,5,8],Ys) holds". This so-calledoracle requirement is used to circumvent the call anticipation problem.However, the oracle requirement is in general unreasonable since1. the user, as discussed above, should not be required to provide out-puts and2. very many questions may need to be asked.Creativity. The literature does not contain any novel recursive algorithm de-veloped by an ILP system. The inference processes are on the contrarystrongly guided towards a speci�c, pre-conceived algorithm.Inventivity. A particularly interesting development in ILP is the invention ofnew predicates, which is reviewed by Irene Stahl [Stahl et. al. 93]. A newpredicate is introduced using so-called intra-construction, which is basedon inverse resolution. When executing a logic program, a resolution stepcorresponds to a function call in a functional program. Intuitively, inverseresolution corresponds to \inverse function call" i.e., replacing an instanti-ation of the right hand side of a function de�nition with the correspondinginstance of the left hand side. As described in Subsection 4.1.2, this is doneby an abstraction transformation, which is therefore analogous to pred-icate invention. However, the abstraction transformation was developedindependently of any previous work, including predicate invention.One major di�erence between abstraction and predicate invention is thechoices that need to be made to determine the initial de�nition of theinvented function or predicate. Many ILP systems that do predicate inven-tion, e.g. CIGOL [Muggleton and Buntine 88] and SIERES [Wirth and O'Rorke 92],ask the user to con�rm the usefulness of an invented predicate. Anothercriteria of usefulness that is employed is the size of the resulting program.Irene Stahl concludes that \Additionally, the experimental evaluation ofsystems performing predicate invention in ILP is almost lacking".The literature does not describe any ILP system that can generalize argu-ment types e.g. change the type \list of integers" to the type \list of listsof integers".Program constraints. In general, ILP systems impose few constraints on theform of inferred programs. GOLEM employs the so-called ij-determinaterestriction, which leads to an enormous reduction of the search spacewhen using relative least general generalization to construct clauses. Eventhough this restriction rules out certain non-deterministic programs, forexample the standard n-queens program, it still seems to be a mild re-striction that does not preclude most interesting programs.139

FOIL only infers function free clauses, but this does not make FOIL lessgeneral since programs easily can be rewritten to function free form byintroduction of extra predicates. FOIL also restricts recursive calls sothat non-termination always is avoided.E�ectiveness in various domains. ILP is a promisingmethod for automatic\concept" learning in domains with vast amounts of real-world data. Thelogic programs that describe \concepts" are typically non-recursive andhave much of the same avour as the decision trees inferred by Quinlan'sID3 algorithm [Quinlan 86].Given a well chosen speci�cation and a \helpful oracle", ILP systems arealso quite good at inferring recursive programs.ILP is normally not applied to numerical, continuous optimization prob-lems that require the inference of one or more oating point numbers.E�ciency. ILP systems perform a rather constrained search and therefore usu-ally infer programs very rapidly.There are very few useful theoretical results on the time complexity ofILP. One recent result [Muggleton and Feng 92], for example, is that thelength of clauses produced with relative least general generalization andthe ij-determinate restriction is O((mft)(ji)), where m is the number ofpredicates in the speci�cation, f is the maximumarity of such a predicateand t is the number of terms in the least general generalization of theexamples. The usefulness of this upper bound strongly depends on i and j,which are maximumvalues of two syntactic measures of clause complexity.Roughly speaking, i is the maximum depth of the variable dependencyDAG for any clause. See [Muggleton and Feng 92] for details. Muggletonand Feng found that i = j = 2 su�ce for a number of recursive programssuch as the ones for list reversal and Quicksort. Note that this empiricalresult is necessary to motivate the usefulness of the theoretical result.Due to the lack of useful, purely theoretical time complexity results, thereis a strong need for experimental assessment of ILP systems. To checkthe extremely short run times given in the ILP literature, we decided totry version 6 of FOIL on the insertion sort speci�cation given above. Theexperiment was carried out using a SUN SparcStation 10 and the GNU Ccompiler. The closed world assumption was employed. The backgroundknowledge clauses for insert were converted to all positive examples in-volving numbers chosen from f1; 2; 3g and lists of length less than or equalto 3.FOIL inferred the following insertion sort program in 2.1 seconds.sort([],[]) :-sort(A,B) :- component(A,C,D), sort(D,E), insert(C,E,B)140

This e�ciency is really splendid.However, the e�ciency of an inferred program is rather arbitrary sinceFOIL only considers termination and does not use other time complexitymeasures.9.2 Genetic ProgrammingThe primary di�erence between genetic programming (GP) and genetic algo-rithms (GAs) is that the former encodes a solution as a LISP program whereasthe latter normally uses bit string encoding. Since GP is an o�spring from GAresearch, much of the discussion below holds for GAs as well. The originator ofGP is John Koza [Koza 92].A GP speci�cation contains the following.1. Background knowledge consisting of a set of constants and functions thatare to be used in inferred LISP programs.2. A �tness function which takes an inferred program as argument and re-turns a oating point number. The probability of \survival" of the pro-gram is proportional to this number.3. Sample inputs that are used to compute the �tness function.4. Search control parameters. There are 19 parameters, but only a few ofthem normally needs to be adjusted when tackling a new inference prob-lem. Some of the most important parameters are below given with defaultvalues in parentheses.(a) Population size (500).(b) Maximum number of generations (51).(c) Probability of crossover (0.9).(d) Probability of reproduction (0.1).(e) Probability of mutation (0).As indicated by the choice of default parameter values, the main programtransformation is crossover, i.e., random exchange of subexpressions betweentwo programs. Crossover, consisting of an exchange of substrings, is also themost important transformation in GAs.Crossover is only e�ective if the schema theorem [Holland 76] is applicable.We have identi�ed the following basic problem with crossover. When inferring alarge expression E, the schema theorem requires that E primarily is composedfrom �rst or higher order subexpressions E1; E2; : : : ; En such that the �tnessadvantage of each Ei can be measured independently of each Ej with j 6= i.141

Each Ei may be viewed as a \schema". Unfortunately, practically all recursiveprograms consist of coupled Ei's.Example. Consider the following ML list concatenation program, whichis written using if and selectors instead of case in order to make it resembleKoza's LISP style [Koza 92].fun @(Xs,Ys) = if null Xs then Ys else hd Xs :: @(tl Xs,Ys)The right hand side can be written as E1E2 withE1 = fn As => if null Xs then Ys else Asand E2 = hd Xs :: @(tl Xs,Ys):The �tness advantage of E2 cannot be measured unless the base case of therecursion is properly handled. Thus, E2 has a positive e�ect on �tness only ifit appears in conjunction with E1 or some equivalent expression. 2This so-called \subexpression coupling problem" means that crossover is anextremely ine�cient program transformation when recursive programs are to beinferred.Therefore, it is quite natural that only the inference of one single \recursive"program is presented in Koza's book. This program, which computes the Fi-bonacci numbers, does not contain any explicit recursive calls. Instead, it usesa problem-speci�c, user-de�ned operator srf which provides memoization. Theoperator is de�ned so that (srf K D) returns the value (fib K) if K is smallerthan J which is the argument of the �rst call (fib J). Otherwise, (srf K D)returns the default value D. Thus, this sample inference is rather tricky anddependent on the specialized srf operator.The inability to infer recursive programs is most unfortunate since recursionis of fundamental importance in LISP and functional programming. Since itin general seems to be equally di�cult for GP to produce iterative programs,the current form of GP is unlikely to ever become an e�ective tool for generalpurpose programming.Here is an evaluation of GP with respect to the criteria listed above.Speci�cation form. The form of speci�cations is similar to the one in ourADATE system. This form was presented in Section 3.3. The speci�ca-tions in Koza's book are very good at supporting evolutionary programdevelopment and are well worth studying independently of the rest of thebook.The main di�erence between ADATE and GP speci�cations is that thelatter very rarely use more than one �tness measure, whereas the formeruse at least four measures. In particular, the syntactic complexity measure142

is not used by GP, which means that inferred programs normally are muchmore complicated than they need to be. In order to alleviate this problem,Koza allows the speci�cation to contain domain-speci�c rewrite rules thatare used to simplify programs during the inference process. An example ofsuch a rule is (append Xs nil) �! Xs. Considering the state-of-the-artin rewrite system research, this approach is far from generally applicable.Degree of automation. GP is fully automatic i.e., does not rely on user in-teraction.Creativity. The programs developed by GP are very di�erent from normalprograms The primary reasons are that GP programs1. often are extremely complicated in comparison with normal programsand2. contain mathematical equations that are \almost correct", whereasequations derived by mathematicians more often either are com-pletely correct or wrong.Koza's notion of \almost correct" is quite interesting and greatly facilitatesevolutionary inference.Inventivity. Koza uses a program transformation that he calls \automaticfunction de�nition". This transformation is similar to the abstractiontransformation discussed in Subsection 4.1.2. No invented recursive func-tions are presented in Koza's book. Neither is there any transformationsimilar to the embedding transformation that was introduced in Subsec-tion 4.1.4.Program constraints. Recursive calls are not allowed in any inference pre-sented in Koza's book. With this exception, there are few constraints oninferred programs. Since LISP has an unusually poor type system, GPdoes normally not even use type constraints. In many cases, the lack oftyping unfortunately leads to an enormous increase in search space cardi-nality.E�ectiveness in various domains. Given speci�cations that facilitate evo-lutionary inference, GP is amazingly good at inferring formulas. Most ofthe inferred \programs" in Koza's book are in fact mathematical formulasthat do not use common programming language constructs such as itera-tion, recursion and case-tests. As explained above, iterative or recursiveprograms cannot be e�ectively produced by GP.E�ciency. Koza does not provide any run times, but it is obvious that GP isvery computationally demanding. Chapter 8 in his book presents experi-mental results concerning the total number of programs produced during143

an inference. This number is in the neighbourhood of 105 for simple prob-lems and in excess of 106 for the more di�cult problems.Since the run time of inferred programs is not used as a �tness measure,they are unlikely to be particularly e�cient.9.3 Program TransformationThe deductive inference of programs from formal speci�cations, which usuallyare expressed in predicate logic or similar formalisms, is an old and well studiedarea of research. We will here only review the inference of executable programsfrom speci�cations that are unfeasible to execute. The reason for this unfeasi-bility is either that the speci�cation is non-constructive or that it requires atleast exponential time to execute. Thus, this review will not cover optimiz-ing compiler transformations such as common subexpression elimination, loopunrolling etc. The deductive inference of programs from non-constructive spec-i�cations is a research area that aims for a much lower degree of automationthan ADATE, which means that it is more weakly related to ADATE than ILPand GP. Therefore, we will give a less detailed presentation of this area.A formal speci�cation of a function f often contains the following.1. Background knowledge consisting of types, function de�nitions and possi-bly also specialized inference information such as function-speci�c rewriterules.2. The type D ! R of f .3. An input condition i : D !bool such that i(I) must hold for each legalinput I.4. An output condition o : D � R !bool. A program is correct if and onlyif i(I) implies o(I; f(I)) for all I in D.Below is an example of a Horn clause speci�cation of a sorting function f .The speci�cation can be directly executed using SLD-resolution but the timerequired to sort n integers is
(n!).1. The types int and int list and the <-relation on integers are given asbackground knowledge, which also contains the de�nitionsdel_one(X,[X|Xs],Xs).del_one(X,[Y|Xs],[Y|Ys]) :- del_one(X,Xs,Ys).is_perm([],[]).is_perm([X|Xs],Ys) :- del_one(X,Ys,Zs), is_perm(Xs,Zs).144

sorted([]).sorted([X]).sorted([X1,X2|Xs]) :- X1<=X2, sorted([X2|Xs]).2. The type of f is int list ! int list.3. The input condition is always true.4. The output condition iso(Xs,Ys) :- is_perm(Xs,Ys), sorted(Ys).A program transformation system such as the one in [Komorowski 93] canassist in the gradual transformation of the above speci�cation to a reasonablye�cient sorting program.Here is a characterization of program transformation using the same criteriaas for ILP and GP.Speci�cation form. It is quite clear that a formal speci�cation can be verymuch simpler than the programs that satisfy it. Another advantage of aformal speci�cation is of course that it practically always is su�cient.Degree of automation. Practically all program transformation systems, forinstance KIDS [Smith 90] and PROSPECTRA [Krieg-Br�uckner et. al. 91],are semi-automatic and totally dependent on system-user interaction dur-ing an inference. This dependence is so pervasive that program transfor-mation is not to be regarded as an area of machine learning whereas ILP,GP and ADATE all are machine learning methods. The goal of programtransformation research is machine-aided programming rather than fullyautomatic programming.Since program transformation systems need deductive inference and the-orem proving, fully automatic and general program transformation seemsto require fully automatic and general theorem proving, which yet is to beachieved.Creativity. Since a program transformation system is strongly dependent onthe user, it is not creative.Inventivity. Inventivity also depends on the user.Program constraints. There are practically no constraints. The program-ming language does not even need to be applicative.E�ectiveness in various domains. Given a su�ciently competent user, it ishard to think of any algorithm in any domain that cannot be developedusing a program transformation system.145

E�ciency. Program transformation systems are usually very e�cient since thesearch for deductive inferences is highly constrained and user controllable.Inferred programs can also be very e�cient.

146

Chapter 10Conclusions and FutureWorkWe start this chapter by evaluating ADATE with respect to the criteria thatwere used for evaluating inductive logic programming, genetic programming andprogram transformation in Chapter 9.Speci�cation form. The combination of sample inputs and output evaluationfunction must support evolutionary program transformation. Otherwise,there are few constraints on the form of a speci�cation, which may bemuch easier to write than any desirable program. The requirement thatthe speci�cation must support evolutionary transformation resembles therequirement that text-books must be pedagogical in order to support grad-ual and progressive learning. A minimum requirement is that there existsa genealogical path P1; P2; : : : ; Pn�1; Pn, where P1 is the initial program,Pn is a desirable program and the compound transformation costs Ci re-quired to transform Pi to Pi+1 are so low that no Ci corresponds to morethan a few hours of CPU time. The writing of pedagogical text-booksrelies more on common sense than on �xed rules. This also characterizesthe art of speci�cation writing.Degree of automation. ADATE is fully automatic. The only run time \in-teraction" is that the user should decide when to terminate an inferencei.e., when su�ciently good program evaluation function values have beenachieved.Creativity. ADATE can automatically synthesize novel and non-trivial recur-sive programs. Even though the programs written by ADATE may bequite di�cult to discover for human programmers, there is still an enor-mous gap between human creativity and the \creativity" of ADATE.147

Inventivity. In comparison with the program synthesis systems reviewed inChapter 9, ADATE has a superior ability to automatically invent newfunctions and data types.Program constraints. One constraint in the current version of ADATE isthat synthesized recursive calls are required to contain at least one \de-creasing" argument as discussed in Subsection 5.2.3. However, this con-straint is only employed to reduce the number of synthesized expressionsand would be easy to remove if one is willing to accept a two- or three-foldincrease of the average inference time. There are few other constraints.E�ectiveness in various domains. The current version of ADATE is espe-cially suitable for inferring small recursive programs such that a few aux-iliary functions are missing in the speci�cation. Of course, it can infernon-recursive programs as well. There are no mechanisms for optimiza-tion of numerical constants that occur in inferred programs.E�ciency. The main disadvantage of ADATE is the long inference times. Thesystems for induction of logic programs reviewed in Chapter 9 are muchfaster. However, they do need to acquire much more knowledge from theusers.The program evaluation function pe2 was designed to contribute to theinference of programs with good time complexity, but it seems to be dif-�cult to always achieve the best possible time complexity using \natural"speci�cations. For example, the ADATE user may have to be satis�edwith O(n2) instead of O(n logn) for sorting.The current version of ADATE does not consider space complexity.ADATE �nds \good" programs through a combination of thorough testingand attempted minimization of syntactic complexity. There is no guaranteethat ADATE will �nd a program that is optimal according to some programevaluation function pei. For example, if ADATE always guaranteed to �nd acorrect program of minimum syntactic complexity, run times would in generalgrow exponentially with complexity. The ability to give such a guarantee wouldtherefore have little practical value. Fortunately, many users are satis�ed witha program that is correct and reasonably small and fast, but not necessarilythe smallest nor the fastest. This situation is analogous to the one for manyNP-hard problems, where a solution within say 1% of the optimum can befound in polynomial time with high probability, even though the worst casetime complexity for �nding an optimal solution is exponential.Some possible improvements are1. To generalize embedding to arbitrary insertions into type expressions.2. To generalize abstraction so that higher order functions can be invented.148

3. To add more heuristics to the algorithms that synthesize expressions andcompound transformations.4. To signi�cantly improve run times by implementing ADATE on a highperformance massively parallel computer.All programs inferred so far are rather small. The most important futurework is to study the inference of large programs. Recall that mi is the number ofsymbols that may occur in node Ni in an expression tree. A potential problemwith inference-in-the-large is that mi grows with the number of ancestor let-and case-nodes, since such nodes introduce new symbols. More experimenta-tion is needed to determine if the scoping rules of Standard ML su�ce to keepmi small or if additional symbol selection techniques are required. A relatedquestion is the use of library functions versus the invention of functions on-the-y i.e., if the system should rely on a general toolbox or on the construction ofspecialized tools as needed. In comparison with human programmers, a systemfor inference-in-the-large is likely to rely less on general tools since the use ofsuch tools seems to be combinatorially expensive.

149

Bibliography[Angluin 78] D. Angluin, On the complexity of minimum inference of regularsets, Information and Control 39 (1978) 337{350.[Angluin and Smith 83] D. Angluin and C.H. Smith, Inductive inference: the-ory and methods, Computing Surveys 16 (1983) 239{269.[Biermann and Krishnaswamy 76] A.W. Biermann and R. Krishnaswamy, Con-structing programs from example computations, IEEE Transactions onSoftware Engineering 2 (1976) 141{153.[Biermann 78] A.W. Biermann, The inference of regular LISP programs fromexamples, IEEE Transactions on Systems, Man and Cybernetics 8 (1978)585{600.[Blumer et. al. 86] A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth,Classifying learnable geometric concepts with the Vapnik-Chervonenkisdimension, Proceedings of the 18th ACM Symposium on Theory of Com-puting (1986) 273{282.[Boehm 76] B.W. Boehm, Software engineering, IEEE Transactions on Com-puters 25 (1976) 1226{1241.[Boehm 88] B.W. Boehm, A spiral model of software development and enhance-ment, IEEE Computer 21 (1988) 61{72.[Cameron 88] R.D. Cameron, Source encoding using syntactic informationsource models, IEEE Transactions on Information Theory 34 (1988) 843{850.[Cameron-Jones and Quinlan 94] R.M. Cameron-Jones and J.R. Quinlan, E�-cient top-down induction of logic programs, SIGART Bulletin 5 (1994)33{42.[Dahl 92] O.J. Dahl, Veri�able Programming (Prentice Hall International,1992). 150

[Garey and Johnson 79] M.R. Garey and D.S. Johnson, Computers and In-tractability (W.H. Freeman, San Fransisco, 1979).[Glover 89] Tabu search, Part I, ORSA Journal of Computing 1 (1989) 190{206.[Gold 78] E.M. Gold, Complexity of automaton identi�cation from given data,Information and Control 37 (1978) 302{320.[Holland 76] J.H. Holland, Adaptation in Natural and Arti�cial Systems (Uni-versity of Michigan Press, 1976).[Johnson 90] D.S. Johnson, Local optimization and the traveling salesman prob-lem, Proceedings of the 17th Colloquium on Automata, Languages andProgramming, (Springer-Verlag, 1990) 446{461.[Johnson 94] D.S. Johnson, Data structures for traveling salesmen, unpublishedmanuscript, (personal communication, 1994).[Jounnaud and Kodrato� 80] J.P. Jounnaud and Y. Kodrato�, An automaticconstruction of LISP programs by transformations of functions synthe-sized from their input-output behavior, International Journal of PolicyAnalysis and Information Systems 4 (1980) 331{258.[Kijsirikul et. al. 92] B. Kijsirikul, M. Numao, and M. Shimura, Discriminationbased constructive induction of logic programs, Proceedings of the TenthNational Conference on Arti�cial Intelligence (MIT Press, 1992) 44{49.[Kirkerud 92] B. Kirkerud, Lecture Notes for in307, Department of Informatics,University of Oslo (1992).[Kirkpatrick et. al. 83] S. Kirkpatrick, C.D. Gellat and M.P. Vecchi, Optimiza-tion by simulated annealing, Science 200 (1983) 671{680.[Komorowski 93] J. Komorowski, Special issue on partial deduction, Journal ofLogic Programming 16 (1993) Guest editor.[Korf 85] R.E. Korf, Depth-�rst iterative-deepening: an optimal admissible treesearch, Arti�cial Intelligence 27 (1985) 97{109.[Koza 92] J.R. Koza, Genetic Programming (MIT Press, Cambridge, Mas-sachusetts, 1992).[Krieg-Br�uckner et. al. 91] B. Krieg-Br�uckner, E.W. Karlsen, J. Liu, and O.Traynor, The PROSPECTRA methodology and system: Uniform trans-formational (Meta-) development, Proceedings of the VDM'91 Sympo-sium (Springer-Verlag, 1991).[Li and Vit�anyi 93] M. Li and P.M.B. Vit�anyi An Introduction to KolmogorovComplexity and Its Applications (Springer-Verlag, 1993).151

[Muggleton and Buntine 88] S.H. Muggleton and W. Buntine, Machine inven-tion of �rst-order predicates by inverting resolution, in: Proceedings of theFifth International Conference on Machine Learning (Morgan-Kaufmann,1988) 339{352.[Muggleton 92] S.H. Muggleton, Inductive logic programming, in: S. Muggle-ton, ed., Inductive Logic Programming (Academic Press, London, 1992)4{21.[Muggleton and Feng 92] S.H. Muggleton and C. Feng, E�cient induction oflogic programs, in: S.H. Muggleton, ed., Inductive Logic Programming(Academic Press, London, 1992) 281{298.[Olsson 93] R. Olsson, Execution of logic programs by iterative-deepening A�SLD-tree search, BIT 33 (1993) 214{231.[Partsch 90] H.A. Partsch, Speci�cation and Transformation of Programs: AFormal Approach to Software Development (Springer-Verlag, 1990).[Peyton Jones 87] S.L. Peyton Jones, The Implementation of Functional Pro-gramming Languages (Prentice-Hall, 1987).[Pitt and Warmuth 89] L. Pitt and M.Warmuth, The minimumconsistent DFAproblem cannot be approximated within any polynomial, Proceedings ofthe 21st ACM Symposium on Theory of Computing (ACM Press, 1989)421{432.[Quinlan 86] J.R. Quinlan, Induction of decision trees, Machine Learning 1(1986) 81{106.[Rissanen 82] J. Rissanen, A universal prior for integers and estimation by min-imum description lengths, Annals of Statistics 11 (1982) 416{431.[Shapiro 83] E.Y. Shapiro, Algorithmic Program Debugging, (MIT Press,1983).[Smith 82] D.R. Smith, A survey of the synthesis of LISP programs from ex-amples, in: A.W. Biermann, G. Guiho and Y. Kodrato�, eds., AutomaticProgram Construction Techniques (Macmillan, New York, 1982) 307{324.[Smith 90] D.R. Smith, KIDS: A semiautomatic program development system,IEEE Transactions on Software Engineering 16 (1990) 1024{1043.[Stahl et. al. 93] I. Stahl, B. Tausend and R.Wirth, Predicate invention in ILP {an overview, Proceedings of the European Conference on Machine Learn-ing (Springer-Verlag, 1993) 41{55.[Summers 77] P.D. Summers, A methodology for LISP program constructionfrom examples, Journal of the ACM 24 (1977) 161{175.152

[Tarjan 83] R.E. Tarjan, Data Structures and Network Algorithms, (SIAMPress, 1983).[Valiant 84] L.G. Valiant, A theory of the learnable, Communications of theACM 27 (1984) 1134{1142.[Wikstr�om 87] �A. Wikstr�om, Functional Programming Using Standard ML(Prentice Hall International, 1987).[Wirth and O'Rorke 92] R. Wirth and P. O'Rorke, Constraints for predicateinvention in: S. Muggleton, ed., Inductive Logic Programming (AcademicPress, London, 1992) 299{318.

153

Appendix AThe ML De�nition ofSyntactic Complexityval Normal_lengths =(~(ln 0.025), ~(ln 0.15), ~(ln 0.325), ~(ln 0.5))val Analyzed_lengths = (~(ln 2.5E~3), ~(ln 1.5E~2),~(ln 0.387045454545455), ~(ln 0.595454545454546))fun syntactic_complexity(D : ('a,'b)d) : real =letfun sc_of_exp(N_internals, N_leaves,Lengths as (Let,Case,Internal,Leaf), E : ('a,'b)e) : real =case E ofapp_exp{func,args,...} =>if func="?" thenif is_not_activated_exp E then0.0elseLeaf + ln(real N_leaves)else if null args thenLeaf + ln(real N_leaves)elseInternal + ln(real N_internals) + real_sum(map(fn A => sc_of_exp(N_internals,N_leaves,Lengths,A),args)) +(if null(tl args) orelse func="tuple" then0.0elseInternal + ln(real N_internals)154

(* Accounts for the "implicit" tuple constructor. *))| case_exp{exp,rules,...} =>Case +sc_of_exp(N_internals, N_leaves,case rules of _::nil => Lengths | _ => Analyzed_lengths,exp) +real_sum(map(fn{pat,exp} =>sc_of_exp(N_internals, N_leaves+length(vars_in_pat pat),Lengths, exp),rules))| let_exp{dec_list,exp,...} =>Let+real_sum(map(fn D => sc_of_dec(N_internals+length(dec_list),N_leaves, Lengths,D),dec_list)) +sc_of_exp(N_internals+length(dec_list), N_leaves, Lengths,exp)and sc_of_dec(N_internals, N_leaves, Lengths, {pat,exp,...}: ('a,'b)d) =sc_of_exp(N_internals, N_leaves+length(vars_in_pat pat),Lengths, exp)val Arity_zero_funs = filter(fn F =>case assoc(F,Predefined.ty_env) of{ ty_exp=ty_con_exp("->",_),... } => false| _ => true,Spec.Funs_to_use)insc_of_dec(2+length(Spec.Funs_to_use)-length(Arity_zero_funs),length(Arity_zero_funs)+1, Normal_lengths,D) / ln 2.0end (* fun syntactic_complexity *)155

Appendix BThe Raw Log File for ListSortingThe log �le is basically self-explanatory. The sample inputs in the speci�cationwere presented in Subsection 4.1.1. ADATE regards a program as correct ifit can sort all �ve of these input lists. Note that the �rst such program is theone with identi�cation number (4,1,828), which is found after 1617.52 seconds(about 27 minutes) of execution time. At end of the log �le, after the textTHE BEST INDIVIDUALS FOUND SO FAR AREare the best programs found thus far when the inference process was inter-rupted. The smallest of these programs is (3,1,1420), which is less complexthan (4,1,828).
156

