
OpenCL implementation of PSO: a
comparison between multi-core
CPU and GPU performances

Stefano Cagnoni1, Alessandro Bacchini1,2, Luca Mussi1

1Dept. of Information Engineering, University of Parma, Italy

2Henesis srl, Parma, Italy

Overview

• Motivation

• PSO parallelization

• GPU / Multi-core CPU implementation

• Experimental results

• Conclusions

Motivation

• GPUs

• massively parallel execution of tasks on
hundreds of cores

• Multi-core CPUs

• coarser grain

• fewer, more powerful and complex cores

Motivation

• GPU-based code is overwhelmingly faster
than single-threaded sequential code

• Most papers describing GPU-based parallel
algorithms report only this comparison; the
power of multi-core CPUs is underexploited

• What about the performance of multi-core
CPU implementations ?

Goal

• Comparing performances of GPU-based and
multi-core CPU-based parallelization of a bio-
inspired metaheuristic

• OpenCL chosen as development
environment, since it can produce code for
both GPUs and multi-core CPUs

• Based on our previous implementations, we
chose PSO parallelization as a test-bed

Why is PSO so attractive ?

Not the best metaheuristic at all …

However…

• Easy to implement

• Fast-converging

• Effective for many practical problems

and (last but not least)

• Very well parallelizable

Why is PSO so attractive ?

Parallelization opportunities offered by many
fitness functions

• Functions based on cumulative sums of
independent computations

• Functions implying operations on large
matrices,

• etc…

Previous GPU-PSO implementations

• Three-kernel synchronous (Information Sciences, 2011)

• Any topology allowed

• Any problem size

• Large overhead (three memory swaps)

• Single-kernel asynchronous (GECCO 2011)

• Ring topology, radius = 1

• Limited number of particles

• Fastest possible (no swaps)

Previous work on GPU-PSO
Single-kernel vs. Multi-kernel

Synchronous multi-kernel PSO

Previous work on GPU-PSO
Single-kernel vs. Multi-kernel

Asynchronous single-kernel PSO
(ring topology, radius=1)

Previous work on GPU-PSO
Single-kernel vs. Multi-kernel
• Single-kernel (all computations in local memory)

No (limited) need for synchronization

 No data exchange between GPU and CPU

− Limited local resources

 Small maximum number of particles in a swarm

• Multi-kernel (need for 3 data swaps)

 Virtually no resource-related limitation

Any swarm size possible (up to several hundreds)

− Large memory overhead due to the need for
synchronization after each kernel is run

• Single kernel

• Synchronization at the end of each cycle

• One can schedule as many threads as necessary

• Suitable for both CPUs & GPUs

• Virtually no limits to
the number of particles

• Smaller memory
overhead wrt the
multi-kernel version

New implementation

GPU
• Massively parallel architecture

• Hundreds or thousands of
simple cores

• Simple instruction set

• Synchronization primitives

• Deep memory hierarchy

• Private, local, global,
constant memory

• Each one has a different role

Multi-core CPU

• Parallel architecture

• 2 to 12 cores

• Complex instruction set

• Vectorized instructions
(SSE, AVX)

• Shallow memory hierarchy

• Global and local memory
share the same chips

Vectorization instructions
• A single instruction operates on multiple data

• OpenCL natively supports vector data types

• The OpenCL compiler has auto-vectorization
capabilities, but manually optimized vectorization still
offers better results

• GPU/CPU comparison:

• Intel i7, with 8 cores and AVX SIMD instructions, can
process 64 floats in parallel

• Nvidia Geforce GTX560 Ti can process 384 floats in
parallel

• 6 times as many as the CPU

Vectorization
• Non-vectorized

One thread per dimension
128 particles on a 128-D
problem = 16384 threads

• Better for GPUs

• Vectorized
• 8 dimensions per thread
• 128 particles on a 128-D

problem = 2048 threads
• Better for CPUs

Tests

• A set of 5 commonly (ab)used functions was
used as benchmark:

• Sphere [-100, +100]N

• Elliptic [-100, +100] N

• Rastrigin [-5.12, +5.12] N

• Rosenbrock [-30, +30] N

• Griewank [-600, +600] N

• Our goal was to compare execution speed

• Algorithm equivalence was also checked

Tests

• 2 multi-core CPUs:

• Intel i7 2630M (high-end laptops)

• Intel i7 2600K (medium/high-end desktops)

were compared to 3 GPUs:

• nVidia GT540M (medium/high-end laptops)

• nVidia GT560Ti (medium/high-end desktops)

• ATI Radeon HD6950 (medium-end laptops)

Tests

• We tested the scaling properties of our GPU-
based and CPU-based implementations

• With respect to problem size

• 32, 64, 128 dimensions

• With respect to swarm size:

• 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
particles

• Other PSO parameters

• C1=C2=1.19315

• ω=0.72134

Results: 64D Griewank

Swarm size

Time
(ms)

Results: 32D, 128D Griewank

Swarm size

Time (ms)

Time (ms)

Results: general remarks

• Scaling properties are not surprising:

• Initial ‘flat’ segment, followed by linear increase
after maximum degree of parallelism is reached

• Peculiarities:

• nVidia GT540M is sometimes the fastest for small
sizes and problem dimensions, for its slightly
higher clock frequency

• The gap between i7 and i7M narrows as problem
complexity and swarm size increase: no
explanation related to code or processor;
possibly caused by other hardware components.

Results: GPU/CPU comparison

• GPUs are generally faster than multi-core
CPUs, however:

• Not necessarily for small swarm sizes (32-64
particles are enough for most real-world
problems)

• PSO is highly parallelizable, as are highly
parallelizable the fitness functions we have used
in our tests

• Tests were generated up to huge swarm sizes,
much larger than usually necessary in typical
real-world applications

Results: GPU/CPU comparison

• The spread is larger for high-dimensional
problems

• For larger dimensions even a cheap GPU as
the GT540M has similar performances as a
high-end Intel i7 processor

• In any case GPUs were never more than 6
times faster than CPUs

Results: GPU/CPU comparison

• Taking development costs into consideration:

• Writing parallel code is more expensive, and
may take more time than it saves

• If the cost of parallelization is acceptable AND
the algorithm is intrinsically parallel, then
GPUs are preferable

• Results obtained by multi-core CPUs can be
close to GPUs’ when GPUs cannot be used
(e.g., if the graphics card must also do its
traditional job…)

Some publicly-available GPU
code developed at the IBIS Lab

• CUDA-PSO (ftp://ftp.ce.unipr.it/pub/cagnoni/CUDA-PSO/index.html)

• Three-kernel implementation and some benchmark
functions

• libCUDAOptimize
(http://sourceforge.net/projects/libcudaoptimize/)

• PSO, DE, Scatter Search plus benchmark functions
and utilities (not yet online but coming soon)

• libCUDANN (http://sourceforge.net/projects/libcudann/)

• Multi-layer perceptron training (BP algorithm)

• OpenCL PSO probably also available soon.

Thank you

