

William B. Langdon, Afnan Al-Subaihin, Aymeric Blot, David Clark

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK (Email: w.langdon@cs.ucl.ac.uk)

Genetic Improvement of LLVM Intermediate Representation

Although in pass 2, each additional mutant makes the whole faster, noisy interactions mean after pass 2 the total change can be slimmed without

The LLVM project supports many programming Compiling languages. them device to independent intermediate code. LLVM-IR can be optimised. Intermediate code is compiled into device specific machine code. ∞

LLVM-IR

size_t OLC_CodeLength(const char* code, size_t size) { Codelpfo info; analyse(code, size, &info); return code_length(&info); ; Function Attrs; noinline nounwind optnone uwtable 🔌 define dso_local i64 @OLC_CodeLength(i8* noundef %0, i64 noundef %1) #0 { %3 = alloca i8*, align 8 🔫 %4 = alloca i64, align 8 🔫 %5 = alloca %struct.CodeInfo, align 8 🖛 store i8* %0, i8** %3, align 8 store i64 %1, i64* %4, align 8 %6 = load i8*, i8** %3, align 8 %7 = load i64, i64* %4, align 8 %8 = call i32 @analyse(i8* noundef %6, i64 noundef %7, %struct.CodeInfo* noundef %5) %9 = call i64 @code_length(%struct.CodeInfo* noundef %5) ret i64 %9

- Strongly typed (eg i32, i8*, double)
- Single-Static Assignment
- Numbered registers and labels (must be in order)
- define } delimit scope. Local registers start again at 0 in next function

Delete lines of

and so compiles and runs.

5

hexagonal grid that can be (approx- imately) subdivided into finer and finer levels. Like OLC it is an open source C industry standard. h3.exe -r 15 --lat -2.242851 --lng 57.101474 8f8512959c55cb5

\mathbf{C}	files	LOC	(used)	LLV	M IR	no output-		Mutant		GI duration
				total	mutable	change	size s	speed up h	oldout	
OLC	4	586	(127)	2546	294	141	2	698	682	5 minutes
-O3	4	586	(127)	2248	219	82	5	683	681	$7 \mathrm{minutes}$
H3	43	5708	(1615)	19415	2113	955	51	2897	2631^{a}	2.5 hours
-O3	43	5708	(1615)	15680	1762	1108	46	3272	2985	3.25 hours

^{*a*} One holdout test failed

Example: H3 mutation 10508%74 saved 872 instructions by causing clang -O3 to remove condition before function doCoords (which must be called).

Overfitting Co-Evolution, Profile

is larger and needed better training cases. H3 There are almost unlimited possible test cases, perhaps co-evolution or white box fuzzing could help. LLVM supports profiling, which GI often uses

化化化合金 不知道的 化磷酸钾 37-63% of mutants do not change output on 🗖 test cases. These are used by pass 2.

By deleting local registers (i.e. set to zero) or

forcing conditional branches, IR remains legal

Pass 1: which lines can be deleted?

What is Genetic Improvement?

Genetic Improvement uses evolution to modify existing software. Typically GI is applied to human written source code but it can be applied to anything. E.g. C, C++, Java, Java byte code, assembler, even machine code. Non-program software could include comments, documentation and specifications.

The second s Pass 2: Use hill climber to join mutants

Start with fastest ok pass 1 mutant and add others only if they increase speed. The second se Second sec

Fitness Function

• Is the mutated binary code different • Does the mutant program run ok Are outputs same as unmutated code How long does perf say it took timeout 2, limit cputime 2, limit filesize 1M perf stat -e instructions -x, -o perfout \setminus

mutant.exe 57.101474 -2.242851 >& output

12: Summary

Evolving LLVM intermediate representation is widely applicable, as LLVM supports an increasing range of processors and programming languages. Genetic Improvement on IR in a few minutes or hours gave 0.5% (Google's OLC) and 2% (Uber's H3) speed up even on compiler optimised code for two industrial open source C programs.

Reference: Genetic Improvement of LLVM Intermediate Representation. W. B. Langdon, A. Al-Subaihin, A. Blot, D.Clark, EuroGP-2023. G. Pappa et al. Eds., Brno, Czech Republic. Springer LNCS 13986. doi:10.1007/978-3-031-29573-7_16