Evolving
 Receiver Operating Characteristics for Data Fusion

W. B. Langdon

Presented at EuroGP'2001

Computer Science, University College, London
W.Langdon@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon

Introduction

- What is Data Fusion?
- What are Receiver Operating Characteristics
- Evolving Classifiers
- Overlapping Gaussians, Thyroid, Landsat, Drug Activity p450
- Conclusions

The Problem

- There are numerous data mining techniques

Each tries to make sense of data

- Many can be treated as a classification/prediction E.g.:
- Is this credit card purchase fraudulent?
- Will this address buy double glazing?
- Is this a planet?
- Does this molecule block this virus?

Data Fusion

- Which classifier to use?

Problem specific

- Can we get better results from a "fusion" of classifiers
- Can fusion be automated?
- Exponential explosion of number of ways to combine classifiers
- Use Genetic programming to find a good non-linear combination
- What is fitness of classifier?

What is Genetic Programming

- GP is randomised parallel search technique for very large search spaces

GA $\ll G P$, since GP explores both structure and coefficients

- Many points are tested
- Search continues from the better ones
- New search points are
- neighbours of better ones
- combinations of better ones
- Based on analogy with natural evolution, "Survival of the fittest"

The Genetic Programming Cycle, from GP \& Data Structures

Receiver Operating Characteristics

- Classifiers seldom deal with certainty
- Is this person's Thyroid OK?
- Low sensitivity, every time classifier says no
- Increase sensitivity, more yes
- Very high sensitivity, every time says yes
- ROC shows tradeoff between missing positive cases and raising false alarms

ROC of Linear Classifier on Thyroid Data

"Best" ROC = Convex Hull

- Best classifier has ROC near $(0,1)$ (top left corner)
- Area under ROC, 0.5 (random), 1 (perfect)
"Better" classifier has bigger area
- Like 0,0 to 1,1 diagonal, ROC of random combination of classifiers lies between them Therefore only external points are useful Scott [BMVC'98]'s "Maximum Realisable ROC", MRROC. MRROC = convex hull
- Fitness $=$ area under convex hull of ROC

Convex Hull of Receiver Operating Characteristics

GP to Evolve Classifiers

- Function set: traditional + classifiers

All classifiers unary functions, current test case + threshold return classification of test case and "confidence"

- Terminal set: traditional + threshold
- 5 Trees: sum value returned by each tree (i.e. weighted vote)

Wrapper: sum $<0 \Rightarrow$ negative class

- Fitness: Run on test set for threshold 0, 0.1, $0.2 \ldots 1.0$

Calculate true positive and false positive rate for each threshold Fitness $=$ area under convex hull of 13 points (also 0,0 and 1,1)

- Population 500. 50 generations

Evolved Classifier

Answer $=$ Sum of five GP trees

GP Parameters

Objective:	Evolve a function with Maximum Convex Hull Area
Function set:	INT FRAC Max Min MaxA MinA MUL ADD DIV
	SUB IFLTE LC

Simple Example

Positive

Negative

Data points above horizontal line are in the class

Combined Classifier better than Convex Hull

Sensitivity makes X rectangle grow or shrink

Sensitivity makes Y "Iozenge" grow or shrink

Receiver Operating Characteristics of X, Y and Evolved Combination

Decision Boundary of Evolved Classifier

Overlapping Gaussians

Receiver Operating Characteristics of

Linear Classifier on Overlapping Gaussians

Convex Hull of ROC on Overlapping Gaussians

Note random combination of classifiers 4.0 and 8.0 is better than classifier with threshold 6.0

ROC of Evolved Classifier on
 Overlapping Gaussians

Output at Threshold 0.3 of Evolved Classifier on
 Overlapping Gaussians

Thyroid

- Second of Scott's [BMVC,1998] bench marks
- Real data
- Linear classifiers on two attributes (15 binary 6 continuous)
- ROC of evolved combination better than either
- GP forms non-linear combinations

Thyroid Receiver Operating Characteristics

Thyroid Evolved Classifier (Threshold 0.5)

Landsat (Naive Bayes)

- Last of Scott's Bench marks
- Binary classification of soil type from 4 wave band Landsat data
- Best of Scott's classifiers given to GP

Landsat, Nine Pixels $\times 4$ Bands

Each record contains data from nine adjacent Landsat pixels nb16, nb16,23 nb16,23,24 nb23,24 and nb8,23,24 together use four attributes

Three $(8,16,24)$ use spectral band 0 and the other (23) uses band 3

Landsat Receiver Operating Characteristics

(Note X and Y -Ranges)

Landsat, Nine Pixels $\times 4$ Bands (3 used)

Each record contains data from nine adjacent Landsat pixels
Two near infrared, two visible bands
Naive Bayes trained on Band 0
C4.5 Trained on Band 1
Artificial Neural Network trained on Band 3 (Band 2 poor)

Landsat (Naive Bayes, C4.5, Neural Network)

- Landsat data but 3 radically different classifiers
- 21 Naive Bayes classifiers trained on Band 0

All single attributes (9)
All pairs of best 6 attributes (15)

- C4.5 trained only on band 1
- ANN trained only on band 3
- All 7 combinations of single band, pairs and triple combinations
- In all 7 cases GP higher ROC area than best input classifier

Landsat 3 Classifiers

Receiver Operating Characteristics

Drug Activity GlaxoSmithKline p450 Data

- 1500 compounds, 300 positive 1200 negative

Especially noisy data discarded. "Similar" compounds removed

- 699 attributes

GSK problem knowledge used to calculate attributes from primary molecular structure

Ten types of attribute. 3 small group together, biggest 2 split $\Rightarrow 15$ attribute groups

- 4 balanced training sets (same 300 pos, 300 different inactives)
- One Clementine neural network trained on each group of attributes and each training set
$15 \times 4=60$ neural networks

"Blind Trial" p450 Data

- Only neural networks and classification No access to private data (699 attributes)
- GlaxoSmithKline keeping 1500 different records for validation
- 1500 randomly split 2:1 training:verification
- Training set used by GP

p450 ROC Area ANN and GP

GP marginally better (significant?) best of neural networks
GP over fitting?

p450 ROC ANN and GP

When Will GP-ROC Work?

- We may hope for improvement when
- Have both aggressive (say positive when can) and conservative (only when sure) classifiers
- Classifiers which are good at different parts of the feature space
- Small number of significant features interacting in a complicated way
- Future work
- Complete p450 experiments
- Evolve (and combine) specialist classifiers
- Boosting?

Conclusions

- Scott's "Maximum Realisable ROC" not always the best
- GP has done better on Scott's benchmarks and real problems
- We can automatically get better results from a "fusion" of classifiers. Demonstrated on:

Same classifier (overlapping Gaussians)
Classifiers of same type (Thyroid)
Classifiers of different types, trained on different data (Landsat)

- GP-ROC technique not specific to a domain
- Size fair crossover and mutation effective against bloat

Evolution of Size

