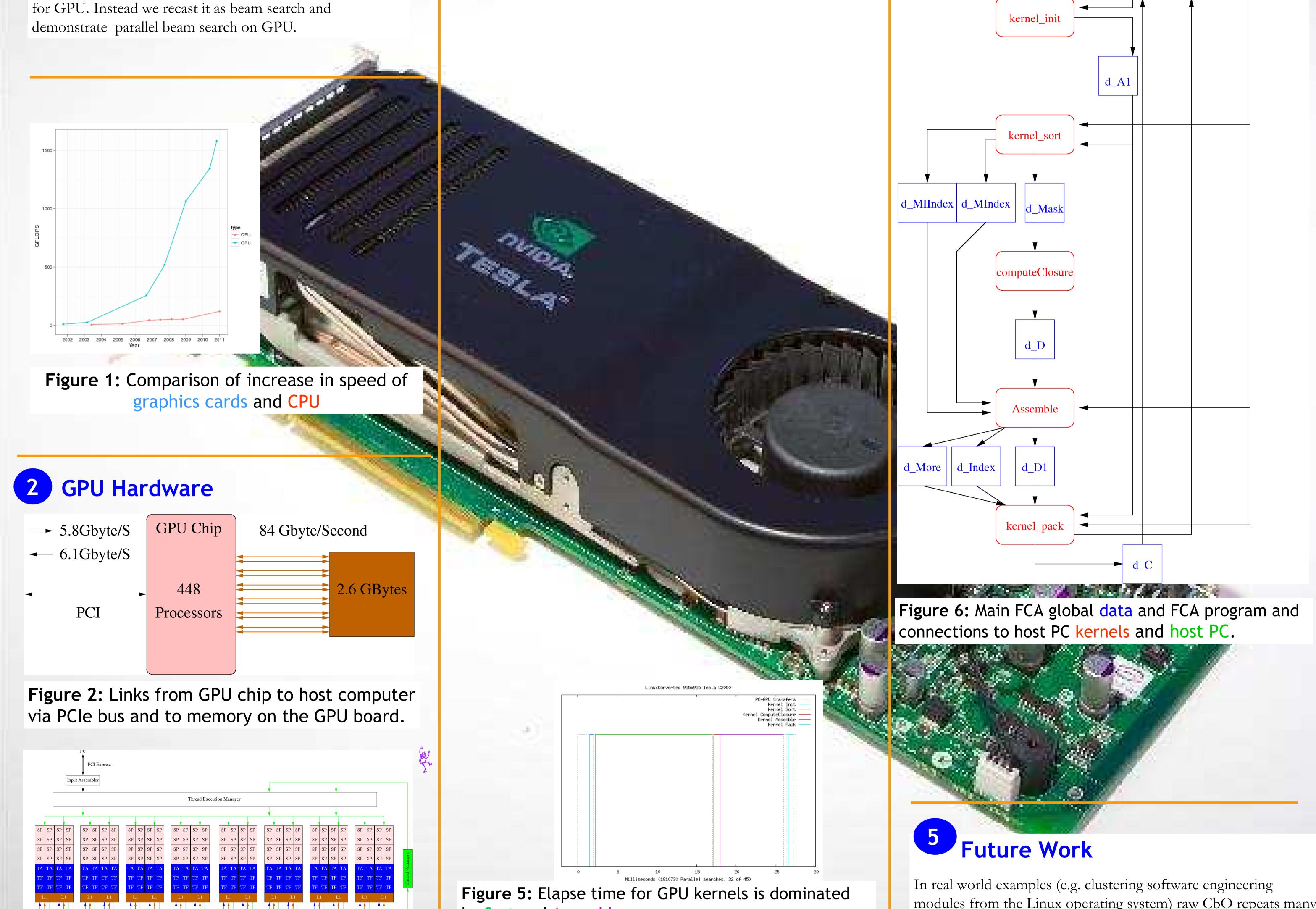
CREST Formal Concept Analysis on Graphics Hardware CLA 2011



W. B. Langdon, Shin Yoo and M. Harman

Crest, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK (Email: w.langdon@cs.ucl.ac.uk)

Non-Recursive Beam Search on GPU for Formal Concept Analysis

1 Introduction	PC
Graphics hardware (GPUs) offers cheap parallel	
computation. Both now and with future improvements.	
Close-by-one can rapidly extract formal concepts from large	
sparse datasests. Its recursive depth first search is not suitable	d_A d_B d_YIndex

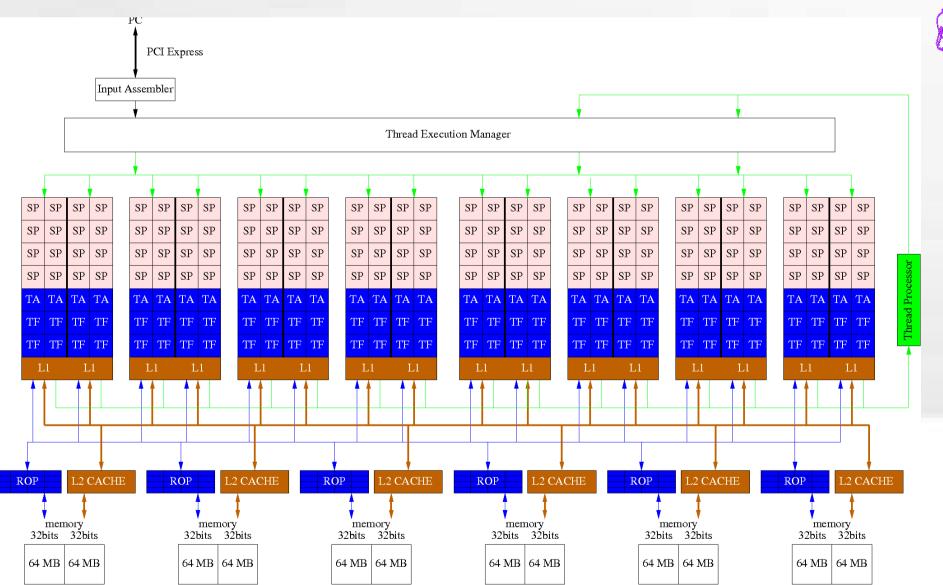


Figure 3: nVidia 8800 GTX (128 processors)

by Sort and Assemble.

modules from the Linux operating system) raw CbO repeats many identical sub-calculations. The GPU code (kernel Sort) detects and removes such repeats. Would it be worth removing repeated calculations in serial FCA algorithms?

Is there some "missing step", normalisation, or pre-processing

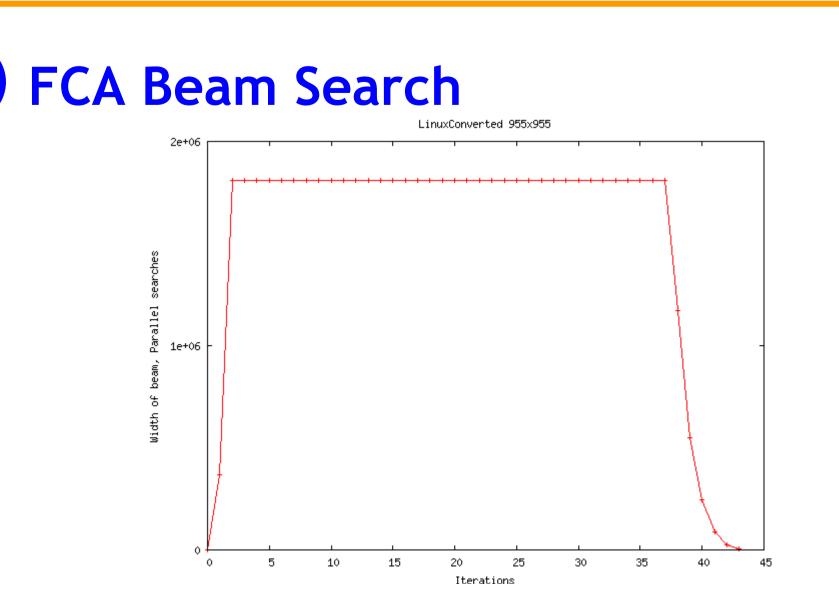


Figure 4: Number of closures processed in parallel increases rapidly with tree depth. Limit of 1.8 million means 45 iterations are needed for large tree of depth 24.

Dataset	Size	Density	Concepts	FCbO	Python	295 GTX	C2050
krajca	5×7	54%	16	0.00	0.11	0.01	0.01
wiki	10×5	44%	14	0.00	0.03	0.00	0.00
random	10×10	20%	16	0.00	0.04	0.00	0.00
random	100×100	2%	137	0.00	0.40	0.02	0.01
random	200×200	2%	420	0.00	4.33	0.00	0.01
random	500×500	2%	2861	0.01	162.60	0.02	0.02
bison	37×37	24%	692	0.00	0.32	0.00	0.01
$\operatorname{compiler}$	33×33	6%	24	0.00	0.05	0.00	0.00
dot	42×42	28%	1302	0.00	0.71	0.00	0.01
grappa	86×86	7%	850	0.00	2.54	0.01	0.01
incl	172×172	2%	238	0.00	1.84	0.00	0.01
ispell	24×24	34%	432	0.00	0.15	0.01	0.01
linuxConverted	955×955	2%	141072	0.73	15:42:51	1.79	0.93
mtunis	20×20	29%	110	0.00	0.05	0.00	0.01
rcs	29×29	37%	1074	0.00	0.46	0.01	0.02
swing	413×413	2%	3654	0.01	208.71	0.03	0.02

Table 1: Performance on FCA benchmarks, random module dependency and software engineering datasets.

which should be done?

6

More details in technical report RN/11/18

Summary

- Beam search is a viable alternative to close-by-one (CbO)'s *depth first search.
- Massively parallel beam search has been implemented for *graphics hardware.
- The current CUDA implementation may suffer from *FCA's low computation to data ratio. (CbO's arithmetic intensity is about 1).

Acknowledgments: C2050s given by nVidia.