
Multi-GPU Island-Based Genetic Algorithm for

Solving the Knapsack Problem

Jiri Jaros

ANU College of Engineering & Computer Science

The Australian National University

Canberra, ACT, Australia

jiri.jaros@anu.edu.au

Abstract—This paper introduces a novel implementation of the

genetic algorithm exploiting a multi-GPU cluster. The proposed

implementation employs an island-based genetic algorithm where

every GPU evolves a single island. The individuals are processed

by CUDA warps, which enables the solution of large knapsack

instances and eliminates undesirable thread divergence. The MPI

interface is used to exchange genetic material among isolated

islands and collect statistical data. The characteristics of the

proposed GAs are investigated on a two-node cluster composed of

14 Fermi GPUs and 4 six-core Intel Xeon processors. The overall

GPU performance of the proposed GA reaches 5.67 TFLOPS.

Keywords-GPU; CUDA; MPI; GA; island model; knapsack

I. INTRODUCTION

In 1994 Becker and Sterling [1] proposed the construction
of supercomputer systems through the use of off-the-shelf
commodity parts and open source software. Over the ensuing
year, the so called Beowulf cluster computer systems came to
dominate the top 500 list [2] of most powerful systems in the
world. The advantages of such systems are many, including
ease of creation, administration and monitoring, and full
support of many advanced programming techniques and high
performance computing libraries. Interestingly, however, what
was originally a major advantage of these systems, namely
price and running costs, is now much less so. This is because
for even a small to moderately sized cluster it is necessary to
house the system in specially air-conditioned machine rooms.

Recently, tools like Compute Unified Device Architecture
(CUDA) [3] and Open Compute Language (OpenCL) [4]
developed in order to use Graphics Processing Units (GPUs)
for general purpose computing have prompted another
revolution in high-end computing, equivalent to that of the
original Beowulf cluster concept. Although these chips were
designed to accelerate rasterisation of graphic primitives, their
raw computing performance has attracted a lot of researchers to
use them as acceleration units for many scientific applications
[5]. Compared to a CPU, the latest GPUs are about 15 times
faster than six-core Intel processors in single-precision floating
point operations [6]. Stated another way, a cluster with a single
GPU per node offers the equivalent performance of a 15 node
CPU-only cluster. Even more interestingly, the availability of
multiple PCI-Express buses, even on very low cost commodity
computers, means that it is possible to construct cluster nodes
with multiple GPUs. Under this scenario, a single node with

multiple GPUs offers the possibility of replacing fifty or more
CPU-only nodes.

On the other hand, the development tools for debugging
and profiling of GPU-based applications are in their infancy.
Obtaining peak performance for many real-world problems is
very difficult and sometimes impossible. Moreover, only a few
basic GPU libraries such as LAPACK and BLAS have so far
been developed, and these are only able to utilize one GPU in
a node [7]. GPU-based applications are also limited by the
GPU architecture and memory model making general-purpose
computing much more difficult to implement than the CPU-
based ones [5].

The Genetic Algorithms (GAs) have become a widely
applied optimization tool since their development by Holland
in 1975 [8]. Many researchers have shown the capabilities of
GAs in many real-world problems such as optimization,
decomposition, design and scheduling [9]. As GAs are
population-based stochastic search algorithms, they often
require millions of candidate solutions to be created and
evaluated. The execution time can then easily come up to the
order of days or weeks [10]. The considerable advantage of
GAs is their ability to be easily parallelized in many different
ways. During the last two decades, many different parallel and
distributed schemes have been proposed, such as island based
or spatially structured GAs [11].

The goal of this paper is to utilize a cluster of NVIDIA
GPUs to accelerate the GA and properly compare the execution
time with a CPU cluster. In order to utilize multiple GPUs, we
propose an island based GA where a single island is completely
evolved on a single GPU. All necessary inter-island data
transfers such as migration of individuals and global statistics
collection are performed by means of message passing routines
(OpenMPI). The well-known single-objective 0/1 knapsack
problem [12] with 10,000 items is used as a benchmark of the
CPU and GPU-based GA implementations.

II. GPU ARCHITECTURE AND CUDA TOOLKIT

 As our GPU cluster is based on NVIDIA GTX 580 cards,
we implemented the algorithms in CUDA 4.0 [3]. The CUDA
hardware model of the GTX 580 is shown in Fig. 1. The
graphics card is divided into a graphics chip (GPU) and 1.5GB
of main memory. Main memory, acting as an interface between
the host CPU and GPU, is connected to the host system using

This research has been partially supported by the research grant "Natural
Computing on Unconventional Platforms", GP103/10/1517, Czech Science

Foundation (2010-13).

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

217

a PCI-Express 2.0 bus. This bus can easily become a bottleneck
as its bandwidth is only a fraction of what both GPU and CPU
memories provide [13].

GPU main memory is optimized for block transactions and
stream processing providing very high bandwidth but also high
latency. Hiding this latency is very important for keeping GPU
executions units busy. The GTX 580 offers 768KB of fast on-
chip L2 cache to allow reordering of the memory requests and
on-chip shared memory, and large register fields to get the
working data as close to execution units as possible.

The GTX580 processor consists of 16 independent
Streaming Multiprocessors (SM), each of which is further
divided into 32 CUDA cores. SMs are based on the Single
Instruction, Multiple Thread (SIMT) concept allowing them to
execute exactly the same instruction over a batch of 32
consecutive threads (referred to as a warp) at a time. This
concept dramatically reduces the control logic of SMs, but on
the other hand, dictates strict rules on thread cooperation and
branching. A few consecutive warps form a thread block that is
the smallest resource allocation unit per SM.

In order to fully exploit the potential of a given GPU, a few
concepts must be kept in mind [14]:

• Thousands of threads are necessary to be executed
concurrently on the GPU to hide memory latency.

• All the threads within a warp should follow the same
execution path minimizing the thread divergence.

• All memory requests within a warp should be
coalesced reading data from consecutive addresses.

• Synchronization and/or communication among threads
can be done quickly only within a thread block.

• Working data set should be partitioned to fit on-chip
shared memory to minimize main memory accesses.

• Data transfers between CPU and GPU memories can
easily become a bottleneck given the low PCI-Express
bandwidth.

III. GPU-BASED GA DESIGN POSSIBILITIES

Recently, there have been several attempts to accelerate the
genetic algorithm on the massively parallel GPU architecture.
However, many researchers have taken only simple numeric
benchmarks without any global data or with only a very limited
data set [15], [16], [17]. This is in contradiction to the real-
world problems, where big simulations have to be carried out
and the fitness evaluation is often the most time-consuming
operation.

The individual creation and fitness evaluations can be
performed independently for each individual in the population.
A master-slave GA can be used here, i.e. candidate solutions
are evolved on the CPU side and transferred to a GPU or GPUs
only for evaluation [18]. The fundamental prerequisite of this
approach is that the fitness value evaluation takes a few orders
of magnitude more time than genetic manipulation phase to
overlap and hide slow PCI-Express transfers, CUDA kernels
launch overhead, etc.

Figure 1. CUDA hardware model of NVIDIA GTX 580.

In cases where the fitness evaluation takes a comparable
time to the rest of GA, it is usually better to execute the entire
GA on the GPU. Recently, a few papers have investigated this
possibility. The key here is the distribution of the individuals
over SMs. Some approaches assign an individual per thread
[15], [16], [19], others assign an individual per thread block
[20]. Both approaches have their limits.

Assigning a single individual per thread always leads to
thousands of individuals per GPU. This is counterproductive
for some kind of evolutionary algorithms that work with small
populations. The bigger problem arising from this is a per
block resource limitation introduced by CUDA [14]. An SM
can accommodate up to 1536 threads which gives us 21
registers and 32B of shared memory per thread. This makes it
very difficult to implement complex fitness functions and deal
with long chromosomes. On the other hand, assigning an
individual per thread block requires really long chromosomes
to give employment to all the threads, or the genes have to be
read multiple times to perform a complex simulation.

The other approach employs an SM-based island model
storing an island in shared memory [19]. Although very
popular, this model does not scale at all, and can be used only
for a low dimension numerical optimization as the product of
the individual length and population size has to fit SM shared
memory constrains (e.g. 128 individuals, 96 float genes long,
no other working or temporary data).

218

As far as the author knows, nobody has attempted to use
per warp assignment although it seems be a sweet spot. Warp
granularity requires a reasonable number of individuals and
using appropriate mapping does not limit the size of individual.
Moreover, it virtually eliminates the thread divergence.

In this paper, a multi-GPU island-based model based on
warp granularity is proposed. The population of this GA is
distributed over multiple GPUs. Every GPU is controlled by
a single MPI process [21], and entirely evolves a single island
using a steady-state approach with elitism, uniform crossover,
bit flip mutation, and tournament selection and replacement.
Migration of individuals occurs after a predefined number of
generations exchanging the best local solution and an optional
number of randomly selected individuals. The tournament
selection is used to pick emigrants and incorporate immigrants.
The migration is performed along the unidirectional ring
topology where only adjacent nodes can exchange individuals
[9]. All the data exchanges are implemented by means of MPI
[21]. The identical GA is also implemented in C++ to compare
the multi-GPU implementation with a multi-CPU one.

IV. MEMORY LAYOUT OF THE PROPOSED GA

The memory layouts of the population, statistics and global
data structures are carefully designed. All the host (CPU side)
structures intended for host-device transfers (migration buffers,
global statistics) are allocated by CUDA pinned memory
routines. This allows to use the Direct Memory Access (DMA)
and reach the peak PCI-Express bandwidth [13], [14].

On the other hand, the host memory is allocated using the

memalign routine with 16B alignment when implementing
the CPU-only version. This helps CPU vector units (SSE) to
load chunks of data much faster and the compiler to produce
more efficient code [22].

A. Population Organization

The population of GA is implemented as a C structure
consisting of two one-dimensional arrays. The first array
represents the genotype whereas the second one fitness values.
Assuming the size of the chromosome is L and the size of the
population is N, the genotype is defined as an array of size of
� ∗ �� 32⁄ � . As the knapsack chromosomes are based on
binary encoding, 32 items are packed into a single integer. This
rapidly reduces the memory requirements as well as accelerates
genetic manipulations employing logical bitwise operations.
The fitness value array has the size of N.

Two different layouts of genotype can be found in the
literature [20], see Fig 2. The first one, referred to as
chromosome-based, represents chromosomes as rows of a
hypothetical 2D matrix implemented as a 1D array. The second
layout, referred to as gene-based, is a transposed version
storing corresponding genes of all chromosomes in one row.

The chromosome-based layout simplifies the individual
movements in the selection and replacement phases as well as
the host-device transfers necessary for the migration phase and
displaying the best solution during the evolutionary process. In
this case, multiple CUDA threads work on one chromosome to
evaluate its fitness value. This layout should be preferred also
for the CPU implementation in order to preserve data locality

(a) chromosome-based layout

(b) gene-based layout

Figure 2. Different layouts of the population in GPU Video RAM.

and enable the CPU to store chromosomes in the L1 cache and
exploit modern prefetch techniques. On the other hand, the
gene-based representation allows working with multiple
chromosomes at a time utilizing the SIMD/SIMT nature of
CPUs and GPUs assuming there are no dependencies between
chromosomes. However, evaluating multiple chromosomes at
a time tends to run out of other resources such as registers,
cache, shared memories, etc.

The key to reach peak GPU performance is to allow threads
within a warp to work on neighbour elements and avoid control
flow divergence. Different warps can access different memory
areas with only a small or no penalization. The chromosome-
based layout appears to be the most promising layout enabling
the warp to work with the genes of one chromosome, especially
if it is necessary for the benchmark fitness evaluation to read
genes multiple times. The different warps can simply operate
on different chromosomes. This reaches the best SIMD/SIMT
performance while reducing registers, shared memory, and
cache requirements. For this reason, the chromosome-based
layout is used in this work.

B. GA Parameters Storage

The GA control parameters are maintained by a C structure.
Such parameters include the population and chromosome size,
the crossover and mutation rates, the statistic collection and
migration interval, the total number of evaluated generations,
etc. Once filled in with command line parameters, the structure
is copied to the GPU constant memory. This simplifies CUDA
kernel invocations and saves memory bandwidth according to
the CUDA C best practice guide [14].

C. Knapsack Global Data Storage

The knapsack global data structure describes the benchmark
listing the price and weight for all items possible included in
the knapsack. The structure also maintains the capacity of the
knapsack and an item with the maximum price/weight rate used
for penalization. The prices and weights are stored in two 1D
arrays. The benefit over an array of structures is data locality as
all the threads first read prices and only then the weights.

The best memory area where to place this structure may
seem to be the constant memory. Unfortunately, this area is too
small to accommodate real-world benchmarks. Its capacity of
64KB allows solving problems up to 4000 items. On the other

219

hand, introducing L2 caches and a load uniform instruction in
Fermi cards makes the benefits of constant memory negligible
[3]. As a result, the global data are stored in main GPU
memory. The problem size (the chromosome size in bits) is
always padded to a multiple of 1024 to prevent not coalesced
memory accesses while working with chromosomes.

V. MULTI-GPU GENETIC ALGORITHM IMPLEMENTATION

This subsection goes through the GA and describes the
genetic manipulation phase, fitness evaluation, replacement
mechanism, migration phase, and statistics collection. Each
phase is implemented as an independent CUDA kernel to put
the necessary global synchronization between each phase.

All the CUDA kernels are optimized to exploit the hidden
potential of modern GPUs and CPUs. For a good GPU
implementation, it is essential to avoid thread divergence and
coalesce all memory accesses to maximize GPU utilization and
minimize required memory bandwidth. The key terms here are
the warp and the warp size [14]. In order to write a good CPU
implementation, we have to meet exactly the same restrictions.
The warp size is now reduced to SSE (AVX) width and GPU
shared memory can be imagined as CPU cache memory.

As the main principles are the same for both CPU and
GPU, the CPU implementation follows the GPU one. Besides
the island-based CPU implementation, a single population
multithread GA was developed to compare the performance of
a single GPU with a multicore CPU. The multithreaded version
only adds simple OpenMP pragma clauses [21] to distribute
genetic manipulation and evaluation and the loop iterations
(individuals) over available CPU cores [23].

A. Random Number Generation

As GAs are stochastic search processes, random numbers
are extensively used throughout them. CUDA does not provide
any support for on the fly generation of a random number by
a thread because of many associated synchronization issues.
The only way is to generate a predefined number of random
numbers in a separate kernel [24]. Fortunately, a stateless
pseudo-random number based on a hash function generator has
recently been published [25]. This generator is implemented in
C++, CUDA and OpenCL. The generator has been proven to
be crush resistant with the period of 2

128
. The generator is three

times faster than the standard C rand function and more than

10x faster than the CUDA cuRand generator [25], [7].

B. Genetic Manipulation Phase

The genetic manipulation process creates new individuals
by performing the binary tournament selection on the parent
population, exchanging genetic material of two parents using
uniform crossover, applying a bit-flip mutation, and storing
them in the offspring population.

All CUDA thread blocks are organized as two dimensional.
The x dimension corresponds to the genes within chromosomes
while the y dimension corresponds to different chromosomes as
outlined in Fig. 3. The size of the x dimension meets the warp
size of 32 to prevent lots of divergence within warps. The size
of the y dimension is chosen as 8 based on the assumption that
256 threads per block is an appropriate block granularity [26].
Thus, 8 independent warps of 32 threads run simultaneously.

The entire CUDA grid is organized in 2D with the x size of
1, and the y size corresponding to the offspring population size
divided by the double of the y thread block size (two offspring
are produced at once). Since the x grid dimension is exactly 1,
the warps process the individuals in multiple rounds. The grid
can be seen as a parallel pipeline processing a piece of multiple
individuals at once.

Every warp is responsible for generating two offspring. The
selection is performed by a single thread in a warp. Based on
the fitness values, two parents are selected by the tournament
and their indices within the parent population are stored in
a shared memory array. As only a single warp works on an
individual and all the threads are implicitly synchronous within
a warp, there is no need to use a barrier. Setting the indices

array as volatile rules out any read/write conflict. This
prevents independent warps from waiting for each other and
allows better memory latency hiding.

Once the parents have been selected the crossover phase
starts. Every warp reads two parents in chunks of 32 integer
components (one integer per thread). As binary encoding
enables 32 genes to be packed into a single integer, the warp
effectively reads 1024 binary genes at once. Since this GA
implementation is intended for use with very large knapsack
instances, uniform crossover is implemented to allow better
mixing of genetic material. Each thread first generates a 32b
random number serving as the crossover mask. Next, logic
bitwise operations are used to crossover the 32b genes, see (1).
This removes all conditional code from the crossover except
testing of the condition whether or not to do the crossover at
all. This condition does not introduce any thread divergence as
it is evaluated in the same way for the whole warp.

Child_1 = (~Mask & Parent_1)|(Mask & Parent_2)

Child_2 = (Mask & Parent_1)|(~Mask & Parent_2) (1)

Mutation is performed in a similar way. Every thread
generates 32 random numbers and sets the i-th bit of the mask
to one if the i-th random number falls into the mutation

probability interval as shown in (2). After that, the bitwise xor
operation is performed on the mask and the offspring. This is
done for both offspring. Finally the warp writes the
chromosome chunk to the offspring population and starts
reading the next chunk.

Child_1 ^= (RandomValue[i] < MutationPst) << i (2)

C. Fitness Function Evaluation

The fitness function evaluation kernel follows the same grid
and block decomposition as the genetic manipulation kernel.
Evaluating more chromosomes at a time enables the reuse of
matching chunks of global data and saves memory bandwidth.

Fig. 3 illustrates the kernel structure. Every warp processes
one chromosome in multiple rounds handling a single 32b
chunk at a time. In every round, the first warp of the thread
block transfers the price and weight values of 32 items into
shared memory employing coalesced memory accesses. Barrier
synchronization is necessary because of sharing data among
multiple warps (the entire thread block). Next, every warp
loads a single 32-bit chromosome chunk into shared memory.
As all the threads within a warp access the same memory

220

Figure 3. Design of the knapsack fitness function executed by the GPU. The technique is repeated in other GPU kernels.

location (single integer), L2 GPU cache is exploited. Now,
every thread masks out an appropriate bit of the chromosome
chunk, multiplies it with the corresponding item price and
weight, and add both results to the private partial sums stored
in shared memory. When the entire chromosome has been
processed, the partial prices and weights are reduced to single
values. Since the chromosome is treated by a single warp,
a barrier-free parallel reduction can be employed. After that,
the first thread of the warp checks the total weight against the
knapsack capacity and if the capacity has been exceeded, the
fitness value (total price) is penalized. Finally, the fitness value
is stored in the global memory by this thread.

The CPU implementation evaluates chromosomes one by
one. The fitness evaluation can be carried out immediately after
the new offspring has been created which results in the
chromosome evaluated L1 cache. This might also be possible
for the GPU implementation; however, the kernel would run
out of registers and shared memory resulting in poor GPU
occupancy and low performance.

D. Replacement Phase

The replacement phase employs the binary tournament over
the parents and offspring to create the new parent population.
The kernel and blocks decompositions are the same as in the
previous phases. The only modification is that the kernel
dimensions are derived from the parent population size.

Every warp compares a randomly picked offspring with the
parent laying on the index calculated from the y index of the
warp in the grid. If the offspring fitness value is higher than the
parent one, the entire warp is used to replace the parent by the
offspring. This only restricts the thread divergence to the
random number generation phase. This replacement schema
also abides by the elitism because it is not possible to override
the best individual by a worse one.

E. Migration Phase

The migration process enables distributed islands to
exchange good individuals among them. The migration scheme
is based on the unidirectional ring topology where every island
sends its migrants to the adjacent island with a higher index
and receives migrants from the island with a lower index.

The migration phase consists of three stages:

1) Selection of Emigrants: First, a CUDA kernel is called

to select a predefined number of migrating individuals and put

them into a new population placed in GPU main memory. The

same selection mechanism as in the case of the genetic

manipulation phase is employed. In order to ensure that the

best individual has also been selected, the first warp always

selects this one and put it to the migration population.

2) Transferring Migrants to Another Island: After the

migrants have been selected, it is necessary to download them

to the CPU memory. This is done by means of two PCE-

Express transfers; first one for individual genomes and the

second one for their fitness values. After that, two OpenMPI

non-blocking send [21] routines are employed to dispatch the

migrants. Concurrently, two non-blocking OpenMPI receive

routines have been waiting for the migrants from an adjacent

island. Note that with the upcoming version of OpenMPI and

CUDA, it will be possible to skip CPU-GPU transfers and

transfer the data directly from/to GPU memory [27].

3) Incorporation of Immigrants: After new immigrants

have been received, they are stored in a CPU memory buffer.

First, these individuals have to be uploaded to a GPU using

two PCI-Express transfers. After that, a kernel merging

immigrants and the primary island population is invoked.

Every warp processes a single immigrant and compares it with

221

a randomly selected one from the primary population. This

approach gives every immigrant an opportunity to get into the

primary island population.
A problem arises if two warps picked the same individual

to be replaced. This leads to the racing condition and data
inconsistency. In order to prevent this, a critical section has to
be entered before writing anything into the primary population.
The critical section is guarded by a vector lock where every
individual in the primary population has its own entry.

Thus, the first thread of the warp selects an individual from
the primary population, locks this individual and saves its index
into shared memory. There is no need for synchronization here,
because of the SIMT nature of warps. Now, all the warp
threads read this index and make the decision whether or not to
replace the individual by the corresponding immigrant. If the
immigrant has a higher fitness value, the entire warp is used for
genome replacement. Finally, the first thread unlocks the lock.

If there is another warp trying to acquire this individual, it
will succeed after the previous replacement has been finished.
As better solutions always replace worse ones, the elitism is
guaranteed.

F. Global Statistics Collection Phase

The last component of the genetic algorithm is a module
collecting the global statistics over all the islands. This module
maintains the best solution found so far, and the basic statistics
such as the highest, lowest and average fitness value over all
the islands, the standard deviation of the fitness values, and
index of the best island.

The statistics collection can be divided into two phases.
First, local island statistical data are collected and then a global
gathering process over all the islands is carried out.

The local statistics collection phase first initializes an
auxiliary structure on the GPU and then launches a data
collection kernel. The kernel is divided into twice as many
blocks as the GPU has SM processors. Each block is
decomposed into 256 threads based on the practice published in
[26]. After the kernel invocation, the chunks of fitness values
array are distributed over the blocks. Each thread processes as
many fitness values as necessary and stores its partial results
into shared memory. After the barrier synchronization, the
reductions over statistical data within a thread block are carried
out. Finally, the first thread of each thread block uses a global
memory lock to update the local island statistics.

After completion, the statistical data as well as the best
individual are downloaded to CPU main memory. These data
are packed and sent off to the master process (island with
index 0). The master process collects local island statistics and

the best solutions using two MPI_gather routine, merges
them together and stores them into a log file.

VI. EXPERIMENTAL RESULTS

All the proposed algorithms were implemented and tested
on two TYAN servers [28]. Both servers are equipped with two
six-core Intel Xeon X5650 processors at 2.6 GHz, 24GB RAM
memory, 7 NVIDIA GTX 580 cards, 40Gb infiniband network
interface, and running Ubuntu 10.04 server operating system.

A knapsack instance with 10,000 items was chosen as a test
case simulating a real-world problem with a reasonable large
global data set. GA control parameters were experimentally set
as follows: the crossover probability of 0.7, the gene mutation
probability of 0.001, the migration interval of 100 generations,
10% of individuals migrate including the best individual, and
50% of old population is replaced. The population size varied
from 128 to 2048 individuals per island. Different GPU
configurations were tested. Six and twelve GPU islands were
used to have an analogy to a single six-core CPU and two six-
core CPUs in a server, respectively. Seven and fourteen GPUs
represent the maximum configuration of a single or both
servers, respectively. All results shown here represent averaged
values after 100k generations over 30 independent runs and
95% confidence intervals.

Fig. 4 shows the quality of the global best solution evolved
after 100k generations. The curves show the improvement of
the solution quality when increasing the island population size
and evolving a higher number of islands. A significant quality
leap can be observed between 1 and 14 islands. A considerable
improvement is also present between 1 and 7, as well as, 7 and
14 islands. Although differences in solution quality using 6 and
7, or, 12 and 14 GPUs are not very high, they are still
statistically significant (based on 95% confidence interval). As
mentioned in [15], distribution of a large population over
smaller islands leads to slight quality drops. These drops are
mainly present for small island sizes (e.g. compare 1 GPU with
1024 individuals and 7 GPUs with 128 ones).

Fig. 5 shows the execution time of the proposed multi-GPU
island based GA. All the curves represent different numbers of
islands merged together. This implies negligible overhead of
the inter-GPU migration process that is detailed in Fig. 7. The
most important observation is that the execution time remains
constant for island sizes up to 512. Such small islands cannot
saturate these GPUs. Assuming 50% of individuals are created
every generation, and a warp processes a single individual, the
GTX 580 needs at least 256 warps (32 blocks) to be saturated.
This exactly meets the necessity of running twice as many
blocks as there are SMs in a given GPU published in [26].
Beyond 512 individuals per island, the execution time starts to
grow linearly.

Fig. 6 reveals the overhead of the migration process
including selection and incorporation of migrants, PCI-Express
transfers and OpenMPI communication routines. With the
island size of 2048, the overhead is almost negligible. This is
given by appropriate migration parameters as well as the 40Gb
infiniband interconnection and fast memory transfers. A bigger
difference is believed to appear using the 1Gb Ethernet
interconnection with more frequent migration.

Fig. 7 compares the execution time of a single island GA
evolved using 6 and 12 CPU threads and GTX580 with respect
to a single thread CPU implementation. CPU implementations
show speedup corresponding to the level of parallelism (5.67
and 11.32 for 6 and 12 threads, respectively). The reported
speedups are slightly lower than the theoretical values, limited
by necessary synchronization and the NUMA architecture [28].
The single island GPU implementation reaches a peak speedup
of 56.3 compared to a single thread CPU. Compared to 6 and

222

Figure 4. Average best fitness values after 100k generations evolved using
1 to 14 GPUs with the island sizes from 128 to 2048.

Figure 5. Total execution times of the evolution on 1 to 14 GPUs with the

island sizes from 128 to 2048.

12 CPU threads, a single GPU reaches speedups of 9.45 and
4.73, respectively. These values roughly correspond to the
theoretical peak performance ratio of these architectures. The
proposed GA implementation was also compared with the
well-known GALib library [29]. As GALib does not exploit
multi-core CPUs, sequential implementations were compared
only. The proposed implementation outperformed the GALib
by 3.25 times because of exploiting better memory layout,
avoiding unnecessary data movement and supporting Intel SSE
4.1 extension.

Table I summarizes the reached speedup of the island-based
GA running over multiple CPU cores or GPUs with respect to
a single thread CPU implementation. The speedup is computed
as a multiple of time a sequential CPU implementation would
need to simulate the evolution of all the islands. Table I is
basically included because of authors who compare their GA
implementations against a sequential one, which is not fair to
CPU and results in unrealistic speedups as explained in [6].

Table II takes joint CPU computation power of both servers
as a baseline to compares CPU and GPU side of the cluster. It
is very important to observe 4 six-core CPUs can simply beat
a single GPU for small populations. Moreover, a benchmark
instance of 10000 items was used here. As 1024 items pose the
smallest instance fully utilizing a warp and exploiting the
potential of Fermi GPU [14], CPUs evolve smaller knapsacks
much faster while GPU performance stagnates. On the other

Figure 6. Presentation on negligible overhead of the inter-island
communication for different number of island with 2048 individuals.

Figure 7. Comparison of relative speedup when evolving a single island

using six and twelve CPU threads and a single GPU vs. a single CPU thread.

hand, for large knapsack instances and higher islands sizes
necessary for their successful optimization, 14 GPUs can
outperform four six-core CPUs by a speedup factor of 35.

In order to assess the FLOP performance of the proposed
implementations, the PAPI performance counters were used
[30]. The peak performance of a single GPU reached 405
GFLOPS and the total GPU cluster performance 5.67 TFLOPS.
Compared to a synthetic SHOC benchmark [31], this accounts
for about 26%. In contrast to SHOC, parallel GAs require a lot
of synchronization, reduction and single thread work, and data
exchange among islands that leads to GPU stalls.

VII. CONCLUSIONS

This paper has proposed a new implementation of island-
based genetic algorithm exploiting a multi-GPU cluster. Every
island is evolved on a single GPU where the individuals are
assigned one per warp that reduces the thread divergence below
0.5% and does not restrict the individual or population size.

Unlike other related works solving only low dimensional
numerical problems [15], or very small combinatorial problems
[19], a benchmark requiring very long chromosomes of 10,000
bits and a considerably large global data set was used here. The
computational power of 14 NVIDIA GTX580 cards against 4
six-core Intel Xeon CPUs was compared. The speedup reached
by fourteen GPUs reaches 35, 194, and 781 compared to 4
CPUs, 1 CPU and a single thread, respectively (Table I and II).

2820

2825

2830

2835

2840

128 256 512 1024 2048

F
it

n
es

s
v

a
lu

e
x
1

0
0

0

Individuals per GPU

Solution quality

1 GPU 6 GPUs

7 GPUs 12 GPUs

14 GPUs

0

20

40

60

80

100

120

140

128 256 512 1024 2048

E
x
ec

u
ti

o
n

 t
im

e
[s

]

Individuals per GPU

Total execution time

1 GPU 6 GPUs 7 GPUs

12 GPUs 14 GPUs

124.5

124.6

124.7

124.8

124.9

125

1 GPU 6 GPUs 7 GPUs 12 GPUs 14 GPUs

E
x

ec
u

ti
o

n
 t

im
e

[s
]

Number of GPUs

Influence of migration process on the execution time

2048 individuals per island

0

10

20

30

40

50

60

128 256 512 1024 2048

S
p

ee
d

u
p

 v
s.

 s
in

g
le

-t
h

re
a

d
 C

P
U

Individuals per GPU

Speedup on a single island reached by

multicore CPU and GPU

1xGPU

2x6 CPU threads

6 CPU threads

223

TABLE I. SPEEDUP OF ISLAND-BASED CPU AND GPU

IMPLEMENTATIONS WITH RESPECT TO A SEQUENTIAL CPU IMPLEMENTATION.

vs. single

CPU core

Island size

128 256 512 1024 2048

1 CPU 1.00 1.00 1.00 1.00 1.00

6 CPUs 5.55 5.55 5.55 5.55 5.67

12 CPUs 11.12 11.13 11.14 11.14 11.32

24 CPUs 22.18 21.93 22.21 22.26 22.42

1 GPU 10.70 21.31 41.13 55.78 54.49

6 GPUs 64.38 128.22 247.02 335.38 327.09

7 GPUs 75.10 149.62 287.85 391.30 381.56

12 GPUs 128.76 256.40 493.09 670.04 653.68

14 GPUs 150.21 299.17 573.96 781.78 762.64

TABLE II. GPU SPEEDUP COMPARED TO FOUR SIX-CORE PROCESSORS

vs. 24

CPU cores

Island size

128 256 512 1024 2048

1 GPU 0.48 0.97 1.85 2.51 2.43

6 GPUs 2.90 5.85 11.12 15.06 14.59

7 GPUs 3.39 6.82 12.96 17.58 17.02

12 GPUs 5.81 11.69 22.20 30.10 29.16

14 GPUs 6.77 13.64 25.85 35.11 34.02

The overall performance reached by all GPUs in terms of
FLOPS amount to 5.67 TFLOPs, which corresponds to 26% of
the theoretical cluster performance. Given that the GA process
requires a lot of synchronization, parallel reductions, and data
movement during migration, this number poses a very good
result when compared with other GPU applications [6]. The
source codes of the proposed implementations have been
released under GPU licence at [32].

ACKNOWLEDGEMENT

The author would like to thank Bradley E. Treeby, Josef
Schwarz and Petr Pospichal for useful discussion.

REFERENCES

[1] T. Sterling, D. J. Becker, C. Park, J. E. Dorband, U. A. Ranawake, and
C. V. Packer, “BEOWULF : A Parallel Workstation for Scientific
Computation,” in Proceedings of the 24th International Conference on
Parallel Processing, 1995, pp. 11-14.

[2] “TOP500 Supercomputer sites.” [Online]. Available:
http://www.top500.org/. [Accessed: 09-Jan-2012].

[3] NVIDIA, “CUDA Toolkit 4.0,” 2011. [Online]. Available:
http://developer.nvidia.com/cuda-toolkit-40. [Accessed: 10-Jan-2012].

[4] Krhonos Group, “OpenCL - The open standard for parallel programming
of heterogeneous systems,” 2012. [Online]. Available:
http://www.khronos.org/opencl/. [Accessed: 10-Jan-2012].

[5] D. B. Kirk and W.-mei W. Hwu, Programming Massively Parallel
Processors : A Hands-on Approach. Morgan Kaufmann,, 2010, p. 280.

[6] V. W. Lee et al., “Debunking the 100X GPU vs. CPU myth,” in
Proceedings of the 37th annual international symposium on Computer
architecture - ISCA ’10, 2010, p. 451.

[7] NVIDIA, “Math Library Performance CUDA Math Libraries,” 2011.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems, vol. Ann
Arbor, no. 53. University of Michigan Press, 1975, p. 211.

[9] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms.
Kluwer Academic Publishers, 2000, p. 187.

[10] J. Jaros, Evolutionary Design of Collective Communications on
Wormhole Networks. Brno: Publishing house of Brno University of
Technology VUTIUM, 2010, p. 183.

[11] M. Tomassini, Spatially Structured Evolutionary Algorithms. Springer,
2005, p. 206.

[12] H. Rashid, B. C. Novoa, C. A. Qasem, and S. Marcos, “An Evaluation of
Parallel Knapsack Algorithms on Multicore Architectures 2 . The
Integral Knapsack Problem.”

[13] J. Jaros, B. E. Treeby, and A. P. Rendell, “Use of Multiple GPUs on
Shared Memory Multiprocessors for Ultrasound Propagation
Simulations,” in Proceesings of Australasian Symposium on Parallel
and Distributed Computing (AusPDC), 2012, p. 10.

[14] NVIDIA, “Cuda c best practices guide,” 2011.

[15] L. Zheng, Y. Lu, M. Ding, and Y. Shen, “Architecture-based
Performance Evaluation of Genetic Algorithms on Multi/Many-core
Systems,” Science and Engineering, pp. 321-334, Aug. 2011.

[16] P. Vidal and E. Alba, “A multi-GPU implementation of a Cellular
Genetic Algorithm,” in IEEE Congress on Evolutionary Computation,
2010, pp. 1-7.

[17] O. Garnica, J. Risco-Martin, and J. Hidalgo, “Speeding-up resolution of
deceptive problems on a parallel gpu-cpu architecture,” in WPABA08
(PACT08), 2008, pp. 57-64.

[18] W. Banzhaf, S. Harding, W. B. Langdon, and G. Wilson, “Accelerating
Genetic Programming through Graphics Processing Units,” in Genetic
Programming Theory and Practice VI, R. L. Riolo, T. Soule, and B.
Worzel, Eds. Springer, 2008, pp. 229-249.

[19] P. Pospichal, J. Schwarz, and J. Jaros, “Parallel genetic algorithm
solving 0/1 knapsack problem running on the gpu,” in 16th International
Conference on Soft Computing MENDEL, 2010, no. 1, pp. 64–70.

[20] R. Shah, P. Narayanan, and K. Kothapalli, “GPU-Accelerated Genetic
Algorithms,” cvit.iiit.ac.in.

[21] Indiana University, “OpenMPI: Open Source High Performance
Computing,” 2012. [Online]. Available: http://www.open-mpi.org/.
[Accessed: 09-Jan-2012].

[22] A. Fog, “Optimizing software in C ++: An optimization guide for
Windows, Linux and Mac platforms,” 2011.

[23] J. Jaros and P. Pospichal, “A Fair Comparison of Modern CPUs and
GPUs Running the Genetic Algorithm under the Knapsack Benchmark,”
in Applications of Evolutionary Computation, EvoPar, 2012.

[24] NVIDIA, “CUDA Toolkit 4 . 0 CURAND Guide,” 2011.

[25] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
Random Numbers: As Easy as 1, 2, 3,” in Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis on - SC ’11, 2011, pp. 16:1-16:12.

[26] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley, 2010, p. 279.

[27] N. Corporation, “NVIDIA GPUDirect TM Technology NVIDIA
GPUDirect TM : Eliminating CPU Overhead,” 2011.

[28] MiTAC International Corp. / TYAN Business Unit, “TYAN FT77B7015
Web page,” 2012. [Online]. Available:
http://www.tyan.com/product_SKU_spec.aspx?ProductType=BB&pid=
439&SKU=600000195.

[29] M. Wall, “GAlib : A C ++ Library of Genetic Algorithm Components,”
Statistics, no. August, 1996.

[30] A. D. Malony et al., “Parallel Performance Measurement of
Heterogeneous Parallel Systems with GPUs,” in Performance
Computing.

[31] A. Danalis, G. Marin, C. Mccurdy, J. S. Meredith, and P. C. Roth, “The
Scalable HeterOgeneous Computing (SHOC) Benchmark Suite
Categories and Subject Descriptors,” in Proceedings of the Third
Workshop on General-Purpose Computation on Graphics Processors
(GPGPU 2010), 2010.

[32] J. Jaros, “Jiri Jaros’s software website,” 2012. [Online]. Available:
http://www.fit.vutbr.cz/~jarosjir/prods.php.en.

224

