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Introduction

e Using genetic programming to create C
source code

— How? Why?
* Proof of concept: gzip on graphics card
— Template based on nVidia kernel

— BNF grammar
— Fitness

e Lessons (it can be done!)
o Future? GP to optimise kernel?

W. B. Langdon, King's London
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GP to write source code

 \When to use GP to create source code
— Small. E.g. glue between systems.
— Hard problems. Many skills needed.

— Multiple conflicting ill specified non-functional
requirements

 GP as tool. GP tries many possible
options. Leave software designer to
choose between best.

W. B. Langdon, King's London



GP Automatic Coding

e Target small unit.

e Use existing system as environment
nolding evolving code.

« Use existing test suite to exercise existing
system but record data crossing interface.

e Use inputs & answer (Oracle) to train GP.
 How to guide GP initially?
e Clean up/validate new code

W. B. Langdon, King's London
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GP Automatic Coding

(Instrumented) Original Program

vy

Module to be replaced Record data flows

'y

e Actual data into and out of module act as
de facto specification.

* Evolved code tested to ensure it responds
like original code to inputs.

e Recorded data flows becomes test Oracle.



Proof of Concept: gzip

 Example: compute intensive part of gzip
 Recode as parallel CUDA kernel
e Use nVidia’s examples as starting point.

« BNF grammar keeps GP code legal,
compliable, executable and terminates.

e Use training data gathered from original
gzip to test evolved kernels.
 \Why gzip

— Well known. Open source (C code). SIR test
suite. Critical component isolated. Reversible.



CUDA 2.3 Template

e nVidia supp
e Choose sim

led 67 working examples.

nlest, that does a data scan.

(We know gzip scans data).

* Nalve template too simple to give speed
up, but shows plausibility of approach.

 NB template knows nothing of gzip
functionality. Search guided only by fithess

function.
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scan naive kernel.cu

//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add
strstartl strstart2, const.
move offset and n, rename n as num_elements
WBL 14 r1.11 Remove crosstalk between threads threadldx.x, temp -> g_idata[strstartl/strstart2]
__device scan_naive(int * , const * , const , const )
{

llextern __shared__ uch temp]];

= 0; /lthreadldx.x;
= 01
= 01
= 258;

<3var> [*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : O;
for (offset = 1; offset < num_elements; offset *= 2)
{

pout = 1 - pout;

pin =1 - pout;

Il __syncthreads();

[temp[pout* num_elements+thid] = temp[pin*num_elements+thid];

<3var> = g_idata[strstart+pin*num_elements+thid];

If (thid >= offset)

<3var> += ¢g_idata[strstart+pin*num_elements+thid - offset];
}
/I __syncthreads();
g_odata[threadldx.x] = <3var>
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BNF grammar

scan_naive kernel.cu converted into
grammar (169 rules) which generalises code.

<linel10-18> = " | <linel0-18a>

<linel0-18a> = <linel0e> <linell> <forbody> <line18>
<linell> = “{\n" "if('ok()) break;\n"

<linel8> = “\n"

<linel0e> = <linel0> | <line1l0el>

<linel0el> = "for (offset =" <linel0.1>";" <linel0e.2> ";offset" <line10.4> ")\n"
<line10.1> = <line10.1.1> | <intexpr>

<linel0.1.1> = "1" | <intconst>

<linelOe.2> = <linel0e.2.1> | <forcompexpr>
<linelOe.2.1> = "offset" <linel0.2> <linel10.3>
<linel0.2> = "<" | <compare>

<line10.3> = <line10.3.1> | <intexpr>

<linel0.3.1> = "num_elements" | <intconst>
<line10.4> = "*= 2" | <intmod>

<intmod> "++" | <intmod2>

<intmod2> "*=" <intconst>



gzip

e gzip scans input file looking for strings that
occur more than once. Repeated

seqguences of bytes are replaced by short
codes.

* n? reduced by hashing etc. but gzip still
does 42 million searches (sequentially).

 Demo: convert CPU hungry code to
parallel GPU graphics card kernel code.

W. B. Langdon, King's London 10
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/* mmzmzzzsszszzzsszssssscsosssEESEEOESESEEEESEEESCEESNSSCEEEISESSSSEEEISSSEERER
* Set watch_start tn the langest mateh starting at the given string and

* return its length. Matches shorter or equal to prev_length are discarded,

+ in which caoc the reoult is ecqual to prev_length and match_otart i

* garbage.

* IN assertions: cur_match is the head of the hash chain for the current

*/ string (strstart) and its distance is <= MAX DIST, and prev length >= 1

*

#1Fndef ASHMY

/* For MSDOS, 05/2 and 386 Unix, an optimized version is in match.asm or
+ match. o. The code io functionally cquivalent, oo you con vac the C version
* 1f desired.

.

int longest match{cur match)
IPos cur_match; /* current match */

{
unsigned chain_length = max_chain_length;  /* max hash chain length */
register uch *scan - window + strstart, /* current string */
register uch *match; /* matched string */
register int len; /* length of current match =/
int best len = prev length; /* best match length so far */

IPos limit = strstart > (IPos)MAX DIST ? strstart - (IPos)MAX DIST : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,

* we prevent matches with the string of window index 0.

*f

/* 'lhe code is optimized for HASH BLIS >= 8 and MAX MATUH-Z multiple of L6,

* It is easy to gqet rid of this optimization if necessary
*

#1f HASH BITS ¢ 8 || MAX MATCH |= 258
error: Code too clever

#endif

#1rdet UNALLGNED UK
/* Compare two bytes at a time. Note: this is not always beneficial.
* Try with and without -DUNALIGNED_OK to check
*/
register uch *strend = window + strstart + MAX MATCH - 1;
register ush scan_start - *(ush*)scan,
register ush scan_end = #*(ush*) (scan+best_len-1);

Felse
register uch *strend = window + strstart + MAX MATCH;
register uch scan_endl = scan|[best_len-1];
register uch scan_end = scan|[best_len]:

#endif

/* Do not waste too much time if we already have a good match: */
1t {prev_length >= good_match) {
chain_length >>= 2;

}
Assert(strstart <= window_size-MIN_LOOKAHEAD, "insufficient looks

du
Assert(cur_match < strstart, "no future");
match = window + cur_match;

/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:

*f
#10 (Ueline] (UNALIGNED_OK) &% MAX_MATCH == 258)
/* This code assumes sizeof (unsigned short) == 2. Do not use
* UNALIGNED_OK 1t your compiler uses a ditterent size.
*
if (*(ush*) (match+best_len-1) != scan_end ||
* (ush*)match !- scan_start) continue;

A4 IL is bl necessary Lo cumpare svan[2] ol malol[2] since Lhey aie
* always equal when the other bytes match, given that the hash keys

* are equal and that HASH _BITS »>= 8. Compare 2 bytes at a time at
+ strstart+3, +5, ... up to strstart+257 We check for insufficient
*+ lookahead only every 4th comparison; the 128th check will be made
* at strstart+257. If MAX MATCH-2 is not a multiple of 8, it is

* necessary to put more guard bytes at the end of the window, or

* to check more often for insufficient lookahead.

scan++, match++;

{
} while (*{ush*) (scan+=2) == *(ush*) (match+=2) &%
*{ush*) (scan+=2) == *(ush*) (match+=2) &%
*(ush*) (scan+=2) == *(ush*) (match+=2) &%
*(ush*) (scan+=2) == *(ush*) (match+=2) &%
scan < strend);
/* The funny "do {}" generates better code on most compilers */

/* Here, scan <= window+strstart+257 */
Assert(scan <= window+(unsigned) (window_size-1), "wild scan");
1f (*scan == *match) scan++;

len = (MAX MATCH - 1) - (int) (strend-scan);
scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */
if (match[best_len] != scan_end ||
match[best len-1] != scan_endl ||
*match I= *scan Il
*++match I= scan(1]) continue;

/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)

* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that

* the hash keys are equal and that HASH_BITS »>= 8.

*f

scan += 2, match++;

/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.

*f

do {

} while (*++scan == *++match &% *++scan == *++match &%
*++scan == *++match && *++scan == *++match &%
*:+scan == *++match &% *++scan == *+imatch &%
*s+scan == *++match &% *++scan == *++match &%

scan < strend);

len = MAX MATCH - (int) (strend - scan);
scan = strend - MAX_MATCH;

endif /* UNALIGNED OK */

1f (len > best len) {

match_start = cur_match;

best_len = len;

1f (len >= nice_match) break;
#1fdef UNALIGNED_OK

scan_end = *(ush?*) (scan+best_len-1);
#else

scan_endl = scan[best_len-1];

scan_end = scan|[best_len];
#endif

H
} while ((cur_match = prev|[cur_match & WMASK]) > limit
&& --chain_length != 0});

return best_len;



Fitness

 Instrument gzip.

 Run gzip on SIR test suite. Log all inputs
to longest_match(). 1,599,028 records.

e Select 29,315 for training GP.
 Each generation uses 100 of these.

W. B. Langdon, King's London
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Number of Strings to Check

gzip 211 SIR calling longest_natch, HBL 29 Dec 2689
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RN _
Length of Strings to Check
1% O bytes gzip 211 SIR calling longest_natch, HBL 29 Dec 2009
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gzip heuristics limit search < 258



Fithess

 Pop=1000. 100 kernels compiled together.
— Compilation time = 7Xxrun time.

e Fitness testing
— first test’s data up loaded to GPU 295 GTX.
— 1000 CUDA kernels run on first test.

— Each kernel in own block. 1000-1.6 10° thread
— Loop until all 100 tests run.

 Answers compared with gzip’s answer.

« performance = 2|error| + penalty
— kernels which return 0 get high penalty.



Debug

* Debugging hard

 Eventually replaced last member of evolved
population with dummy

 Dummy reflects back input to host PC.

e Enables host to check:
— Training data has reached GPU

Kerne
Kerne

Kerne

has been run
has read Its Inputs
's answer has been returned to host PC.
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Performance of Evolving Code
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TN
Fall

INn number of poor programs

GP individuals, Population 1668

780

600 |

560

480

300

288

168 r

gzip 211 SIR pPopSize=18008 HBL 29 Jan 2618

T T L]
Fixed answer kernel

£ M A A .

§ N \/ S
14 Y

A« 7% constants

\; /"‘ '-\I .‘,"\__‘- Vad

8 28

40

60

8e

180

Generation

71% useless constants in generation O

langdon/cuda/sdk/pro_jects/gzip/ga2

18



CREST

" Evolution of program complexity

Frequency {(Population 1668)
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Evolved gzip matches kernel

<start>

<line2> <line3> M%D\J\ <linel0-20> <line21>

Parse tree of solution
evolved in gen 55.

Ovals are binary decision
rules. Red 2nd alternative
used.

<line6> <line7.0> <line71> <line72>

| P =

<line10-18a> <line20.1>

A
<linel 1> <linel 8>

<linelQel>

i/ii <1ine1+2-l7b<©\

<lin615 17b> <linel2-13a>

<foruchcomp> f *
/
// \ <11nel7 > O

<foruchexpr2> <f0ruchexpr2> <3var> <11nel3 2.1>

!
<uchexprT> <uchexprT> ﬂlj

SF éi f
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Evolved gzip matches kernel

__device__ int kernel978(const uch *g_idata, const int strstartl, const int strstart2)

{
int thid = 0;
Int pout = O;
intpin=20;
int offset = 0;
Int num_elements = 258;
G_idata( strstartl+ pin ) == G_idata( strstart2+ pin ) ;offset ++

thid = G_idata( strstart2+ thid ) ;

pin = offset ;
return pin ;
}
Blue - fixed by template. Red - evolved
Black - default Grey — evolved but no impact.
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Conclusions

 Have shown possibility of using genetic
programming to automatically re-engineer
source code

e Problems:

— WIll users accept code without formal
guarantees?

— Evolved code passes millions of tests.
— How many tests are enough?

* First time code has been automatically
ported to parallel CUDA kernel by an Al
technique.

W. B. Langdon, King's London
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END

http://www.epsrc.ac.uk/ EPSRC
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A Fleld Guide To
Genetic Programming
http://www.gp-field-guide.org.uk/

A
Field
Guide
to

Genetic
Programming

Free
PDF
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