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Introduction

• Using genetic programming to create C
source code

– How? Why?

• Proof of concept: gzip on graphics card

– Template based on nVidia kernel

– BNF grammar

– Fitness

• Lessons (it can be done!)

• Future? GP to optimise kernel?
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GP to write source code

• When to use GP to create source code

– Small. E.g. glue between systems.

– Hard problems. Many skills needed.

– Multiple conflicting ill specified non-functional
requirements

• GP as tool. GP tries many possible
options. Leave software designer to
choose between best.
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GP Automatic Coding

• Target small unit.

• Use existing system as environment
holding evolving code.

• Use existing test suite to exercise existing
system but record data crossing interface.

• Use inputs & answer (Oracle) to train GP.

• How to guide GP initially?

• Clean up/validate new code
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GP Automatic Coding

• Actual data into and out of module act as
de facto specification.

• Evolved code tested to ensure it responds
like original code to inputs.

• Recorded data flows becomes test Oracle.



Proof of Concept: gzip

• Example: compute intensive part of gzip

• Recode as parallel CUDA kernel

• Use nVidia’s examples as starting point.

• BNF grammar keeps GP code legal,
compliable, executable and terminates.

• Use training data gathered from original
gzip to test evolved kernels.

• Why gzip

– Well known. Open source (C code). SIR test
suite. Critical component isolated. Reversible.



CUDA 2.3 Template

• nVidia supplied 67 working examples.

• Choose simplest, that does a data scan.
(We know gzip scans data).

• Naive template too simple to give speed
up, but shows plausibility of approach.

• NB template knows nothing of gzip
functionality. Search guided only by fitness
function.
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scan_naive_kernel.cu
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//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add
strstart1 strstart2, const.
move offset and n, rename n as num_elements
WBL 14 r1.11 Remove crosstalk between threads threadIdx.x, temp -> g_idata[strstart1/strstart2]
__device__ void scan_naive(int *g_odata, const uch *g_idata, const int strstart1, const int strstart2)
{

//extern __shared__ uch temp[];
int thid = 0; //threadIdx.x;
int pout = 0;
int pin = 1;
int offset = 0;
int num_elements = 258;
<3var> /*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : 0;
for (offset = 1; offset < num_elements; offset *= 2)
{

pout = 1 - pout;
pin = 1 - pout;
//__syncthreads();
//temp[pout*num_elements+thid] = temp[pin*num_elements+thid];
<3var> = g_idata[strstart+pin*num_elements+thid];
if (thid >= offset)
<3var> += g_idata[strstart+pin*num_elements+thid - offset];

}
//__syncthreads();
g_odata[threadIdx.x] = <3var>

}



BNF grammar
scan_naive_kernel.cu converted into
grammar (169 rules) which generalises code.

Fragment of
4 page grammar

<line10-18> ::= "" | <line10-18a>
<line10-18a> ::= <line10e> <line11> <forbody> <line18>
<line11> ::= "{\n" "if(!ok()) break;\n"
<line18> ::= "}\n"
<line10e> ::= <line10> | <line10e1>
<line10e1> ::= "for (offset =" <line10.1> ";" <line10e.2> ";offset" <line10.4> ")\n"
<line10.1> ::= <line10.1.1> | <intexpr>
<line10.1.1> ::= "1" | <intconst>

<line10e.2> ::= <line10e.2.1> | <forcompexpr>
<line10e.2.1> ::= "offset" <line10.2> <line10.3>
<line10.2> ::= "<" | <compare>
<line10.3> ::= <line10.3.1> | <intexpr>
<line10.3.1> ::= "num_elements" | <intconst>

<line10.4> ::= "*= 2" | <intmod>

<intmod> ::= "++" | <intmod2>
<intmod2> ::= "*=" <intconst>



gzip

• gzip scans input file looking for strings that
occur more than once. Repeated
sequences of bytes are replaced by short
codes.

• n2 reduced by hashing etc. but gzip still
does 42 million searches (sequentially).

• Demo: convert CPU hungry code to
parallel GPU graphics card kernel code.
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gzip longest_match()



Fitness

• Instrument gzip.

• Run gzip on SIR test suite. Log all inputs
to longest_match(). 1,599,028 records.

• Select 29,315 for training GP.

• Each generation uses 100 of these.
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Number of Strings to Check
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gzip hash means mostly longest_match() has few strings to check.
Training data more evenly spread.

Log scales



Length of Strings to Check

gzip heuristics limit search ≤ 258

1% 0 bytes
0% 1 bytes
0 2 bytes

30% 3 bytes
26% 4 bytes
25% 5 bytes
14% 6 bytes



Fitness

• Pop=1000. 100 kernels compiled together.

– Compilation time = 7×run time.

• Fitness testing

– first test’s data up loaded to GPU 295 GTX.

– 1000 CUDA kernels run on first test.

– Each kernel in own block. 1000−1.6 106 thread

– Loop until all 100 tests run.

• Answers compared with gzip’s answer.

• performance = Σ|error| + penalty

– kernels which return 0 get high penalty.



Debug

• Debugging hard

• Eventually replaced last member of evolved
population with dummy

• Dummy reflects back input to host PC.

• Enables host to check:

– Training data has reached GPU

– Kernel has been run

– Kernel has read its inputs

– Kernel’s answer has been returned to host PC.
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Performance of Evolving Code

17



Fall in number of poor programs
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71% useless constants in generation 0

7% constants



Evolution of program complexity
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Evolved gzip matches kernel
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Parse tree of solution
evolved in gen 55.
Ovals are binary decision
rules. Red 2nd alternative
used.



Evolved gzip matches kernel
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__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2)
{
int thid = 0;
int pout = 0;
int pin = 0 ;
int offset = 0;
int num_elements = 258;
for (offset = 1 ; G_idata( strstart1+ pin ) == G_idata( strstart2+ pin ) ;offset ++ )

{
if(!ok()) break;
thid = G_idata( strstart2+ thid ) ;
pin = offset ;

}
return pin ;
}

Blue - fixed by template.
Black - default

Red - evolved
Grey – evolved but no impact.



Conclusions
• Have shown possibility of using genetic

programming to automatically re-engineer
source code

• Problems:
– Will users accept code without formal

guarantees?

– Evolved code passes millions of tests.

– How many tests are enough?

• First time code has been automatically
ported to parallel CUDA kernel by an AI
technique.
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END
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A Field Guide To
Genetic Programming

http://www.gp-field-guide.org.uk/

Free
PDF



The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

Contact W.Langdon to get your GP papers included

href link to list of your GP publications. For example mine is
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/WilliamBLangdon.html

Search the GP Bibliography at
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html


