Evolving a CUDA Kernel from an
nVidia Template

W. B. Langdon

CREST lab,
Department of Computer Science

-

7 ING'S
College
[LONDON

University of London

Y

:

5
-

CREST

Introduction

e Using genetic programming to create C
source code

— How? Why?
* Proof of concept: gzip on graphics card
— Template based on nVidia kernel

— BNF grammar
— Fitness

e Lessons (it can be done!)
o Future? GP to optimise kernel?

W. B. Langdon, King's London

CREST

GP to write source code

 \When to use GP to create source code
— Small. E.g. glue between systems.
— Hard problems. Many skills needed.

— Multiple conflicting ill specified non-functional
requirements

 GP as tool. GP tries many possible
options. Leave software designer to
choose between best.

W. B. Langdon, King's London

GP Automatic Coding

e Target small unit.

e Use existing system as environment
nolding evolving code.

« Use existing test suite to exercise existing
system but record data crossing interface.

e Use inputs & answer (Oracle) to train GP.
 How to guide GP initially?
e Clean up/validate new code

W. B. Langdon, King's London

CREST

GP Automatic Coding

(Instrumented) Original Program

vy

Module to be replaced Record data flows

'y

e Actual data into and out of module act as
de facto specification.

* Evolved code tested to ensure it responds
like original code to inputs.

e Recorded data flows becomes test Oracle.

Proof of Concept: gzip

 Example: compute intensive part of gzip
 Recode as parallel CUDA kernel
e Use nVidia’s examples as starting point.

« BNF grammar keeps GP code legal,
compliable, executable and terminates.

e Use training data gathered from original
gzip to test evolved kernels.
 \Why gzip

— Well known. Open source (C code). SIR test
suite. Critical component isolated. Reversible.

CUDA 2.3 Template

e nVidia supp
e Choose sim

led 67 working examples.

nlest, that does a data scan.

(We know gzip scans data).

* Nalve template too simple to give speed
up, but shows plausibility of approach.

 NB template knows nothing of gzip
functionality. Search guided only by fithess

function.

W. B. Langdon, King's London 7

CREST

scan naive kernel.cu

//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add
strstartl strstart2, const.
move offset and n, rename n as num_elements
WBL 14 r1.11 Remove crosstalk between threads threadldx.x, temp -> g_idata[strstartl/strstart2]
__device scan_naive(int * , const * , const , const)
{

llextern __shared__ uch temp]];

= 0; /lthreadldx.x;
= 01
= 01
= 258;

<3var> [*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : O;
for (offset = 1; offset < num_elements; offset *= 2)
{

pout = 1 - pout;

pin =1 - pout;

Il __syncthreads();

[temp[pout* num_elements+thid] = temp[pin*num_elements+thid];

<3var> = g_idata[strstart+pin*num_elements+thid];

If (thid >= offset)

<3var> += ¢g_idata[strstart+pin*num_elements+thid - offset];
}
/I __syncthreads();
g_odata[threadldx.x] = <3var>

CREST

BNF grammar

scan_naive kernel.cu converted into
grammar (169 rules) which generalises code.

<linel10-18> = " | <linel0-18a>

<linel0-18a> = <linel0e> <linell> <forbody> <line18>
<linell> = “{\n" "if('ok()) break;\n"

<linel8> = “\n"

<linel0e> = <linel0> | <line1l0el>

<linel0el> = "for (offset =" <linel0.1>";" <linel0e.2> ";offset" <line10.4> ")\n"
<line10.1> = <line10.1.1> | <intexpr>

<linel0.1.1> = "1" | <intconst>

<linelOe.2> = <linel0e.2.1> | <forcompexpr>
<linelOe.2.1> = "offset" <linel0.2> <linel10.3>
<linel0.2> = "<" | <compare>

<line10.3> = <line10.3.1> | <intexpr>

<linel0.3.1> = "num_elements" | <intconst>
<line10.4> = "*= 2" | <intmod>

<intmod> "++" | <intmod2>

<intmod2> "*=" <intconst>

gzip

e gzip scans input file looking for strings that
occur more than once. Repeated

seqguences of bytes are replaced by short
codes.

* n? reduced by hashing etc. but gzip still
does 42 million searches (sequentially).

 Demo: convert CPU hungry code to
parallel GPU graphics card kernel code.

W. B. Langdon, King's London 10

CREST

/* mmzmzzzsszszzzsszssssscsosssEESEEOESESEEEESEEESCEESNSSCEEEISESSSSEEEISSSEERER
* Set watch_start tn the langest mateh starting at the given string and

* return its length. Matches shorter or equal to prev_length are discarded,

+ in which caoc the reoult is ecqual to prev_length and match_otart i

* garbage.

* IN assertions: cur_match is the head of the hash chain for the current

*/ string (strstart) and its distance is <= MAX DIST, and prev length >= 1

*

#1Fndef ASHMY

/* For MSDOS, 05/2 and 386 Unix, an optimized version is in match.asm or
+ match. o. The code io functionally cquivalent, oo you con vac the C version
* 1f desired.

.

int longest match{cur match)
IPos cur_match; /* current match */

{
unsigned chain_length = max_chain_length; /* max hash chain length */
register uch *scan - window + strstart, /* current string */
register uch *match; /* matched string */
register int len; /* length of current match =/
int best len = prev length; /* best match length so far */

IPos limit = strstart > (IPos)MAX DIST ? strstart - (IPos)MAX DIST : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,

* we prevent matches with the string of window index 0.

*f

/* 'lhe code is optimized for HASH BLIS >= 8 and MAX MATUH-Z multiple of L6,

* It is easy to gqet rid of this optimization if necessary
*

#1f HASH BITS ¢ 8 || MAX MATCH |= 258
error: Code too clever

#endif

#1rdet UNALLGNED UK
/* Compare two bytes at a time. Note: this is not always beneficial.
* Try with and without -DUNALIGNED_OK to check
*/
register uch *strend = window + strstart + MAX MATCH - 1;
register ush scan_start - *(ush*)scan,
register ush scan_end = #*(ush*) (scan+best_len-1);

Felse
register uch *strend = window + strstart + MAX MATCH;
register uch scan_endl = scan|[best_len-1];
register uch scan_end = scan|[best_len]:

#endif

/* Do not waste too much time if we already have a good match: */
1t {prev_length >= good_match) {
chain_length >>= 2;

}
Assert(strstart <= window_size-MIN_LOOKAHEAD, "insufficient looks

du
Assert(cur_match < strstart, "no future");
match = window + cur_match;

/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:

*f
#10 (Ueline] (UNALIGNED_OK) &% MAX_MATCH == 258)
/* This code assumes sizeof (unsigned short) == 2. Do not use
* UNALIGNED_OK 1t your compiler uses a ditterent size.
*
if (*(ush*) (match+best_len-1) != scan_end ||
* (ush*)match !- scan_start) continue;

A4 IL is bl necessary Lo cumpare svan[2] ol malol[2] since Lhey aie
* always equal when the other bytes match, given that the hash keys

* are equal and that HASH _BITS »>= 8. Compare 2 bytes at a time at
+ strstart+3, +5, ... up to strstart+257 We check for insufficient
*+ lookahead only every 4th comparison; the 128th check will be made
* at strstart+257. If MAX MATCH-2 is not a multiple of 8, it is

* necessary to put more guard bytes at the end of the window, or

* to check more often for insufficient lookahead.

scan++, match++;

{
} while (*{ush*) (scan+=2) == *(ush*) (match+=2) &%
{ush) (scan+=2) == *(ush*) (match+=2) &%
(ush) (scan+=2) == *(ush*) (match+=2) &%
(ush) (scan+=2) == *(ush*) (match+=2) &%
scan < strend);
/* The funny "do {}" generates better code on most compilers */

/* Here, scan <= window+strstart+257 */
Assert(scan <= window+(unsigned) (window_size-1), "wild scan");
1f (*scan == *match) scan++;

len = (MAX MATCH - 1) - (int) (strend-scan);
scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */
if (match[best_len] != scan_end ||
match[best len-1] != scan_endl ||
*match I= *scan Il
*++match I= scan(1]) continue;

/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)

* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that

* the hash keys are equal and that HASH_BITS »>= 8.

*f

scan += 2, match++;

/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.

*f

do {

} while (*++scan == *++match &% *++scan == *++match &%
*++scan == *++match && *++scan == *++match &%
*:+scan == *++match &% *++scan == *+imatch &%
*s+scan == *++match &% *++scan == *++match &%

scan < strend);

len = MAX MATCH - (int) (strend - scan);
scan = strend - MAX_MATCH;

endif /* UNALIGNED OK */

1f (len > best len) {

match_start = cur_match;

best_len = len;

1f (len >= nice_match) break;
#1fdef UNALIGNED_OK

scan_end = *(ush?*) (scan+best_len-1);
#else

scan_endl = scan[best_len-1];

scan_end = scan|[best_len];
#endif

H
} while ((cur_match = prev|[cur_match & WMASK]) > limit
&& --chain_length != 0});

return best_len;

Fitness

 Instrument gzip.

 Run gzip on SIR test suite. Log all inputs
to longest_match(). 1,599,028 records.

e Select 29,315 for training GP.
 Each generation uses 100 of these.

W. B. Langdon, King's London

12

CREST

Number of Strings to Check

gzip 211 SIR calling longest_natch, HBL 29 Dec 2689

T T T SN S S S S S S S S S S e S S S S

N ‘gzip SIR test suite +
% + 29314 GP training data
100008 + - + 1
+
. + -
e
% ++
= Y
]
° 16688 [%-r* 1
o iy +
£
3]
3 Mk -
: e
I = &
& &
€ 1eee | W;% -
=]
% *
: %
.E S + ++ 3
2 — 2
168 et -
+ i S]
18 1 1 L 1

1 2 4 8 16 32 64 128 256 512 1624
Searches per call langdon/cuda/sdk/pro jects/gzip/ga2 Log SCa| es

gzip hash means mostly longest_match() has few strings to check.
Training data more evenly spread. 13

CREST

RN _
Length of Strings to Check
1% O bytes gzip 211 SIR calling longest_natch, HBL 29 Dec 2009
0% 1 bytes =+ ' T " RLL 6P training data
0 2 bytes -
30% 3 bytes ==+
26% 4 bytes
25% 5 bytes 3 |
14% 6 bytes $
gl 18680
% i1eee
_é 168
18
ol |

e 1 2 3 456 16 20 30 46 60 90 187 258
Length of nmatch langdon/cuda/sdk/pro jects/gzip/ga2

gzip heuristics limit search < 258

Fithess

 Pop=1000. 100 kernels compiled together.
— Compilation time = 7Xxrun time.

e Fitness testing
— first test’s data up loaded to GPU 295 GTX.
— 1000 CUDA kernels run on first test.

— Each kernel in own block. 1000-1.6 10° thread
— Loop until all 100 tests run.

 Answers compared with gzip’s answer.

« performance = 2|error| + penalty
— kernels which return 0 get high penalty.

Debug

* Debugging hard

 Eventually replaced last member of evolved
population with dummy

 Dummy reflects back input to host PC.

e Enables host to check:
— Training data has reached GPU

Kerne
Kerne

Kerne

has been run
has read Its Inputs
's answer has been returned to host PC.

16

CREST
f“N\<ﬂ‘\N<-‘\\\

Performance of Evolving Code

Snallest error

16008868

460808
200008
16000

4800
2000
1000

400
200
168

48
20
18

@ =N A

gzip 211 SIR pPopSize=1866 HBL 29 Jan 2018

N A ' e i ' Best in popﬁlation —_—
Y NS iy Nunber of solutions i
i .’"'-\'"’\ | J
g || || d
I |/ || I
N TEERY 743 |
||"11 ‘r . e e e et e ==
L | ‘.\;' -
i | J
|
i | |
! |
_ | _
| |
i ‘ | | |
- || ¥ ‘
- ||\ | 1
i | |
'hi
8 20 40 60 86 166
Generation langdon/cuda/sdk/pro_jects/gzip

17

CREST

TN
Fall

INn number of poor programs

GP individuals, Population 1668

780

600 |

560

480

300

288

168 r

gzip 211 SIR pPopSize=18008 HBL 29 Jan 2618

T T L]
Fixed answer kernel

£ M A A .

§ N \/ S
14 Y

A« 7% constants

\; /"‘ '-\I .‘,"__‘- Vad

8 28

40

60

8e

180

Generation

71% useless constants in generation O

langdon/cuda/sdk/pro_jects/gzip/ga2

18

CREST

" Evolution of program complexity

Frequency {(Population 1668)

480

350

300

2560

200

156

100

56

gzip 211 SIR pPopSize=1880 HBL 29 Jan 2610

L

" initial population
Generation 180 ——

1 1 A L

50

160 158 200 2568 360 3508 400 4508

Size (BNF decision rules) langdon/cuda/sdk/pro_jects/gzip/ga2

W. B. Langdon, King's London

19

CREST

Evolved gzip matches kernel

<start>

<line2> <line3> M%D\J\ <linel0-20> <line21>

Parse tree of solution
evolved in gen 55.

Ovals are binary decision
rules. Red 2nd alternative
used.

<line6> <line7.0> <line71> <line72>

| P =

<line10-18a> <line20.1>

A
<linel 1> <linel 8>

<linelQel>

i/ii <1ine1+2-l7b<©\

<lin615 17b> <linel2-13a>

<foruchcomp> f *
/
// \ <11nel7 > O

<foruchexpr2> <f0ruchexpr2> <3var> <11nel3 2.1>

!
<uchexprT> <uchexprT> ﬂlj

SF éi f

<uchexprl.2> @
!

o S

\

S'D <uchexprT> 20
- ¢

] |

O O

CREST

Evolved gzip matches kernel

__device__ int kernel978(const uch *g_idata, const int strstartl, const int strstart2)

{
int thid = 0;
Int pout = O;
intpin=20;
int offset = 0;
Int num_elements = 258;
G_idata(strstartl+ pin) == G_idata(strstart2+ pin) ;offset ++

thid = G_idata(strstart2+ thid) ;

pin = offset ;
return pin ;
}
Blue - fixed by template. Red - evolved
Black - default Grey — evolved but no impact.

21

CREST

Conclusions

 Have shown possibility of using genetic
programming to automatically re-engineer
source code

e Problems:

— WIll users accept code without formal
guarantees?

— Evolved code passes millions of tests.
— How many tests are enough?

* First time code has been automatically
ported to parallel CUDA kernel by an Al
technique.

W. B. Langdon, King's London

CREST

END

http://www.epsrc.ac.uk/ EPSRC

W. B. Langdon, King's London 23

A Fleld Guide To
Genetic Programming
http://www.gp-field-guide.org.uk/

A
Field
Guide
to

Genetic
Programming

Free
PDF

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.
http://www.cs.bham.ac.uk/~wbl/biblio/

Contact W.Langdon to get your GP papers included

href link to list of your GP publications. For example mine is
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/WilliamBLangdon.html

bibliography

Search the GP Bibliography at
http://linwww.ira.uka.de/bibliography/Ai/genetic.programming.htm| g

