
Nicolás Soca, José Luis Blengio, Nicolás Soca, José Luis Blengio, 

Martín Pedemonte Martín Pedemonte y Pablo Ezzattiy Pablo Ezzatti
Instituto de Computación, Facultad de Ingeniería, 

PUGACE, A Cellular Evolutionary 
Algorithm framework on GPUs

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

Instituto de Computación, Facultad de Ingeniería, 

Universidad de la República, Uruguay

2010 IEEE World Congress on Computational Intelligence

Barcelona, Spain



OutlineOutline

• Motivation & Objectives

• Graphic processing units

• Cellular Evolutionary Algorithms

• Related work

• PUGACE

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• PUGACE

• Experimental results

• Conclusions and future work



Motivation & ObjectivesMotivation & Objectives

• Parallel Evolutionary Algorithms:

– decrease execution time

– not only speed up the search: new exploration patterns

• Graphic Processing Units (GPUs):

– low cost platform for implementing parallel algorithms

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

– complex architecture

• Objective: 

– build a tool for easily developing cellular Evolutionary 

Algorithms (cEAs) on GPUs 



Graphic Processing UnitsGraphic Processing Units

• Architecture is intrinsically parallel 

• Shared memory multi-core processors

• Memory hierarchy:

– registers 

– shared block memory

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

– local memory

– global memory

• Programming tools for general purpose computing: CUDA and 

OpenCL 



Cellular Evolutionary AlgorithmsCellular Evolutionary Algorithms

• Single population structured in many small overlapped 

neighborhoods

• Each individual belongs to several neighborhoods

• An individual can only be mated for reproduction with 

individual of its neighborhood

• High-quality solution gradually spreads (diffusion)

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• High-quality solution gradually spreads (diffusion)



Related workRelated work

• All standard parallel strategies for Evolutionary Computation 

have already been implemented successfully on GPUs:

– master-slave

– island model

– cellular model

• cEAs on GPUs obtained good speedup values

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• cEAs on GPUs obtained good speedup values

• EASEA:

– generates code that automatically exploits GPU capabilities

– follows a master-slave model for evaluation of the population

• No proposals of generic framework



PUGACEPUGACE

• Generic framework for implementing cEAs on GPUs

• Problem related features must be implemented

• In line with: Mallba, JCell, ParadisEO, etc.

• Implemented in C and CUDA (version 2.1).

• Supports different problem encoding, selection policies, 

crossover operators and mutation operators

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

crossover operators and mutation operators

• Supports a local search method

• Can be extended to incorporate additional operators



PUGACE (2)PUGACE (2)

• Design:

– extensible: new evolutionary operators and 

neighborhood structures can be incorporated

– easy to use: implementation separated in 

several modules encapsulating different 

functionalities (CUDA limitations)

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

functionalities (CUDA limitations)

• First version: generality of the design favored over efficiency

• GPU aspects not considered in this version:

– maximizing the usage of shared block memory

– coalescing the access to memory



PUGACE (3)PUGACE (3)

• Population:

– always resided in the device memory

– arranged in a circular 1-dimensional structure

– individuals from both ends are copied to opposite end

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• Each individual executes in a different thread (blocks of 

varying size) 

• Neighborhood: configurable number of individuals to the left 

and right

• Application of crossover and mutation operator is decided at 

block level (to avoid thread divergence)

• Problem information preloaded on constant memory



PUGACE (4)PUGACE (4)

• Fitness values are stored in an auxiliary vector

• Fitness function evaluation uses an independent thread for 

each chromosome

• Generational replacement: each parent is replaced by the best 

one of its children

• Random numbers could be generated:

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• Random numbers could be generated:

– in the CPU and transferred to GPU in each generation (CPU idle 

times) 

– in the GPU with a specific algorithm based on a linear 

congruential method



Experimental results Experimental results 

• Quadratic Assignment Problem with a simple approach:

– permutation representation

– proportional selection

– partially mapped crossover 

– mutation operator: randomly swap two values

– local search:  randomly selects a position and makes the best 

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

– local search:  randomly selects a position and makes the best 

exchange between the selected position and the rest 

• Parameters:

– population = 2048, neighborhood length = 4

– thread blocks = 32

– thread per block = 64

• Pentium dual-core 2.5 GHz with 2 GB RAM and a nVidia 

GeForce 9800 GTX+ 



Experimental results (2) Experimental results (2) 

• Best known solution in 13 out of 14 instances

• More than 5 Hits in 10 runs for instances with less than 30 

facilities

• Less than 5 Hits in 10 runs for instances with more than 30 

facilities

• Acceptable for a simple approach

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• Acceptable for a simple approach



Experimental results (3) Experimental results (3) 

• Tests performed to evaluate reductions in runtime obtained 

by implementing a cEA on a GPU rather than on a CPU

• Runtime reductions ranged between 15 and 19

• Increase in number of individuals impacts in a sublinear

increase in the execution time (10% when doubling the 

population size)

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

population size)



Conclusions and future workConclusions and future work

• Conclusions: 

– Proposal of a tool for easily implementing cEA on GPUs

– High reductions on execution time 

• Future work: 

– second version:

• coalescing the access to memory

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs

• coalescing the access to memory

• maximizing the usage of shared block memory

• upgrade to CUDA 3.1

– use the framework to solve a concrete problem

– new experiments on different devices 



Thank you for your attentionThank you for your attention

PUGACE, A Cellular Evolutionary Algorithm framework on GPUs


