

Abstract— We present a successful design for a high-

performance, low-resource-consuming hardware for Support
Vector Classification and Support Vector Regression. The
system has been implemented on a low cost FPGA device and
exploits the advantages of parallel processing to compute the
feed forward phase in support vector machines. In this paper
we show that the same hardware can be used for classification
problems and regression problems, and we show satisfactory
results on an image recognition problem by SV multiclass
classification and on a function estimation problem by SV
regression.

I. INTRODUCTION
ervasive computing systems are promoting emerging
application in health care, entertainment, sensor

networks, environmental monitoring, etc.. These
applications require low size, low power and hence
constrained resource processors, and, in most cases, real
time operation.

Ubiquitous applications face decision making problems
based on information from multiple sensors. In most cases a
good analytical description of the system does not exist so it
is necessary to model it from a set of empirical data. One of
the challenges is to provide computing platforms that deal
with both needs: constrained resources hardware and the
ability of learning from examples.

This paper focuses on the development of a high efficient
resource-consuming special purpose FPGA-based digital
system for complex classification and regression problems.
Neural processors for vision [1] and more general
applications [2] have been implemented on FPGAs. These
devices provide many advantages such as solid development
tools, easy reprogrammability and fast development time
without losing performance with respect full-custom systems
design. Additionally, real parallel processing can be
achieved, which is an advantage over other embedded
platforms, as microcontrollers [3] and DSPs.

The hardware we propose has been designed based on
Support Vector Machines (SVM) learning paradigm, which
have a solid theoretical background and more clear
formulation compared to neural networks [4][5]. Most

significant contributions to this field, report FPGA
implementation of SVMs for specific target applications
[6][7][8] and problems dealing with relatively simple dataset
and binary classification problems. However there are a few
works focused into generic applications: In [9] ongoing
research into a generic and versatile architecture for SVM
classification is described. A co-processor that support both
training and testing phases is presented in [10]. In [11] a
detailed study of the effects of the reduction in precision of
the SVM parameters and the use of fixed point arithmetic is
reported.

In this paper we propose a hardware based on FPGAs that
supports both Support Vector (SV) Classification and
Support Vector Regression. The structure of the paper is as
follows. In the next section we describe the basics of SV
classification and SV regression. In section 3 we justify the
use of common hardware architectures for the feed forward
phase of SV classification problems and SV regression
problems. In section 4 we present its results for a multiclass
image classification problem using the COIL database. In
section 5 we present the firsts results for a real-valued
function estimation problem by regression. Finally we
present conclusions and further research in section 6.

II. SV CLASSIFICATION AND REGRESSION

A. Classification
SVM were originally developed for binary classification

[4]. For a binary problem, given a set of l data elements xi
and their corresponding class yi:
() () () }{ ll yyy ,,...,,, 2,211 xxx where n

i R∈x and 1±=iy ,
the training step consists of resolving the following
quadratic programming problem with linear restrictions [5].

()

0

,,1for 0 subject to

,
2
1 minimize

1

11,

=

=≤≤

−

∑

∑∑

=

==∈

l

i
ii

i

l

i
i

l

ji
jijijilR

y

liC

xxKyy

α

α

ααα
α

…
 (1)

Where K(xi,xj) is a kernel function and C is a

regularization constant that works as a constraint for the
value of the Lagrange multipliers αi.

FPGA Implementation of a Support Vector Machine for
Classification and Regression

Marta Ruiz-Llata, Guillermo Guarnizo and Mar Yébenes-Calvino

P

The authors are with the Department of Electronic Technology,
Universidad Carlos III de Madrid, Calle Butarque 15, 28911, Leganés,
Madrid, Spain (e-mail: marta.ruiz-llata@ing.uc3m.es).

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2037

The feed-forward classification function of a new, non-
learned, vector x is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

bKyy
SVN

i
iii

1

),(sgn)(xxx α (2)

where parameters αi and b are given in the learning phase,
most resulting equal to 0. Those training patterns whose
corresponding αi parameters are not equal to 0 are the
support vectors (SV), and thus the summation in equation
(2) extends only to the number of support vectors (NSV). The
learning process matches the model capacity to the data
complexity providing high generalization ability and
ensuring good performance on the future, previously unseen
data. Scarcity is also an advantage for the design of an
adaptive constrained resources specific hardware.

B. Regression
In this case the problem consists on estimating a real-

valued function. Given a set of l data samples xi and their
corresponding known outputs yi:
() () () }{ ll yyy ,,...,,, 2,211 xxx where n

i R∈x and Ryi ∈ ,
assuming a ε-insensitive loss function proposed by Vapnik
[4], the training step consists of resolving the following
quadratic programming problem with linear restrictions:

()() ()

() ()

()∑

∑∑

∑

=

==

=∈

=−

=≤≤

−−++

−−

l

i
ii

ii

l

i
iii

l

i
ii

l

ji
jijjiilR

liC

y

xxK

1

*

*

1

*

1

*

1,

**

*,

0

,,1for ,0 subject to

,
2
1 minimize

αα

αα

ααααε

αααα
αα

…
 (3)

where K(xi,xj) is a kernel function, C is the regularization
parameter and ε is a positive parameter which defines the
called insensitive zone inside of which the training errors are
ignored. C and ε are predefined constants.

The feed-forward estimation function of a new, non-
learned vector x is:

() bKy
SVN

i
iii +−=∑

=1

*),()(xxx αα (4)

where parameters αi, α*

i and b are given in the learning
phase. As in the classification model, only those resulting
support vectors are used in the feed-forward phase.

C. Parameter selection for hardware implementation
Typical Kernels are polynomial functions and Gaussian

functions. Other kernels have been proposed in the literature.
Our system uses the hardware-friendly kernel function

proposed in [13]. This kernel greatly simplifies the SVM
feed-forward phase computation in constrained hardware
while maintains good classification performance with
respect to the conventional Gaussian kernel [12][13]. Table
1 shows the examples of kernel functions.

Using the Hardware-Friendly kernel, the parameters to be

fixed prior the training step are the γ parameter of the kernel,
which is made γ =2p, the regularization parameter C and, in
the case of SV regression, the ε parameter. All these
parameters are selected taking in mind that (2) and (4) will
be solved in hardware using fixed-point arithmetic and low
resolution (8 bits or 16 bits word lengths). Input attributes xi
and associated outputs yi are normalized to the range [-1,+1].
Parameter γ =2p depends on the dimension of the sample
data xi. The goal is to constrain to the word length size the
result of the product of the γ parameter by the higher L1-
norm of a pair of sample patterns, that is, the maximum
value of the exponent of the hardware-friendly kernel
function. For example, if 2Ri ∈x then γ =2-1 [12] and if

1024Ri ∈x then γ =2-8. To determine C, and the ε parameter
in regression, we use an iterative training strategy with the
goal of minimizing errors while keeping a reduced number
of support vectors.

III. HARDWARE PLATFORM
The basic hardware architecture to perform (2) and (4) is

represented in Figure 1. It is composed of as many parallel
SV_blocks as the resulting number of support vectors (NSV),
a controller, which is a state machine, and a summation
block.

Fig. 1 Architecture for SV estimation function

TABLE 1
KERNEL FUNCTIONS

Kernel Description

Polynomial of degree d []di
T 1)(+xx

Gaussian ()22 2σxx −− ie
Hardware-friendly 12 xx −− iγ

2038

As can be seen in Figure 1,each SV_block_i associated to
support vector i, inputs vector x and outputs (5) in the case
of SV classification or (6) in the case of SV regression. The
summation block performs the addition of the results of all
SV_blocks and outputs the estimated value of y. The highest
bit is the sign bit which directly provides the class in the
case of classification. In the case of regression, all bits are
used to provide the normalized output.

12 xx −− i

iiy γα (5)

() 12* xx −−− i
ii

γαα (6)

In order to design SV_block_i, it can be easily shown that

equations (5) and (6) can both be represented by (7).

iE
iisign 12β (7)

where signi is a binary value that represents the class yi of
the support vector xi in the case of classification and the sign
of ()ii αα −* in the case of regression. iβ is the normalized

value of iα in the case of classification and ii αα −* in the

case of regression, due to restrictions in (1) and (3) in both
cases, the values of iα and ii αα −* are in the range from 0

to C. Finally 11 xx −−= iiE γ .

The internal architecture of one SV_block_i for the
calculation of (7) is represented in Figure 2. It is composed
of: Memory blocks, identified as M(·), the E1_block, a
CORDIC block and shift registers. Memory blocks store
support vector xi, its corresponding normalized weight βi and
its corresponding binary label signi.

The E1_block computes the value 11 xx −−= iE γ ; it is

designed taking into account the characteristics of the
dataset. The input attributes of the input data are introduced
sequentially, thus the final value of the L1-norm is obtained
after a number of clock cycles equal to the number of input
attributes, so if 2Ri ∈x then the L1-norm is obtained in two

clock cycles and if 1024Ri ∈x then 1024 clock cycles are
needed. E1_block provides two outputs, one associated with
its fractional part (F) and the other with the integer part (I).

The CORDIC block computes F
i 2α using a COordinate

Rotation DIgital Computer (CORDIC) algorithm as
described in reference [13]. CORDIC algorithms are a class
of hardware-efficient algorithms that provide iterative
solutions based on shifts and adds for the calculation of
trigonometric and transcendental functions [14]. We use this
algorithm to avoid the use of hardware multipliers in the
computation of the feed forward phase of the SVM, and
based on the use of this algorithm the computation is
performed in as many clock cycles as the number of bits
used to represent input parameters (8 or 16 in our
implementations). The integer part of E1 (I), is introduced in
the final calculations by means of a shift register that shifts
the result of the CORDIC block I times as

IF
i

IF
i

E
i 2222)(1 ααα == + . Last block adds 1 sign bit

according to the value of signi.
The implementation of the previous scheme represented in

figure 2 was carried out on an Altera EP2C20 Cyclone II
FPGA device. We have implemented two versions of the
system, the first one uses 8 bits resolution for representing
the following data: attributes xj of input vectors x={x1, x2,…,
xn} and support vectors xi, training yi and estimated outputs
y(x), associated weights βi and inputs and internal registers
of the CORDIC block. All data and functional blocks of the
system are stored in the FPGA device except inputs and
support vectors. The clock rate of the system, limited by
E1_block logic is 30 MHz. The 8-bit version of one
SV_block_i (see figure 2) uses about 180 logic cells, which
represent less than 1% of the selected low cost FPGA
device. The second version, which uses 16-bit resolution,
occupies less than 2% of the device. Taking into account the
controller and the summation block (see figure 1) we can
implement a Support Vector Machine for classification and
regression that process up to 42 support vectors in parallel
using 16-bit fixed point arithmetic or up to 86 using 8-bit
arithmetic.

IV. HARDWARE SV CLASSIFICATION
The performance of the system for a classification

problem is tested on a simplified COIL database [15]. Our
database is composed of 4 objects (4 classes). The samples
of each object are 8 bits grey scale images with a resolution
of 32×32 pixels. There are 72 different angular views of
each object (see Figure 3). These images are used directly as
inputs to the classifier, first converted to a vector of
32×32=1024 attributes as represented in figure 3.

In this section we face a multiclass classification problem.
SVM were originally developed for binary classification [4].
Several methods have been proposed where a multiclass
classifier is constructed by combining several binary
classifiers. We have chosen a “one-against-one” training
strategy, which means that assuming q classes we need to
train all possible pairs of classes, which results in q(q-1)/2
different SVMs to train. Compared to another typical
strategy, such as “one-against-all”, which trains q binary

Fig. 2 Block diagram of the module that computes the contribution of
each support vector

2039

classifiers, our approach provides a higher number of binary
classifiers, but simpler, and thus fits better in constrained
resources hardware in a modular way. The classification
strategy in the feed-forward phase is as in a knockout
tournament [15], hence q-1 classifiers are evaluated by the
hardware SVM.

As there are 4 classes (see Figure 3.a), 6 binary classifiers
are trained using MATLAB. We used an iterative training
strategy with the goal of minimizing classification errors
while keeping a reduced number of support vectors. The
training parameters are 82−=γ , 1C = and the number of
support vectors is limited to 10 per binary classifier.

In the hardware we used 8 bits per attribute to store each
of the 10 resulting support vectors, 8 bits to store its
corresponding normalized weight βi and an additional bit for
its binary label signi. The 1024 input attributes of the input
data are introduced sequentially, thus the final value of the
L1-norm is obtained after 1024 clock cycles in an 18 bit
accumulator register. Less significant 8 bits are discarded as
γ=2-8, the following 8 bits correspond to the fractional part of
E1 (F) and another two more significant bits of the
accumulator register correspond to the integer part of E1 (I).

The whole system, including 6 binary image classifiers,
fits in 75% of the logic elements of the FPGA EP2C20
Cyclone II selected device and a 64Kbytes external memory
to store all support vectors. The clock speed of the system is
30 MHz and the classification speed of the system, limited
by the reading of the external memory, is 2 ms. Figure 4
shows the error rate of each of the individual binary
classifiers obtained by HW simulation. The error rate is 0%
for three of them and below 3.3% for the other three cases.
The error rate of the 4-classes classifier, following the
strategy previously described is 4%. Lower error rate can be
achieved increasing the number of support vectors and
increasing resolution. 0% error rate is obtained when using
floating point arithmetic and up to 30-40 support vectors per
binary classifier [15].

V. HARDWARE SV REGRESSION
In this section we present preliminary results of the

hardware system for its use in SV regression problems. In
this case the goal is to estimate the sinc function for two
dimensions:

2 2
1 2

2 2
1 2

sin x x
y

x x

+
=

+
 (8)

The samples database (figure 5) is generated by randomly

choosing 400 input ()1 2,x x values, being (10,10)ix ∈ − , and
calculating its corresponding output value y. This is a valid
example for testing the function estimation problem [5].

The process of training and subsequent testing of data was

performed using MATLAB [16]. The first step is to find, for
our training data, the optimum values for the regularization
parameter C, the parameter which defines the insensitive
zone ε and the parameter for hardware friendly kernel γ.
After this training, we can verify the effectiveness of the
machine by testing it with new unknown data and comparing
these results with the real values for sinc function. The
testing data are 100 values of ()1 2,x x also randomly chosen
in the same range as sample data.

Figure 6 shows the firsts results obtained using the
hardware friendly kernel function described in Table 1 as the
kernel function [13] with a value of γ = 2-2. The other

Fig. 5. Sinc Function.

Fig. 4 Error rate of each one-against-one hardware classifier.
 (a)

 (b)

 (c)

Fig. 3 Implementation of a classifier of images (a) One sample of each
class (32×32 8-bit gray scale images). (b) Different samples of one
class. (c) High dimensional vector representing one sample: first row
of pixels are attributes 1 to 32, second row are attributes 33 to 64 and
so on up to 1024 attributes.

2040

training parameters are fixed to C=1 and ε=0.01. Figure 6
shows the support vectors that are obtained after the training
as marked by circles. The number of support vectors is 283.
This figure also shows the estimated outputs for the test
database. The average error between the estimated output
value and the real value is 0.02, which means that the SVM
performs quite well when using the hardware friendly
kernel.

VI. CONCLUSION
In this paper we describe a hardware implementation for

support vector classification and regression of data. The
architecture has been designed to be implemented in FPGAs
in order to achieve parallel processing. It has been conceived
as a general purpose architecture for embedded applications,
where the number of support vectors and the resolution of
the parameters can be configured. Depending on the problem
there will be different tradeoffs between classification or
regression estimation accuracy, processing speed and target
FPGA density, concerning cost or power consumption.
Additionally, there is not a limit to the dimension of the
input vectors (attributes) and the number of support vectors
that can be processed in parallel is only limited by the size of
the FPGA.

In most embedded applications, especially those requiring
a large number of high dimensional SVs (as the example
described in section IV), it is necessary to use external
memory because the internal memory of the device is not
large enough to store weights, labels and support vectors.
We assume this is a typical situation so memory
management is one of our main concerns for future research.
We are investigating techniques to improve the throughput
of the memory interface and methods to improve the
capacity of the memory, especially in the case of multiclass
classification where different binary classifiers share some
support vectors.

REFERENCES
[1] F. Yang, M. Paindavoine. "Implementation of an RBF Neural

Network on Embedded Systems: Real-Time Face Tracking and
Identity Verification". IEEE Transactions on Neural Networks 14(5),
1162-1175 (2003).

[2] P. Lee, E. Costa, S. McBader, L. Clementel, and A. Sartori.
“LogTOTEM: A Logarithmic Neural Processor and its
Implementation on an FPGA Fabric”, IJCNN 2007, Orlando, FL.

[3] A. Boni, F. Pianegiani, and D. Petri “Low-power and low-cost
implementation of SVMs for smart sensors” IEEE Transactions on
Instrumentation and Measurement, vol. 56, no. 1, pp.39-44, Feb. 2007.

[4] V. N.Vapnik : The Nature of Statistical Learning Theory, 2nd ed.
New York: Springer-Verlag, 1995, ch. 5-6.

[5] B. Schölkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2002.

[6] D. Anguita, A. Boni, and S. Ridella, "A digital architecture for support
vector machines: Theory, algorithm and FPGA implementation",
IEEE Trans. Neural Networks, vol. 14, no. 5, pp. 993-1009, Sep.
2003.

[7] W-Y. Choi, D. Ahn, S.B. Pan, K. Il Chung, Y. Chung, S-H. Chung.
“SVM-Based Speaker Verification System for Match-on-Card and Its
Hardware Implementation”. ETRI Journal, Volume 28, Number 3,
June 2006.

[8] J. Manikandan, B. Venkataramani, V. Avanthi, "FPGA
Implementation of Support Vector Machine Based Isolated Digit
Recognition System,", 2009 22nd International Conference on VLSI
Design, pp.347-352, 2009.

[9] C. Kyrkou, T. Theocharides. “SCoPE: Towards a Systolic Array for
SVM Object Detection”. IEEE Embedded Sytems Letters, Vol. 1, pp.
46-49, 2009

[10] S. Cadambi, I. Durvanovic, V. Jakkula, M. Sankaradass, E. Cosatto, S.
Chakradhar, H.P. Graf. ‘A Massively Parallel FPGA-based
Coprocessor for Support Vector Machines’. Proc. Of 17th IEEE
Symposium on Field Programmable Custom Computing Machines,
2009, pp. 115-122

[11] D. Anguita, A. Ghio, S. Pischiutta and S. Ridella “A support vector
machine with integer parameters”. Neurocomputing, 2008, Vol. 72,
pp. 480-489.

[12] M. Ruiz-Llata, M. Yébenes-Calvino.”FPGA Implementation of
Support Vector Machines for 3D Object Identification”, in ICANN
2009, Part I, LNCS 5768, pp. 467–474, 2009.

[13] D. Anguita, S. Pischiutta, S. Ridella and D. Sterpi, “Feed-Forward
Support Vector Machine Without Multipliers,” IEEE Trans. Neural
Netw.,vol. 17, no.5, pp. 1328-1331, Sep. 2006.

[14] R. Andraka, “A survey of CORDIC algorithms for FPGA based
computers,” in Proc. ACM/SIGDA 6th Int. Symp.Field Programmable
Gate Array, Monterey, CA, 1998, pp. 191-200.

[15] M. Pontil, A. Verri. “Support Vector Machines for 3D Object
Recognition”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 20 (6), 637-646 (1998).

[16] S. R. Gunn. Support Vector Machines for Classification and
Regression. Technical Report. Image Speech and Intelligent Systems
Research Group, University of Southampton, 1997.

Fig. 6 Results of training with the Hardware-Friendly Kernel with γ =
0.25, C = 1 and ε = 0.01. The number of support vectors obtained is
283/400.

2041

