
 
 

 

  
Abstract— We present a successful design for a high-

performance, low-resource-consuming hardware for Support 
Vector Classification and Support Vector Regression. The 
system has been implemented on a low cost FPGA device and 
exploits the advantages of parallel processing to compute the 
feed forward phase in support vector machines. In this paper 
we show that the same hardware can be used for classification 
problems and regression problems, and we show satisfactory 
results on an image recognition problem by SV multiclass 
classification and on a function estimation problem by SV 
regression. 

 

I. INTRODUCTION 
ervasive computing systems are promoting emerging 
application in health care, entertainment, sensor 

networks, environmental monitoring, etc.. These 
applications require low size, low power and hence 
constrained resource processors, and, in most cases, real 
time operation. 

Ubiquitous applications face decision making problems 
based on information from multiple sensors. In most cases a 
good analytical description of the system does not exist so it 
is necessary to model it from a set of empirical data. One of 
the challenges is to provide computing platforms that deal 
with both needs: constrained resources hardware and the 
ability of learning from examples. 

This paper focuses on the development of a high efficient 
resource-consuming special purpose FPGA-based digital 
system for complex classification and regression problems. 
Neural processors for vision [1] and more general 
applications [2] have been implemented on FPGAs. These 
devices provide many advantages such as solid development 
tools, easy reprogrammability and fast development time 
without losing performance with respect full-custom systems 
design. Additionally, real parallel processing can be 
achieved, which is an advantage over other embedded 
platforms, as microcontrollers [3] and DSPs. 

The hardware we propose has been designed based on 
Support Vector Machines (SVM) learning paradigm, which 
have a solid theoretical background and more clear 
formulation compared to neural networks [4][5]. Most 

 
 

significant contributions to this field, report FPGA 
implementation of SVMs for specific target applications 
[6][7][8] and problems dealing with relatively simple dataset 
and binary classification problems. However there are a few 
works focused into generic applications: In [9] ongoing 
research into a generic and versatile architecture for SVM 
classification is described. A co-processor that support both 
training and testing phases is presented in [10]. In [11] a 
detailed study of the effects of the reduction in precision of 
the SVM parameters and the use of fixed point arithmetic is 
reported.  

In this paper we propose a hardware based on FPGAs that 
supports both Support Vector (SV) Classification and 
Support Vector Regression. The structure of the paper is as 
follows. In the next section we describe the basics of SV 
classification and SV regression. In section 3 we justify the 
use of common hardware architectures for the feed forward 
phase of SV classification problems and SV regression 
problems. In section 4 we present its results for a multiclass 
image classification problem using the COIL database. In 
section 5 we present the firsts results for a real-valued 
function estimation problem by regression. Finally we 
present conclusions and further research in section 6. 

II. SV CLASSIFICATION AND REGRESSION 

A. Classification 
SVM were originally developed for binary classification 

[4]. For a binary problem, given a set of l data elements xi 
and their corresponding class yi: 
( ) ( ) ( ) }{ ll yyy ,,...,,, 2,211 xxx  where n

i R∈x  and 1±=iy , 
the training step consists of resolving the following 
quadratic programming problem with linear restrictions [5]. 
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Where K(xi,xj) is a kernel function and C is a 

regularization constant that works as a constraint for the 
value of the Lagrange multipliers αi. 
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The feed-forward classification function of a new, non- 
learned, vector x is: 
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where parameters αi and b are given in the learning phase, 
most resulting equal to 0. Those training patterns whose 
corresponding αi parameters are not equal to 0 are the 
support vectors (SV), and thus the summation in equation 
(2) extends only to the number of support vectors (NSV). The 
learning process matches the model capacity to the data 
complexity providing high generalization ability and 
ensuring good performance on the future, previously unseen 
data. Scarcity is also an advantage for the design of an 
adaptive constrained resources specific hardware. 

B. Regression 
In this case the problem consists on estimating a real-

valued function. Given a set of l data samples xi and their 
corresponding known outputs yi: 
( ) ( ) ( ) }{ ll yyy ,,...,,, 2,211 xxx  where n

i R∈x  and Ryi ∈ , 
assuming a ε-insensitive loss function proposed by Vapnik 
[4], the training step consists of resolving the following 
quadratic programming problem with linear restrictions: 
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where K(xi,xj) is a kernel function, C is the regularization 
parameter and ε is a positive parameter which defines the 
called insensitive zone inside of which the training errors are 
ignored. C and ε are predefined constants. 

The feed-forward estimation function of a new, non- 
learned vector x is: 
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where parameters αi, α*

i and b are given in the learning 
phase. As in the classification model, only those resulting 
support vectors are used in the feed-forward phase.  

C. Parameter selection for hardware implementation 
Typical Kernels are polynomial functions and Gaussian 

functions. Other kernels have been proposed in the literature. 
Our system uses the hardware-friendly kernel function 

proposed in [13]. This kernel greatly simplifies the SVM 
feed-forward phase computation in constrained hardware 
while maintains good classification performance with 
respect to the conventional Gaussian kernel [12][13]. Table 
1 shows the examples of kernel functions. 

 

 
Using the Hardware-Friendly kernel, the parameters to be 

fixed prior the training step are the γ parameter of the kernel, 
which is made γ =2p, the regularization parameter C and, in 
the case of SV regression, the ε parameter. All these 
parameters are selected taking in mind that (2) and (4) will 
be solved in hardware using fixed-point arithmetic and low 
resolution (8 bits or 16 bits word lengths). Input attributes xi 
and associated outputs yi are normalized to the range [-1,+1]. 
Parameter γ =2p depends on the dimension of the sample 
data xi. The goal is to constrain to the word length size the 
result of the product of the γ parameter by the higher L1-
norm of a pair of sample patterns, that is, the maximum 
value of the exponent of the hardware-friendly kernel 
function. For example, if 2Ri ∈x  then γ =2-1 [12] and if 

1024Ri ∈x  then γ =2-8. To determine C, and the ε parameter 
in regression, we use an iterative training strategy with the 
goal of minimizing errors while keeping a reduced number 
of support vectors.  

III. HARDWARE PLATFORM 
The basic hardware architecture to perform (2) and (4) is 

represented in Figure 1. It is composed of as many parallel 
SV_blocks as the resulting number of support vectors (NSV), 
a controller, which is a state machine, and a summation 
block. 
 

 

 
 

Fig. 1 Architecture for SV estimation function 

TABLE 1 
KERNEL FUNCTIONS 

Kernel Description 

Polynomial of degree d [ ]di
T 1)( +xx  

Gaussian ( )22 2σxx −− ie  
Hardware-friendly 12 xx −− iγ
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As can be seen in Figure 1,each SV_block_i associated to 
support vector i, inputs vector x and outputs (5) in the case 
of SV classification or (6) in the case of SV regression. The 
summation block performs the addition of the results of all 
SV_blocks and outputs the estimated value of y. The highest 
bit is the sign bit which directly provides the class in the 
case of classification. In the case of regression, all bits are 
used to provide the normalized output. 

 
12 xx −− i

iiy γα                  (5) 
 

( ) 12* xx −−− i
ii

γαα                (6) 
 
In order to design SV_block_i, it can be easily shown that 

equations (5) and (6) can both be represented by (7). 
 

iE
iisign 12β                   (7) 

 
where signi is a binary value that represents the class yi of 
the support vector xi in the case of classification and the sign 
of ( )ii αα −*  in the case of regression. iβ  is the normalized 

value of iα  in the case of classification and ii αα −*  in the 

case of regression, due to restrictions in (1) and (3) in both 
cases, the values of iα  and ii αα −*  are in the range from 0 

to C. Finally 11 xx −−= iiE γ . 

The internal architecture of one SV_block_i for the 
calculation of (7) is represented in Figure 2. It is composed 
of: Memory blocks, identified as M(·), the E1_block, a 
CORDIC block and shift registers. Memory blocks store 
support vector xi, its corresponding normalized weight βi and 
its corresponding binary label signi. 
 

 
 
The E1_block computes the value 11 xx −−= iE γ ; it is 

designed taking into account the characteristics of the 
dataset. The input attributes of the input data are introduced 
sequentially, thus the final value of the L1-norm is obtained 
after a number of clock cycles equal to the number of input 
attributes, so if 2Ri ∈x  then the L1-norm is obtained in two 

clock cycles and if 1024Ri ∈x  then 1024 clock cycles are 
needed. E1_block provides two outputs, one associated with 
its fractional part (F) and the other with the integer part (I). 

The CORDIC block computes F
i 2α  using a COordinate 

Rotation DIgital Computer (CORDIC) algorithm as 
described in reference [13]. CORDIC algorithms are a class 
of hardware-efficient algorithms that provide iterative 
solutions based on shifts and adds for the calculation of 
trigonometric and transcendental functions [14]. We use this 
algorithm to avoid the use of hardware multipliers in the 
computation of the feed forward phase of the SVM, and 
based on the use of this algorithm the computation is 
performed in as many clock cycles as the number of bits 
used to represent input parameters (8 or 16 in our 
implementations). The integer part of E1 (I), is introduced in 
the final calculations by means of a shift register that shifts 
the result of the CORDIC block I times as 

IF
i

IF
i

E
i 2222 )(1 ααα == + . Last block adds 1 sign bit 

according to the value of signi. 
The implementation of the previous scheme represented in 

figure 2 was carried out on an Altera EP2C20 Cyclone II 
FPGA device. We have implemented two versions of the 
system, the first one uses 8 bits resolution for representing 
the following data: attributes xj of input vectors x={x1, x2,…, 
xn} and support vectors xi, training yi and estimated outputs 
y(x), associated weights βi and inputs and internal registers 
of the CORDIC block. All data and functional blocks of the 
system are stored in the FPGA device except inputs and 
support vectors. The clock rate of the system, limited by 
E1_block logic is 30 MHz. The 8-bit version of one 
SV_block_i (see figure 2) uses about 180 logic cells, which 
represent less than 1% of the selected low cost FPGA 
device. The second version, which uses 16-bit resolution, 
occupies less than 2% of the device. Taking into account the 
controller and the summation block (see figure 1) we can 
implement a Support Vector Machine for classification and 
regression that process up to 42 support vectors in parallel 
using 16-bit fixed point arithmetic or up to 86 using 8-bit 
arithmetic. 

IV. HARDWARE SV CLASSIFICATION 
The performance of the system for a classification 

problem is tested on a simplified COIL database [15]. Our 
database is composed of 4 objects (4 classes). The samples 
of each object are 8 bits grey scale images with a resolution 
of 32×32 pixels. There are 72 different angular views of 
each object (see Figure 3). These images are used directly as 
inputs to the classifier, first converted to a vector of 
32×32=1024 attributes as represented in figure 3.  

In this section we face a multiclass classification problem. 
SVM were originally developed for binary classification [4]. 
Several methods have been proposed where a multiclass 
classifier is constructed by combining several binary 
classifiers. We have chosen a “one-against-one” training 
strategy, which means that assuming q classes we need to 
train all possible pairs of classes, which results in q(q-1)/2 
different SVMs to train. Compared to another typical 
strategy, such as “one-against-all”, which trains q binary 

 
 
Fig. 2 Block diagram of the module that computes the contribution of 
each support vector 
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classifiers, our approach provides a higher number of binary 
classifiers, but simpler, and thus fits better in constrained 
resources hardware in a modular way. The classification 
strategy in the feed-forward phase is as in a knockout 
tournament [15], hence q-1 classifiers are evaluated by the 
hardware SVM. 

 

 
 

As there are 4 classes (see Figure 3.a), 6 binary classifiers 
are trained using MATLAB. We used an iterative training 
strategy with the goal of minimizing classification errors 
while keeping a reduced number of support vectors. The 
training parameters are 82−=γ , 1C =  and the number of 
support vectors is limited to 10 per binary classifier. 

In the hardware we used 8 bits per attribute to store each 
of the 10 resulting support vectors, 8 bits to store its 
corresponding normalized weight βi and an additional bit for 
its binary label signi. The 1024 input attributes of the input 
data are introduced sequentially, thus the final value of the 
L1-norm is obtained after 1024 clock cycles in an 18 bit 
accumulator register. Less significant 8 bits are discarded as 
γ=2-8, the following 8 bits correspond to the fractional part of 
E1 (F) and another two more significant bits of the 
accumulator register correspond to the integer part of E1 (I). 

The whole system, including 6 binary image classifiers, 
fits in 75% of the logic elements of the FPGA EP2C20 
Cyclone II selected device and a 64Kbytes external memory 
to store all support vectors. The clock speed of the system is 
30 MHz and the classification speed of the system, limited 
by the reading of the external memory, is 2 ms. Figure 4 
shows the error rate of each of the individual binary 
classifiers obtained by HW simulation. The error rate is 0% 
for three of them and below 3.3% for the other three cases. 
The error rate of the 4-classes classifier, following the 
strategy previously described is 4%. Lower error rate can be 
achieved increasing the number of support vectors and 
increasing resolution. 0% error rate is obtained when using 
floating point arithmetic and up to 30-40 support vectors per 
binary classifier [15]. 

 
 

V. HARDWARE SV REGRESSION 
In this section we present preliminary results of the 

hardware system for its use in SV regression problems. In 
this case the goal is to estimate the sinc function for two 
dimensions: 

2 2
1 2

2 2
1 2

sin x x
y

x x

+
=

+
                 (8) 

 
The samples database (figure 5) is generated by randomly 

choosing 400 input ( )1 2,x x values, being ( 10,10)ix ∈ − , and 
calculating its corresponding output value y. This is a valid 
example for testing the function estimation problem [5]. 

 

 
The process of training and subsequent testing of data was 

performed using MATLAB [16]. The first step is to find, for 
our training data, the optimum values for the regularization 
parameter C, the parameter which defines the insensitive 
zone ε and the parameter for hardware friendly kernel γ. 
After this training, we can verify the effectiveness of the 
machine by testing it with new unknown data and comparing 
these results with the real values for sinc function. The 
testing data are 100 values of ( )1 2,x x  also randomly chosen 
in the same range as sample data. 

Figure 6 shows the firsts results obtained using the 
hardware friendly kernel function described in Table 1 as the 
kernel function [13] with a value of γ = 2-2. The other 

 
Fig. 5. Sinc Function. 

 
 

Fig. 4 Error rate of each one-against-one hardware classifier.  
              (a) 

 
             (b) 

 
             (c) 
 
Fig. 3 Implementation of a classifier of images (a) One sample of each 
class (32×32 8-bit gray scale images). (b) Different samples of one 
class. (c) High dimensional vector representing one sample: first row 
of pixels are attributes 1 to 32, second row are attributes 33 to 64 and 
so on up to 1024 attributes. 
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training parameters are fixed to C=1 and ε=0.01. Figure 6 
shows the support vectors that are obtained after the training 
as marked by circles. The number of support vectors is 283. 
This figure also shows the estimated outputs for the test 
database. The average error between the estimated output 
value and the real value is 0.02, which means that the SVM 
performs quite well when using the hardware friendly 
kernel.  

 

 
 

VI. CONCLUSION 
In this paper we describe a hardware implementation for 

support vector classification and regression of data. The 
architecture has been designed to be implemented in FPGAs 
in order to achieve parallel processing. It has been conceived 
as a general purpose architecture for embedded applications, 
where the number of support vectors and the resolution of 
the parameters can be configured. Depending on the problem 
there will be different tradeoffs between classification or 
regression estimation accuracy, processing speed and target 
FPGA density, concerning cost or power consumption. 
Additionally, there is not a limit to the dimension of the 
input vectors (attributes) and the number of support vectors 
that can be processed in parallel is only limited by the size of 
the FPGA.  

In most embedded applications, especially those requiring 
a large number of high dimensional SVs (as the example 
described in section IV), it is necessary to use external 
memory because the internal memory of the device is not 
large enough to store weights, labels and support vectors. 
We assume this is a typical situation so memory 
management is one of our main concerns for future research. 
We are investigating techniques to improve the throughput 
of the memory interface and methods to improve the 
capacity of the memory, especially in the case of multiclass 
classification where different binary classifiers share some 
support vectors. 
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Fig. 6 Results of  training with the Hardware-Friendly Kernel with γ = 
0.25, C = 1 and ε = 0.01. The number of support vectors obtained is 
283/400. 
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