
Data Mining Using Parallel Multi-Objective Evolutionary
Algorithms on Graphics Hardware

Man-Leung Wong, Member, IEEE, and Geng Cui

Abstract— An important and challenging data mining appli-
cation in marketing is to learn models for predicting potential
customers who contribute large profit to a company under
resource constraints. In this paper, we first formulate this
learning problem as a constrained optimization problem and
then converse it to an unconstrained Multi-objective Optimiza-
tion Problem (MOP). A parallel Multi-Objective Evolutionary
Algorithm (MOEA) on consumer-level graphics hardware is
used to handle the MOP. We perform experiments on a real-life
direct marketing problem to compare the proposed method with
the parallel Hybrid Genetic Algorithm, the DMAX approach,
and a sequential MOEA. It is observed that the proposed
method is much more effective and efficient than the other
approaches.

I. INTRODUCTION

How to improve marketing productivity or the return on
marketing investment under resource constraints is one of
the most challenging issues facing marketing professionals
and researchers. The issue seems to be more pressing in
hard economic times and given the increasing emphasis
on customer relationship management - containing cost and
channeling precious marketing resources to the high value
customers who contribute greater profit to a company. Such
situations include 1) upgrading customers - how to provide
sizable incentives to the customers who are the most likely
to upgrade and contribute greater profit over the long run?
2) modeling customer churn or retention - how to identify
and prevent the most valuable customers from switching
to a competitor? and 3) predicting loan default - how to
predict the small minority who default on their large loans
or credit card bills? This problem is particularly acute in
direct marketing operations that typically have a fixed budget
to target, from the vast list of customers in a company’s
database, those customers who are the most likely to respond
to a marketing campaign and purchase greater amounts.

Most marketing activities, as espoused by marketing schol-
ars and practitioners, are targeted marketing in nature -
to reach customers who are the most responsive to mar-
keting activities. Until recently, statistical methods such as
regression and discriminant analysis have dominated the
modeling of consumer responses to marketing activities.
These methods, however, suffer from two shortcomings.
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First, methods based on OLS regression (i.e., mean regres-
sion) survey the entire population and focus on the average
customer in estimating parameters. Segmentation methods,
such as discriminant analyses, are not informative of their
marketing responses. Thus, these methods by design are not
entirely compatible with the objectives of targeted marketing.
Second, researchers have so far focused on modeling either
consumer responses or purchase quantity. Few models jointly
consider consumers responses and the revenue/profit that they
generate.

These problems are particularly acute in modeling con-
sumer responses to direct marketing and result in suboptimal
performance of marketing campaigns. Conventional methods
generate the predicted purchase probabilities for the entire
population and do not focus on the top portion of the
population, e.g. the top 20% most attractive customers. This
constraint is crucial as most firms have a limited marketing
budget and can only target the most attractive customers.
Thus, improving the accuracy of predicting purchase and
potential sales or profit for these customers is crucial for
augmenting the performance of targeted marketing. This is
an urgent research problem given the increasing emphasis
on customer relationship management and differentiating
customers based on their profitability. Predicting loan default,
customer churning, and service intervention represent other
situations where resources are limited, budget constraints
need to be considered, and targeted efforts are required.

To improve the accuracy of customer selection for targeted
marketing, we formulate this problem as a constrained op-
timization problem. Recently, several researchers suggested
using Multi-Objective Evolutionary Algorithms (MOEAs) to
solve constrained optimization problems [1], [2].

However, MOEAs may execute for a long time for some
difficult problems, because several objective value evalua-
tions must be performed on huge datasets containing in-
formation about customers. Moreover, the non-dominance
checking and the non-dominated selection procedures are
also time consuming. A promising approach to overcome
this limitation is to parallelize these algorithms. In this paper,
we propose implementing a parallel MOEA for constrained
optimization within the CUDATM (Compute Unified Device
Architecture) environment on an nVidia Graphics Processing
Unit (GPU). We perform experiments on a real-life direct
marketing problem to compare our parallel MOEA with a
parallel Hybrid Genetic Algorithm (HGA) [3], the DMAX
approach [4], and a sequential MOEA. It is observed that the
parallel MOEA is much more effective and efficient than the
other approaches. Since consumer-level GPU are available
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in omnipresent personal computers and these computers are
easy to use and manage, more people will be able to use
our parallel MOEA to handle different real-life targeted
marketing problems.

In the rest of the paper, we first give an overview of
constrained optimization for direct marketing, MOEAs, and
GPU. In Section III, our parallel MOEA for constrained
optimization on GPU is discussed. The experiments and the
results are reported in Section IV. In Section V, conclusions
and possible future research are discussed.

II. OVERVIEW

A. Constrained Optimization for Direct Marketing

Recent emphasis on customer relationship management
require marketers to focus on the high profit customers as in
the 20/80 principle: 20% of the customers account for 80%
profit of a firm. Thus, another purpose of direct marketing
models is to predict the amount of purchase or profit from the
buyers. However, the distribution of customer sales and profit
data is also highly skewed with a very long tail, indicating a
concentration of profit among a small group of customers [5].
In empirical studies of profit forecasting, the skewed distribu-
tion of profit data also creates problem for researchers. Given
the limited and often a fixed marketing budget, the profit
maximization approach to customer selection, which include
only those customers with an expected marginal profit, is
often not realistic [6]. Thus, the ultimate goal of target
customer selection is to identify those customers who are the
most likely to respond as well as contribute a larger amount
of revenue or profit. Overall, unbalanced class distribution
and skewed profit data, i.e., the small number of buyers and
that of high profit customers remain significant challenges in
direct marketing forecasting [7]. Even a small percentage of
improvement in the predictive accuracy in terms of customer
purchase probability and profit can mean tremendous cost-
savings and augment profit for direct marketers.

To date, only a few researchers have considered treating
direct marketing forecasting as a problem of constrained
optimization. Bhattacharyya [4] applied a genetic algorithm
to a linear model that maximizes profitability at a given depth
of file using the frontier analysis method. The DMAX model
was built for a 10%-of-file mailing. The decile analysis indi-
cates the model has good performance as well as a very good
representation of the data as evidenced by the total profit at
the top decile. However, a closer look at the decile analysis
reveals the model may not be as good as initially believed.
The total profit shows unstable performance through the
deciles, i.e., profit values do not decrease steadily through the
deciles. This unstable performance, which is characterized
by major ”jumps” in several deciles, indicates the model
is inadequately representing the data distribution and may
not reliable for decision support. The probable cause for
this ’lack-of-fit’ is the violation of the assumption of normal
distribution in the dependent variable.

Optimization of the classifier does not necessarily lead to
maximization of Return On Investment (ROI), since max-

imization of the true positive rate is often different from
the maximization of sales or profit, which determines the
ROI under a fixed budget constraint. To solve this problem,
Yan and Baldasare [8] proposed an algorithm that uses
gradient descent and the sigmoid function to maximize the
monetary value under the budget constraint in an attempt to
maximize the ROI. By comparison with several classifica-
tion, regression, and ranking algorithms, they find that their
algorithm may result in substantial improvement of the return
on investment.

B. Multi-Objective Evolutionary Algorithms

Without loss of generality, we discuss the definitions for
minimization multi-objective problems. However, either by
using the duality principle [9] or by simple modifications to
the domination definitions, these definitions and algorithms
can be used to handle maximization or combined minimiza-
tion and maximization problems.

For a multi-objective function Γ from A(⊆ <N ) to a finite
set Y (⊂ <m,m ≥ 2), a decision vector ~a∗ = [a∗(1), a∗(2),
· · · , a∗(N)]T is Pareto optimal if and only if for any other
decision vector ~a ∈ X , their objective vectors ~y∗ = Γ(~a∗) =
[y∗(1), y∗(2), · · · , y∗(m)]T and ~y = Γ(~x) holds either

y∗(i) ≤ y(i) for any objective i (1 ≤ i ≤ m),

or there exist two different objectives i, j such that

(y∗(i) < y(i)) ∧ (y(j)∗ > y(j)) .

Thus, for a Pareto optimal decision vector ~a∗, there exists
no decision vector ~a which would decrease some objective
values without causing a simultaneous increase in at least one
other objective. These Pareto optimal decision vectors are
good tradeoffs for the multi-objective optimization problem.
For finding these vectors, dominance in the objective space
plays an important role. An objective vector ~y1 = Γ(~a1) =
[y1(1), y1(2), · · · , y1(m)]T dominates another objective vec-
tor ~y2 = Γ(~a2) if and only if the former is partially less than
the latter in each objective, i.e.,{

y1(i) ≤ y2(i), ∀i ∈ {1, · · · ,m}
y1(j) < y2(j), ∃j ∈ {1, · · · ,m}. (1)

It is denoted as ~y1 ≺ ~y2. Given the set of objective vectors
Y , its Pareto front Y ∗ contains all vectors ~y∗ ∈ Y that
are not dominated by any other vector ~y ∈ Y . That is,
Y ∗ = {~y∗ ∈ Y | 6 ∃~y ∈ Y, ~y ≺ ~y∗}. We call its subset a
Pareto optimal set. Each ~y∗ ∈ Y ∗ is Pareto optimal or non-
dominated. A Pareto optimal solution reaches a good tradeoff
among these conflicting objectives: one objective cannot be
improved without worsening any other objective.

In the general case, it is impossible to find an analytic
expression of the Pareto front. The normal procedure to find
the Pareto front is to compute the objective values of decision
vectors sufficiently enough, and then determine the Pareto
optimal vectors to form the Pareto front [10]. However, for
many multi-objective optimization problems, the Pareto front
Y ∗ is of substantial size, and the determination of Y ∗ is
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computationally prohibitive. Thus, the whole Pareto front
Y ∗ is usually difficult to get and maintain. All practical
implementations of MOEAs have maintained a bounded
archive of best (non-dominated) solutions found so far [11].

A number of elitist MOEAs have been developed to
address diversity of the archived solutions. The diversity
exploitation mechanisms include mating restriction, fitness
sharing (NPGA [12]), clustering (SPEA [13], SPEA2 [14]),
nearest neighbor distance or crowding distance (NSGA-
II [15]), crowding count (PAES [16], PESA-II [17],
DMOEA [18]), or some preselection operators [9]. Most of
them are quite successful, but they cannot ensure conver-
gence to Pareto optimal sets.

C. Graphics Processing Units

The demand from the multimedia and games industries
for accelerating 3D rendering has driven several graphics
hardware companies devoted to the development of high-
performance parallel graphics accelerator. This resulted in
the birth of the GPU (Graphics Processing Unit), which
handles the rendering requests using a 3D graphics appli-
cation programming interface (API). Developers can write
their own C-like programs, which are called shaders, on GPU
by using a shading language. Due to the wide availability,
programmability, and high-performance of these consumer-
level GPUs, they are also cost-effective for many general
purpose computations.

Recently, the CUDATM technology has been devel-
oped [19]. It allows researchers to implement their GPU-
based applications more easily. In CUDA, multiple threads
can execute the same kernel program in parallel. Threads
can access data from multiple memory spaces including
the local, shared, global, constant, and texture memory.
Because of the Single Instruction Multiple Thread (SIMT)
architecture of GPU, certain limitations are imposed. Data-
dependent for-loops are not efficient because each thread
may perform a different number of iterations. Moreover, the
if-then-else construct is also inefficient, as the GPU will
execute both true- and false-statements in order to comply
with the SIMT design. A number of GPU-based Evolutionary
Programming [20], [21], Genetic Algorithms [3], and Genetic
Programming [22], [23], [24], [25], [26], [27] have been
proposed by researchers.

III. PARALLEL MOEA FOR CONSTRAINED OPTIMIZATIN
ON GRAPHICS PROCESSING UNITS

We propose a learning algorithm to handle the con-
strained optimization and cost-sensitive problems. Let E =
{e1, e2, · · · , eK} be the set of K potential customers and
m(ei), 1 ≤ i ≤ K, be the amount of money spent by
the customer ei. Assume that r% of the customers will be
solicited. If we can learn a regression function to predict their
expected profits or induce a ranking function to arrange the
cases in descending order according their expected profits,
we can solicit the first dK ∗ r%e cases to achieve the goal
of maximizing the total expected profits of the solicited
cases. However, Yan and Baldasare [8] pointed out that this

approach tackles an unnecessarily difficult problem and often
results in poor performance.

On the other hand, we can learn a scoring function f that
divides the K cases into 2 classes: U and L. The sizes of U
and L should be |U | and |L|, respectively. Consider a case
ei in U , its f(ei) must be greater than the scoring values
of all cases in L. Moreover, the total of the expected profits
of all cases ei in U is maximized. In other words, we can
formulate the learning problem as the following constrained
optimization problem,

Find a scoring function f that

max{
∑
ei∈U

m(ei)}, U = {ei ∈ E| 6 ∃ej ∈ L[f(ei) ≤ f(ej)]}
(2)

subject to { |U | = dK ∗ r%e
|L| = K − dK ∗ r%e (3)

Since the orderings of all cases in U and all cases in
L are insignificant to our objective, it would be easier to
learn the scoring function that achieves an optimal partial
ranking (ordering) of cases. Although the problem of learning
the scoring function is easier, the procedure of finding U
and L is still time-consuming because it is necessary to
find the (100 - r) percentile of E. Thus, we simplify the
above constrained optimization problem to the following
constrained optimization problem,

Find a scoring function f and a threshold τ that

max{
∑
ei∈U

m(ei)}, U = {ei ∈ E|f(ei) > τ} (4)

subject to
|U | = dK ∗ r%e (5)

We can converse the constrained optimization problem to
an unconstrained multi-objective optimization problem with
two objectives [2],

max{
∑
ei∈U

m(ei)}, U = {ei ∈ E|f(ei) > τ} (6)

min{maximum(0, |U | − dK ∗ r%e)} (7)

By limiting f to be a linear function, a MOEA can be
used to find the parameters of the scoring function f and the
value of τ . We apply a parallel MOEA on GPU [28] that
finds a set of non-dominated solutions for a multi-objective
function Γ that takes a vector ~a containing the parameters of
the scoring function f as well as the value of τ and returns
an objective vector ~y, where ~a = [a(1), a(2), · · · , a(N)]T

and ~y = [y(1), y(2), · · · , y(m)]T . The algorithm is given in
Fig. 1.

In the algorithm given in Fig. 1, ~ai is a vector of variables
evolving and ~ηi controls the vigorousness of mutation of ~ai.
Firstly, an initial population is generated and the objective
values of the individuals in the initial population are calcu-
lated by using the multi-objective function Γ.

Next, the rankings and the crowding distances of the
individuals are found. All non-dominated individuals will
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1) Set t, the generation count, to 0.
2) Generate the initial population P (t) of µ individuals, each of which

can be represented as a set of real vectors, (~ai, ~ηi), i = 1, . . . , µ.
Both ~ai and ~ηi contain N independent variables,

~ai = {ai(1), · · · , ai(N)}
~ηi = {ηi(1), · · · , ηi(N)}

3) Evaluate the objective vectors of all individuals in P (t) by using the
multi-objective function.

4) Calculate the rankings and crowding distances of all individuals
• Execute Dominance-checking(P (t), C, S).
• Execute Non-dominated-selection(P (t), C, S, V , µ).

5) While the termination condition is not satisfied
a) For i from 1 to µ/2, select two parents P 1

parenti1
and

P 1
parenti2

from P (t) using the tournament selection method.
b) For i from 1 to µ/2, recombine P 1

parenti1
and P 1

parenti2
using single point crossover to produce two offspring that are
stored in the temporary population P 2. The population P 2

contains µ individuals.
c) Mutate individuals in P 2 to generate modified individuals that

are stored in the temporary population P 3. For an individual
P 2

i = (~ai, ~ηi), where i = 1, . . . , µ, create a new individual
P 3

i = (~ai
′, ~ηi

′) as follows:
for j = 1, . . . , N

a′i(j) = ai(j) + ηi(j)R(0, 1),
η′i(j) = ηi(j) exp( 1√

2N
R(0, 1) + 1√

2
√

N
Rj(0, 1))

where ai(j), ηi(j), a
′
i(j), and η′i(j) denote the j-th compo-

nent of ~ai, ~ηi, ~ai
′, and ~ηi

′ respectively. R(0, 1) denotes a
normally distributed 1D random number with zero mean and
standard deviation of one. Rj (0,1) indicates a new random
value for each value of j.

d) Evaluate the objective vectors of all individuals in P 3.
e) Combine the parent population P (t) with P 3 to generate a

population P 4 containing 2µ individuals.
f) Check the dominance of all individuals in P 4 by executing

Dominance-checking(P 4, C, S).
g) Select µ individuals from P 4 and store them in the next

population P (t+1). The individuals are selected by executing
Non-dominated-selection(P 4, C, S, V , µ).

h) t = t + 1.
6) Return the non-dominated individual with the smallest value for the

second objective in the last population.

Fig. 1. The MOEA Algorithm.

be assigned a ranking of 0. The crowding distance of a
non-dominated individual is the size of the largest cuboid
enclosing it without including any other non-dominated
individuals. In order to find the rankings and the crowding
distances of other individuals, the non-dominated individuals
are assumed to be removed from the population and thus
another set of non-dominated individuals can be obtained.
The rankings of these individuals should be larger than those
of the previous non-dominated individuals. The crowding
distances of the individuals can also be found. Similarly, the
same approach can be applied to find the rankings and the
crowding distances of all other individuals. The procedures
Dominance-checking and Non-dominated-selection are used
to find these values.

Then, µ/2 pairs of parents will be selected from the pop-
ulation. Two offspring will be generated for each pair of par-
ents by using crossover and mutation. In other words, there
will be µ offspring. The objective vectors of all offspring
will be obtained and the parent population will be combined
with the µ offspring to generate a selection pool. Thus there

are 2µ individuals in the selection pool. The rankings and
the crowding distances of all individuals in the selection
pool can be obtained by using the Dominance-checking and
Non-dominated-selection procedures. µ individuals will be
selected from the selection pool and they will form the next
population of individuals. This evolution process will be
repeated until the termination condition is satisfied.

Finally, the non-dominated individual with the smallest
value for the second objective in the last population will
be returned. In general, the computation of the parallel
MOEA can be roughly divided into five types: (I) fitness
value evaluation (steps 3 and 5(d)); (II) parent selection
(step 5(a)); (III) crossover and mutation (steps 5(b) and
5(c) respectively); (IV) the Dominance-checking procedure
designed for parallel algorithms (steps 4(a) and 5(f)); and
(V) the Non-dominated-selection procedure which selects
individuals from the selection pool (steps 4(b) and 5(g)). The
whole MOEA program, except the non-dominated selection
procedure, is executed on GPU. Thus, our parallel MOEA
gains the most benefit from the SIMT (Single Instruction
Multiple Threads) architecture of GPU.

IV. EXPERIMENTS

In this section, the parallel MOEA is applied to a data
mining problem in direct marketing. The objective of the
problem is to predict potential prospects from the buying
records of previous customers. Advertising campaign, which
includes mailing of catalogs or brochures, is then targeted
on the group of potential prospects. Hence, if the prediction
is accurate, it can help to enhance the response rate of the
advertising campaign and increase the return of investment
(ROI). The direct marketing problem requires ranking the
customer database according to the customers’ scores ob-
tained by the prediction models [29].

We compare the parallel MOEA, the parallel HGA [3],
and the DMAX approach for learning prediction models.
Since the parallel HGA is a single-objective optimization al-
gorithm, it is used to optimize the objective defined in Eq. 6.
The experiment test bed was an Intel Pentium DualTM E2220
CPU with an affordable PCI Express enabled consumer-
level GeForce 9600 GT display card, with 2,048 MB main
memory and 512 MB GPU memory. The CPU speed is 2.40
GHz and the GPU contains 64 unified shaders. Microsoft
Windows XP Professional, Microsoft Visual C++ 2008, and
nVidia CUDATM version 2.3 are used to develop the parallel
MOEA and the parallel HGA. On the other hand, the DMAX
approach is developed in Java. The following parameters
have been used in the experiments:
• population size: µ = 256
• tournament size: q = 2
• maximum number of generation: G = 500
• the percentage of customers to be solicited: r% = 20%

A. Methodology

The prediction models are evaluated on a large real-life
direct marketing dataset from a U.S.-based catalog company.
It sells multiple product lines of merchandise including gifts,
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apparel, and consumer electronics. This dataset contains the
records of 106,284 consumers in a recent promotion as
well as their purchase history over a twelve-year period.
Furthermore, demographic information from the 1995 U.S.
Census and credit information from a commercial vendor
were appended to the main dataset. Altogether, each record
contains 361 variables. The most recent promotion sent a
catalog to every customer in this dataset and achieved a 5.4%
response rate, representing 5,740 buyers.

Typical in any data mining process, it is necessary to
reduce the dimension of the data set by selecting the at-
tributes that are considered relevant and necessary. Towards
this feature selection process, there are many possible op-
tions. For instance, we could use either a wrapper selection
process or a filter selection process [30]. In a wrapper
selection process, different combinations are iteratively tried
and evaluated by building an actual model out of the selected
attributes. In a filter selection process, certain evaluation
function, which is based on information theory or statistics, is
defined to score a particular combination of attributes. Then,
the final combination is obtained in a search process. In this
experiment, we have applied the forward selection method
to select 17 variables, that are relevant to prediction, out of
the 361 variables.

Since direct marketers usually have a fixed budget and can
only contact a small portion of the potential customers in
their dataset (e.g., top 20%), simple error rates or overall
classification accuracy of models are not meaningful. To
support direct marketing and other targeted marketing de-
cisions, maximizing the number of true positives at the top
deciles is usually the most important criterion for assessing
the performance of prediction models [4], [31].

To compare the performance of different prediction mod-
els, we use decile analysis which estimates the enhancement
of the response rate and the profit for marketing at different
depth-of-file. Essentially, the ranked list is equally divided
into ten deciles. Customers in the first decile are the top
ranked customers that are most likely to give response and
generate high profit. On the other hand, customers in the
tenth decile are ranked lowest. To measure the performance
of a model at different depths of file, direct marketing
researchers have relied on the ”lift,” which is the ratio of
true positives to the total number of records identified by
the model in comparison with that of a random model at a
specific decile of the file. Thus, comparing the performance
of models across depths of file using cumulative lifts or
the ”response rate” are necessary to inform decisions in
direct marketing. Profit lift is the amount of extra profit
generated with the new method over that generated by a
random method. In this sense, the goal to achieve higher
lifts in the upper deciles becomes a ranking problem based
on the scores returned by the model and help to evaluate the
effectiveness of targeted marketing and to forecast sales and
profitability of promotion campaigns.

TABLE I
CUMULATIVE LIFTS OF THE MODELS LEARNED BY DIFFERENT

METHODS.

Decile Parallel MOEA Parallel HGA DMAX
0 358.47 (25.11) 147.53 (16.84)+ 310.60 (34.10)+

1 270.46 (9.54) 132.51 (6.98)+ 234.20 (20.50)+

2 219.11 (6.58) 125.68 (5.82)+ 195.50 (12.30)+

3 182.48 (3.92) 120.65 (5.88)+ 170.60 (6.30)+

4 156.11 (2.54) 115.84 (4.70)+ 150.90 (3.90)
5 138.17 (2.51) 111.59 (3.42)+ 136.60 (2.90)
6 124.95 (2.99) 109.12 (2.69)+ 125.20 (2.10)
7 114.51 (2.63) 106.17 (1.88)+ 115.40 (1.60)
8 106.77 (1.18) 103.66 (0.84)+ 106.90 (1.20)
9 100.00 (0.00) 100.00 (0.00) 100.00(0.00)

B. Cross-validation results

In order to compare the robustness of the prediction
models, we adopt a 10-fold cross-validation approach for
performance estimation. A data set is randomly partitioned
into 10 mutually exclusive and exhaustive folds. Each time,
a different fold is chosen as the test set and other nine
folds are combined together as the training set. Prediction
models are learned from the training set and evaluated on
the corresponding test set.

In Table I, the average of the cumulative lifts of the models
learned by different methods are summarized. Numbers in
the parentheses are the standard deviations. The highest
cumulative lift in each decile is highlighted in bold. The
superscript + represents that the cumulative lift of the model
obtained by the parallel MOEA is significant higher at 0.05
level than that of the models obtained by the corresponding
methods. The superscript − represents that the cumulative lift
of the model obtained by the parallel MOEA is significant
lower at 0.05 level than that of the corresponding models.

From Table I, the models generated by the parallel MOEA
have the average cumulative lifts of 358.47 and 270.46 in the
first two deciles respectively, suggesting that by mailing to
the top two deciles alone, the models generate over twice
as many respondents as a random mailing without a model.
Moreover, the average cumulative lifts of the models learnt
by the parallel MOEA are significantly higher than those of
the models obtained by the other methods for the first four
deciles.

The average of the cumulative profit lifts of the models
learned by different methods are summarized in Table II. It is
observed that the average cumulative profit lifts of the models
learnt by the parallel MOEA are significantly higher than
those of the models obtained by the other methods for the
first three deciles. The average profits for different models are
listed in Table III. Direct marketers can get $11,461.63 if they
use the parallel MOEA to generate models for selecting 20%
of the customers from the dataset. On the other hand, they
can get only $10,514.24 if they apply the DMAX approach
for selecting customers. The parallel HGA cannot learn good
models because the objective (i.e. Eq. 7) representing the
constraint is not considered in this approach.

In order to study the effect of the value of r on the
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TABLE II
CUMULATIVE PROFIT LIFTS OF THE MODELS LEARNED BY DIFFERENT

METHODS.

Decile Parallel MOEA Parallel HGA DMAX
0 621.00 (49.16) 242.35 (38.54)+ 550.80 (61.00)+

1 382.03 (14.14) 188.26 (16.5)+ 350.80 (24.10)+

2 278.72 (10.26) 166.24 (9.71)+ 261.70 (15.70)+

3 221.96 (8.05) 151.66 (12.04)+ 213.30 (7.40)
4 181.81 (4.90) 139.39 (9.96)+ 179.10 (5.30)
5 155.32 (5.27) 129.93 (5.91)+ 156.30 (4.20)
6 135.55 (4.51) 121.79 (4.74)+ 137.60 (3.90)
7 121.20 (3.71) 114.63 (2.95)+ 122.10 (3.00)
8 110.20 (1.57) 108.2 (1.16)+ 109.70 (2.00)
9 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

TABLE III
AVERAGE PROFITS FOR THE MODELS LEARNED BY DIFFERENT

METHODS.

Decile Parallel MOEA Parallel HGA DMAX
0 $9,339.04 $3,646.49 $8,254.34
1 $11,461.63 $5,650.60 $10,514.24
2 $12,545.96 $7,472.12 $11,765.58
3 $13,317.80 $9,077.67 $12,786.13
4 $13,631.38 $10,429.06 $13,420.04
5 $13,974.12 $11,677.79 $14,053.96
6 $14,234.71 $12,768.95 $14,434.60
7 $14,542.35 $13,744.59 $14,638.41
8 $14,867.79 $14,588.65 $14,795.77
9 $14,986.09 $14,986.09 $14,986.09

performance of the models learnt by the parallel MOEA,
we apply different values of r and compare the cumulative
lifts and the cumulative profit lifts of the induced models.
From Tables IV and V, it is found that our approach is quite
stable because it can learn good models for different values
of r.

C. Comparison between GPU and CPU approaches

We compare the CPU and the GPU implementations of the
MOEA. The average execution time of different steps of the
CPU implementation is summarized in Table VI. The ratios
of the time used in fitness evaluations to the overall execution
time are also reported in this table. It can be observed that
the fitness evaluation time is significantly higher than that
of the other steps because the training sets are very large.
The average execution time of the GPU implementation is

TABLE IV
CUMULATIVE LIFTS OF THE MODELS LEARNED BY THE PARALLEL

MOEA.

Decile r = 10% r = 30% r = 40% r = 50%

0 363.28 (24.59) 354.39 (27.66) 363.28 (24.59) 363.28 (24.59)
1 267.32 (8.40) 267.02 (12.43) 267.32 (8.40) 267.32 (8.40)
2 214.89 (5.59) 220.53 (7.28) 214.89 (5.59) 214.89 (5.59)
3 180.27 (4.61) 185.51 (4.78) 180.27 (4.61) 180.27 (4.61)
4 155.63 (3.76) 161.84 (3.74) 155.63 (3.76) 155.63 (3.76)
5 137.96 (3.03) 143.03 (1.98) 137.96 (3.03) 137.96 (3.03)
6 124.69 (2.68) 128.90 (1.85) 124.69 (2.68) 124.69 (2.68)
7 114.10 (1.95) 117.33 (1.48) 114.10 (1.95) 114.10 (1.95)
8 106.16 (1.50) 108.72 (0.85) 106.16 (1.50) 106.16 (1.50)
9 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

TABLE V
CUMULATIVE PROFIT LIFTS OF THE MODELS LEARNED BY THE

PARALLEL MOEA.

Decile r = 10% r = 30% r = 40% r = 50%

0 621.08 (46.31) 616.99 (51.25) 621.08 (46.31) 621.08 (46.31)
1 377.88 (14.76) 377.51 (18.49) 377.88 (14.76) 377.88 (14.76)
2 276.31 (9.96) 281.15 (11.13) 276.31 (9.96) 276.31 (9.96)
3 217.91 (6.91) 222.98 (10.05) 217.91 (6.91) 217.91 (6.91)
4 181.69 (5.75) 185.63 (6.98) 181.69 (5.75) 181.69 (5.75)
5 154.24 (4.39) 158.46 (3.67) 154.24 (4.39) 154.24 (4.39)
6 134.84 (4.25) 139.18 (3.18) 134.84 (4.25) 134.84 (4.25)
7 119.91 (2.99) 123.25 (2.36) 119.91 (2.99) 119.91 (2.99)
8 108.40 (2.52) 111.31 (0.82) 108.40 (2.52) 108.40 (2.52)
9 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

TABLE VI
THE AVERAGE EXECUTION TIME (IN SECONDS) OF THE CPU

IMPLEMENTATION. THE OT , DC , NS , AND FE ROWS SHOW THE

AVERAGE TIME IN PERFORMING RESPECTIVELY ALL STEPS, THE

DOMINANCE CHECKING STEP, THE NON-DOMINATED SELECTION STEP,
AND FITNESS EVALUATIONS.

Generation
100 150 200 250 300 350 400 450 500

OT 129.29 194.15 259.10 324.09 389.11 454.15 519.20 584.29 648.11
DC 0.50 0.79 1.06 1.34 1.60 1.88 2.15 2.41 2.67
NS 0.01 0.02 0.02 0.03 0.03 0.05 0.06 0.06 0.07
FE 128.78 193.35 258.02 322.73 387.48 452.22 516.99 581.82 645.37
ratio 0.9960 0.9959 0.9958 0.9958 0.9958 0.9958 0.9958 1.00 1.00

summarized in Table VII. The parallel MOEA takes about
126 seconds to learn a model. On the other hand, it takes
about 648 seconds and 7,315 sseconds respectively for the
CPU implementation of the MOEA and the DMAX approach
to learn a model.

Table VIII displays the speedups of the overall programs
and different steps of the programs. The speedups of the GPU
implementation of the dominance checking procedure ranges
from 1.95 to 2.26. On the other hand, the non-dominated
selection procedure of the GPU implementation is slower
than that of the CPU approach. The overall speedup is about
5.1.

TABLE VII
THE AVERAGE EXECUTION TIME (IN SECONDS) OF THE GPU

IMPLEMENTATION.

Generation
100 150 200 250 300 350 400 450 500

OT 25.27 37.76 50.32 62.95 75.61 88.32 101.05 113.81 126.37
DC 0.25 0.36 0.47 0.60 0.73 0.83 0.95 1.06 1.19
NS 0.02 0.04 0.04 0.05 0.07 0.08 0.09 0.10 0.11
FE 25.00 37.36 49.81 62.31 74.81 87.40 100.01 112.65 125.07
ratio 0.989 0.989 0.990 0.990 0.989 0.990 0.990 0.990 0.990

TABLE VIII
THE SPEEDUPS OF THE GPU IMPLEMENTATION WITH THE CPU

IMPLEMENTATION.

Generation
100 150 200 250 300 350 400 450 500

OT 5.116 5.142 5.149 5.148 5.146 5.142 5.138 5.134 5.129
DC 1.997 2.166 2.259 2.253 2.196 2.255 2.261 2.263 2.248
NS 0.547 0.436 0.485 0.487 0.439 0.576 0.622 0.615 0.620
FE 5.151 5.175 5.180 5.180 5.180 5.174 5.170 5.165 5.160
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Since a marketing campaign often involves huge dataset
and large investment, prediction models which can categorize
more prospects into the target list are valuable as they
will enhance the response rate as well as the return on
investment. From the experimental results, the prediction
models generated by the parallel MOEA are more effective
than the other models and the parallel MOEA is significantly
faster than the DMAX approach.

V. CONCLUSIONS

An important issue in targeted marketing is how to find po-
tential customers who contribute large profit to a firm under
constrained resources. In this research, we have proposed a
data mining method to learn models for identifying valuable
customers. We have formulated this learning problem as
a constrained optimization problem of finding a scoring
function f and a threshold value τ . We have then conversed
it to an unconstrained Multi-objective Optimization Problem
(MOP).

By limiting f to be a linear function, a parallel MOEA
on GPU has been used to handle the MOP and find the
parameters of f as well as the value of τ . We have used
10-fold cross-validation and decile analysis to compare the
performance of the parallel MOEA, the parallel HGA, and
the DMAX approach for a real-life direct marketing problem.
Based on the cumulative lifts, cumulative profit lifts, and
average profits, it can be concluded that the models generated
by the parallel MOEA significantly outperform the models
learnt by other methods in many deciles. Thus, the parallel
MOEA is more effective. Moreover, it is significantly faster
than the DMAX approach.

We have performed experiments to compare our parallel
MOEA and a CPU implementation of MOEA. It is found
that the overall speedup is about 5.1. Thus, our approach will
be very useful for solving difficult direct marketing problems
that involves large datasets and require huge population sizes.

For future work, we will extend our method to learn
non-linear scoring functions and apply it to other targeted
marketing problems under resource constrains.
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