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Predicting GeneChip Probe Performance by 

Interpreting Genetic Programming on a GPU

• What are GeneChips

• Why are GeneChip correlations important

• Preparation of training data

• Interpreting multiple GP programs 
simultaneously on GPU

• Simultaneously interpreting 256000 programs

– 16 384 (used in GeneChip analysis)

• Actual speed 0.3 - 1.0 billion GP ops /second

• Evolved predictor
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Affymetrix HG-U133A

• Simultaneously measure activity of 
(almost) all human genes. 

• mRNA concentration low, so data noisy. 

• 21 765 probesets with exactly 11 pairs of 
probes per gene.

• GeneChips cost approx £500 each.

• 6685 human tissue samples.
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How GeneChips work

• Gene produces messenger RNA

• mRNA treated with fluorescent maker

• Labelled marker prefentially binds to 
complementary base sequence on chip.

• Laser scans chip to measure 
concentration and location of fluorescent 
markers.



7

Target bound to 
DNA on chip

DNA tied to chip

DNA probe 25 bases long

Labelled 
Target

Probe and target 
linked by 
complementary bases 
to form double helix

A ↔ T  Adenine  binds to Thymine. 

C ↔ G Cytosine binds to Guanine
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Probeset Correlations
• 11 pairs (PM and MM) of measurements

• All measurements are designed to measure 
activity of same gene. They should be 
correlated.

• Calculate correlation. This shows some probes 
are NOT correlated with others.

• Use genetic programming to find systematic 
patterns which suggest a probe will be poor.

• Pattern can give insight into biochemistry and 
physics of GeneChips.  
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Example Correlation Matrix
Calculated correlations 
between all probe 
pairings for every 
probeset on HG-U133A.

Yellow high correlation. 
Blue low/no correlation.

Interpretation of Affymetrix
data controversial. 
Some signals not behaving 
as wanted.



W. B. Langdon, Essex 10

Training data
• 5.3 million correlation calculated.

• Exclude probesets with little or no signal
– 13 863 probesets with ≥3 pairs of highly 

correlated (>0.8) probes.

– 13863×22 probes (3.2 million pairs)

• Max correlation with rest of probeset

• Randomly split: training, validation, 
holdout:
– 101662 training examples. 

– 5200 highest and 5200 lowest used.
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Distribution of Max Correlation 
with rest of Probeset

GP uses 
lowest and 
highest

Each 
generation 
100 negative 
examples and 
100 positive 
examples
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Poor Correlation due to Probe Binding?

Looked at two possible 
probe interactions: 
Watson-Crick base pairing 
between adjacent probes 
(left) and Watson-Crick 
binding of a probe to itself.

Binding strength based on 
counting number of bonds.

DNA tied to chip
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Training Data-Summary
• 47 inputs. (Goal: predict maximal correlation 

between probe pairs)

• Index of both probes in their probeset.

• Flag to indicate PM or MM (both probes).

• Distances along transcript: between probes and 
distance from end of probeset (as integers and as 
fraction of distance spanned by probeset).

• Number of As, Ts, Gs and Cs (as integers and as 
fractions).

• 25 ATGC values (irrationally coded: -1/π, 1/π,      
-e-¾ and e-¾).

• Fraction of probe exposed assuming Watson-
Crick probe-probe binding or probe hairpin.



GPU nVidia GTX 8800
128 Stream Processors

Clock 575/1350 MHz  520 Gflops (max!)

Memory Clock         900 MHz

Memory                   768MB  (6 ×128)

Memory Interface    384-bit   (6 × 64)

Memory Bandwidth 86.4 GB/sec (max!)
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GPU chip connections

Linux 
PC

Hype

Actual?

Memory, GPU chip, video hardware etc on one card
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128 SP processors =
16 independent blocks of 8

Blue hardware dedicated to graphics
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General Purpose GPU Software Options

• Microsoft Research windows/DirectX

• BrookGPU stanford.edu

• GPU specific assemblers 

• nVidia CUDA

• nVidia Cg

• PeakStream

• Sh no longer active. Replaced by 

• RapidMind [Langdon, EuroGP 2008]

Most software aimed at graphics. Interest in using 
them (and CELL processors, XBox, PS3, game 
consoles) for general purpose computing: GPGPU.
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RapidMind

• High level, C++, 

• OpenGL/DirectX, Microsoft, Linux, notMac

• CELL and multi-core CPU as well as GPU. 

• Supported

– Not free but academics can get a developers 
license on request.

• Portable between GPUs (many) CELL but 
code locked-in to RapidMind 
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RapidMind Software
• Grew out of Sh meta-programming (Waterloo) 
• Not source compatible with Sh but very similar concepts. 
• High level, C++ very heavy use of templates 
• Compatible with free GNU C++ 
• Templates/GDB on occasion produce huge 

incomprehensible error messages leading to a difficult 
learning path. 

• Very active, new releases, targeting new hardware. 
Suggests RapidMind will be a viable option in the future 
as well as now. 

• Still feels like beta release. 18 bugs/gotchas reported.
• Active developer support 
• Integrated compiler for GPU works almost without 

problem. 
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Single Instruction Multiple Data
• GPU designed for graphics

– 32 bit floating point (2-23) precision

– Arrays max 4 million elements 

• Same operation done on many 
objects

– Eg appearance of many triangles, 
different shapes, orientations, 
distances, surfaces

– One program, many data → Simple 
(fast) parallel data streams

– GPU does not allow random write 
access to large arrays. (stack depth)

• How to run many programs on 
SIMD computer? 
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Interpreting many programs 
simultaneously

• Previous gpu gp used 
PC to compile 
individuals to gpu 
code. Then run one 
program in multiple 
data (training cases).

• Avoid compilation by 
interpreting tree

• Run single SIMD 
interpreter on GPU on 
many trees.
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GPU Genetic Programming Interpreter
• Programs wait for the interpreter to 

offer an instruction they need 
evaluating. 

• For example an addition. 

– When the interpreter wants to do an 
addition, everyone in the whole population 
who is waiting for addition is evaluated. 

– The operation is ignored by everyone else. 

– They then individually wait for their next 
instruction. 

• The interpreter moves on to its next 
operation. 

• The interpreter runs round its loop 
until the whole population has been 
interpreted. (Or a timeout?)
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• Data is pushed onto stack before operations pop 
them (i.e. reverse polish. x+y → )

• The tree is stored as linear expression in reverse 
polish. 

• Same structure on host as GPU. 
– Avoid explicit format conversion when population is 

loaded onto GPU. 

• Genetic operations act on reverse polish:
– random tree generation (eg ramped-half-and-half) 
– subtree crossover
– 4 types of mutation

• Requires only one byte per leaf or function. 
– So large populations (millions of individuals) are 

possible.

Representing the Population

+yx
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Cost
• Interpreters avoid compilation but exec is slow

• SIMD two main sources of additional waste 
– Synchronisation means short programs take as long 

to execute as long programs. 

– Most operations (80%) are not wanted and their 
results are thrown away. 

• Leafs access data and so are much more 
expensive than functions?
– A multiplication takes only 4 clock cycles = 3nS 

– Main memory read takes up to 300 clock cycles 

– 50% of trees are leafs. 

– so cost is dominated by leafs not functions? 

• We accept other interpreter overheads (eg Lisp, 
Perl, Python, PHP), so why not SIMD overhead
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Examples
• Approximating Pi 

• Chaotic Time Series Prediction 

• Mega population. Bioinformatics protein 
classification

• Is protein nuclear based on num of 20 amino acids 

• Predicting Breast Cancer fatalities
• HG-U133A/B probes →10year outcome

• Predicting problems with DNA GeneChips
• HG-U133A correlation between probes in 

probesets →MM, A/G ratio and A×C
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Speed of GPU interpreter
GeForce 8800 GTX. 
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Stack 
depth

314⅓M, 
sample 

200

≤ 63.016 384647+1001GeneChip

535128≤15.05 242 88041 013 888+1001Cancer

Speed 

(million 
OPs/sec)

Test 
cases

Program 
size

Population|F|Number of 
Terminals

Experiment

190376 64049.65 00049+128Laserb

656151 36055.418 22543+128Lasera

50420056.91 048 576420+128Protein

1056120013.0204 80048+128Mackey-
Glass

895120011.0204 80048+128Mackey-
Glass
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Lessons
• Suggest interpreting GP trees on the GPU is 

dominated by leafs:
– since there are lots of them and typically they require 

data transfers across the GPU.
– adding more functions will slow interpreter less than 

might have been expected. 

• To get the best of the GPU it needs to be given 
large chunks of work to do:
– Aim for 1-10 seconds. 
– More than about 10 seconds and Linux dies

• Solved by not using GPU as main video interface?? 

– Less than 1millisec Linux task switching dominates 

• Poor debug, performance tools
• Code via FTP
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GeneChip Results

No over fitting.

Evolved predictor on average within 0.16 of actual 
correlation
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Evolved GeneChip Predictor

Simplification of evolved HG-U133A probe 
correlation predictor. 

The most important factors are if the probe is 
MM or PM and the G/A ratio.
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Importance of the 47 Inputs
Zipf law
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Relative Importance of Inputs

Table gives values for 
data in previous graph.

MM important (cf. 
evolved predictor) 
followed by total 
number of each base. 
(cf A/G ratio).

Hairpin and Watson-
Crick pairing not much 
used.
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Discussion
• PM/MM dominates, i.e. if probe is PM or 

MM is the most important.

• Followed by number of each base in probe

• Difficult to recognise patterns “motifs” in 
probe sequence.

• Two predetermined probe-probe bindings 
do not appear important. 

• Supplied simplified Watson-Crick type 
probe-probe interactions. Difficult for GP to 
consider other types of binding               
(G-quadruplex, i-motif, etc).
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Conclusions
• Use GPUs cheap, convenience, fast, getting faster 

(now 256×1.5GHz  $500)

• GPU difficult to program, but GPGPU tools

• Running multiple trees on “single instruction 
multiple data” (SIMD) parallel computer

• Simultaneously interpreting 256000 programs

• Actual speed 0.2 - 1.0 billion GP ops /second

– 0.1 peta GP opcodes per day $400

• GP automatically finding information on Affymetrix. 
This has feed into potential bio-physical explanation 
and so to improved data analysis.
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END
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Questions

• Code via ftp 
– ftp://cs.ucl.ac.uk/genetic/gp-code/gpu_gp_1.tar.gz

• Correlations 
http://bioinformatics.essex.ac.uk/users/wlangdon/


