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This chapter explores svera extensions to genetic proggamming for applications involving the
forecasting o real world chactic time series. We first used Genetic Symbolic Regression (GSR),
which is the standard genetic programming technique applied to the forecasting problem in the
same way that it is often applied to symboalic regression problems[Koza 1992 1994]. We observed
that the performance of GSR depends on the characteristics of the time series, and in particular that
it worked better for deterministic time seriesthan it did for stochastic or volatile time series. Taking
a hint from this observation, an assumption was made in this gudy that the dynamics of a time
series comprise adeterministic and a stochastic part. By subtracting the model built by GSR for the
deterministic part from the origina time series, the stochastic part would be obtained as a residua
time series. This gudy noted the posshility that GSR could be used recursively to model the
residual time series of rather stochastic dynamics, which may still comprise another deterministic
and stochastic part. An adgorithm called GRR (Genetic Recursive Regression) has been devel oped
to apply GSR recursively to the sequence of residua time series of stochastic dynamics, giving
birth to a sequence of sub-models for deterministic dynamics extractable & each recursive
application. At each recursive gpplication and after some termination conditi ons are met, the sub-
models become the basis functions for a series-expansion type representation of a model. The
numerical coefficients of the model are @lculated by the least square method with respect to the
predetermined region of the time series data set. When the region includes the latest data set, the
model reflects the most recent changes in the dynamics of a time series, thus increasing the
forecasting performance. This chapter shows how GRR has been succes<ully applied to many red
world chaotic time series. The results are compared with those from other GSR-like methods and
various soft-computing technologies such as neural networks. The results siow that GRR saves
much computationa effort while achieving enhanced forecasting performance for several selected
problems.

17.1 Problem Definition : Data Driven Model Building

The purpose of data driven model building in n-dimensiona Euclidean space is to find
the function f:R" - R where the m data set (R",R), is known. Rewriting the
problem in terms of the time series analysis and forecasting literature [Casdagli 1993], we
would liketo find the function f in the foll owing equation.

xW =f(x")

X0 = (X, X s X v Xy ) DR a0d X, OR (17.1)
where x. isthetime series value of the i-th data set at time TIME, t is current time, T
is future time (also called lead time or prediction horizon), 1 is delay time (also called
lag time or lag spacing), and x" isdelay lag vedor. w=t+T isforecst time.



Notethat x{” isapoint in the n-dimensional state-space R" recnstructed from a scalar
time series. Pseudo code for the general data driven mode buil ding processis

1. Obtain the scalar time seriesdata: x,, X, X,, ...

2. Analyze the data to get information about reasonable valuesof T, 7, n

3. Prepare the m data set from the reconstructed n-dimensional state-space R"
4. Build the model from the m data set through a method, such as GSR.

It is not guarantead to oltain reasonable values of T, 7, n; they depend on the
characteristics of the data set. Algorithms or methods to determine T, 7, n may be
another area of research. Also, it should be noted that R"should be sufficiently dense
(large m) to the extent that time series dynamicsis clealy depicted in the space

17.2 Genetic Symbolic Regression and Data Driven M odel Building

In this chapter, GSR is an ad hoc acronym for Genetic Symbdic Regresson and refersto
the standard genetic programming technique applied to a symbolic regresson problem.
Symbols may represent either complex concepts or simple values. GSR implements an
elaborate set of symbolic operations designed to seach possble combinations of
symbolic dements, i. e the symbol space, based on the principle of natural seledion.

Our problem of finding the functional relationship o mode in Eq. (17.1) isnone other
than finding the appropriate symbdic form through which we @n understand and
foreast the dynamics caried by the series of data set. GSR helps us in solving the
Situation that we have no information about the shape and domain of the symbol space
and the meaningful symbolic forms should ke found within the limited computational
resources.

17.3 A New Algorithm; Genetic Recursive Regression (GRR)

The newly proposed GRR has five (5) major medhaniams that are different from the
standard GSR. They are the reaursive regresson, the series-expansion type representation
of a regresson model, the multiple populations to efficiently get basis functions of the
regresson model, the red-time update of the numericd coefficients in the regresson
model and the extensve use of the derived terminal set.

Figure 17.1 shows the overall flow of the Genetic Reaursive Regresson. See sedion
17.3.1 for the @ncepts and formulation of the rearsive regresson. Sedion 17.3.2
addresses how to integrate aregresson model based on several basis functions obtained
by GSR. Sedion 17.3.3, 17.3.4 and 17.3.5 addressthe parall el computationd architedure,
the adaptation of a model to the latest data and the derived terminal set, respedively.
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Figure 17.1
The overall flow of the proposed method, GRR to construct a regression model and foreasting with it.



17.3.1 Recursive Regression

It may be practicd to assume that real world time series is mewhat deterministic, and
somewhat stochastic in its dynamics. If a data set is from a system of purely physical
characteristics, e. g. the NH, — FIR laser [Hiibner 1993], it is usually more deterministic
than stochagtic. On the other hand, a data set from highly volatile eonomic system or
physiological system is more stochastic than deterministic.

When we tried GSR for various data sets, it was relatively easy to model and forecast
determinigtic time series than stochastic ones. In this chapter, it was assumed that the
governing system dynamics of a given time series is composed of determinigic and
stochagtic part. That is,

f=f + f (17.2)

determinigtic stochastic

During study, it was confirmed that f__ .. is captured relatively easily at an ealy
stage of GSR applicaion. But, even with much increased computationa efforts, it was
very difficult to enhance the performance measure. If a data set is highly stochastic or
volatile such as the foreign currency exchange rate, even the moderately performing

f pueminaie COUID NOt e obtained.

The solution was the reaursive or the zoomrin regresson. Let's sewhat thismeansin
more detail. Reaursion starts from zooming in on the difference or the residua time
seriesf =, . =T . - Thephrase‘zoom-in' comes from the fact that the modeling
procedure is now applied to the residua time series of which order of magnitude is
smaller than that of the origina time series. The mmputationa parameters remain
unchanged from those used for obtaining f._ .. . By the first reaursive modeling
procedure, we will have another pair of deterministic and stochastic part

Faotsic = fammmnsc ¥ Faciesic (17.3)

When the desirable level of performance is not reached with the still available
computationa resources, the modeling procedure is restarted with resped to the residual
time series from Eqg. (17.3). And the processgoes on over and over again.

Now, let v be the number of the applied reaursive modeling procedure. Then, the
rearsive mode buil ding procedure is given by

fO o =fum 4+ f D v=0123,... 17.4)

stochastic deterministic stochastic !

Note that Eq. (17.4) becomes Eq. (17.3) when v is 0. The left-hand-sde of Eq. (17.3) is
the firg residual time series obtained by non-reaursive modeling through GSR.
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The concept of therecursive regression.

Figure 17.2 shows the mncept of the rearsive regresson. f9 . andfl)

become basis functions that areto ke integrated into afinal regresson model. Seesedion
17.3.2.

17.3.2 Representation of the Regression M odel asa Series Expansion

Usually, the standard GSR produces one symbolic form as aregresson model. But, GRR
involves sveral symbolic forms to use in the series-expansion type representation of the
regresson mode.

Now, let f© = g,(x) be the symbolic form from the first application of the

deterministic

modeling procedure. At this dage, our regresson modd iswritten as
a, +a,9,(x) (17.5)

where the numericd coefficients a, are obtained by the least square method with
resped to the training data set. If the second modeling procedure (= the first reaursive
regresson) produces another symbolic form, say 5 - =g, (x), our regresson model
isnow modified to



a,+a,9,(x)+a,9,(x) (17.6)

Since the numerical coefficients are re-cdculated when there is any new symbolic
form, the wefficient symbols in Eq. (17.5) and Eq. (17.6) do not necessarily have the
same numerical values. The final representation of our model would be

f Oa,+a,g,(x)+0a,9,x)+...=5 ,a,9,(x) (17.7)

The reaursive modeling procedure can be @mnsidered as the gradual effort to find besis
functions or sub-models g, (x) for the deterministic behavior remaining in the residual
timeseries, fM% =f® _—f

stochastic stochastic deterministic *

17.3.3 Parallel Computational Architecture

Since ech population can designate the best symbolic form as the model, a modeling
procedure will produce only one basis function if it uses only a singe population.
However, GRR uses multiple populationsto produce as many basis functions as there ae
popul ations undergoing evol ution.

In fact, GRR is based on a pardl € architedure to find multiple basis functionsin one
modeling procedure. Because of the limited computational resources to search the vast
symbol space we @n not find a correa symbolic form for the dynamics of a given data
set by applying only once the modeling procedure. There will be enormous variaions in
the dtributes of the symbdic forms that are only partialy or localy successful for
identifying the time series dynamics.

Integration of the various locally successful symbalic forms is done as follows: let P
the number of populations, then there will be P symbolic forms found for the first
modeling procedure, that is, we have g,,(x), 0,,(X),0,5(X),.... 0,,(X). With these,
the parallel version of Eq. (17.7) is

b
a,+ya,,9, (x) (17.8)
&
And thefinal regresson model can berewritten as

f Oa, +i£allpgllp(x) (17.9)

J=1 p=l

In Eq. (17.8) and Eq. (17.9), thefirst subscripts stand for the modeling procedure, and the
second subscripts stand for the number of the population.



There is a point to note for determining a basis function in Eq. (17.9). The best
individual from a population replaces an existing individua of a speda population called
super population at each generation if and only if its fitnessexcds that of the individual
being replaced. Otherwise, it is smply discarded. The number of the best individuals in
the super population remains unchanged.

No individuals of the super population are engaged in the evolutionary processes of
the ordinary populations. Only the individuals that survived the whole generations can
become the basis functionsin Eq. (17.9). In this context, the super population is different
from something like the multi-agent team, e.g. [Luke 1996]; agents or tean members are
somehow engaged in the evolutionary processes. Seesection 17.4.2 for more detail .

17.3.4 Adaptive Update of the Numerical Coefficients.

Oncethe basis functions along with numerical coefficients are determined with resped to
the training data set, the modeling procedure is over. An ideal model may be the one that
forecasts data for any region of the given time series. However, usudly our modd is far
from the ideal one for severa reasons. For example, the limited number of data in the
training region may not contain sufficient information to kuild an ided model. Moreover,
the dynamics of real world chaotic time series are generdly largely time dependent.

Therefore, the forecasting performance of a model becomes poorer for aregion that is
distant from the training region. The simplest way to achieve forecasting performancein
the remote region as goad as those attainable for the training region may be to huild a
new model using the latest data region as a new training region. But the new model
should be built in time to become a meaningful forecaster for the given time series.

This chapter explores more timesaving approach. The numerical coefficients are
updated adaptively with resped to the newly avail able data set, so that as much latest
information as possble isrefleded in the model to enhancethe forecasting performance
This may correspond to tuning up o adaptation of the existing model to the latest system
dynamics.

17.3.5 Derived Terminal Set

An arbitrary function can be expressed as a series expansion with the basis orthogonal
functions and the corresponding numerical coefficients. Taking a hint from this fact, we
introduce a derived terminal set (DTS) and examine whether it can contribute to
improving performance of a regresson model when the model is expressd as a series
expansion, like Eq. (17.9). DTSis obtained by applying an orthogonal function to a state-
space ordinate variable X; .



T=[Tx) T() T ) oo Tyl (17.10)

where T, (X,)is, in this chapter, T, =cos| xarccosk;)] or the Tschebyshev function
of order i applied to the state-space @ordinate variable X;. We include DTS above in
the terminal set along with the set of the norma date-space ®ordinate variables,
X Xps Xigr s s Xy @NA @ terminal which generates a random number between 0.0
and 10.

17.4 Implementation | ssues
17.4.1 Fitness Assignment

Each symboalic form, i.e. individual in a population is assgned a value call ed the fitness,
which measures how well the symbdic form fitsthe data set.  In this chapter, the fitness
value is the inverse of either NMSE (Normalized Mean Squared Error) or CV
(Coefficient of Variation) calculated with resped to a predetermined subset, i.e. aregion
of the given time series. They are defined by

_1 by = zl:é
CV(p) == gllp); (x© -x®) g (17.12)
_Z|(X(I)_X(I)) ~ 1 1 N _T0 P = 1
NMSE(p)——I(X(I) F 7 Sk -x0) == MsE (17.12)

where X, x®are the predicted and the observed numericd values for the i-th datum.
x and g denote the sample average and sample variance of the observed valuesin the
predetermined subset of data [Weigend 1993]. p isthe number of data points over which
CV or NMSE iscdculated. MSE stands for Mean Squared Error.

17.4.2 Super Population and Migration between M ultiple Populations

By the evolutionary processes, we hope thereis an overall increase in the performance or
the fitness But, also true is that good enough attributes (= structures and contents of
symbolic forms) in one generation might be subjed to destruction later through the blind
application of the genetic symbolic operations. So, there is a neal to keeg the good
enoughattributes sfely.

In addition to multiple populations undergoing evolution, GRR has a spedal-purpose
population cdled the super population of which sole service is to store desirable
attributes.



At the end of each generation, the best symbdic form is seleded from each evolving
populations. The size of the super population is equal to the number of such ordinary
populations. Once the super population is full at a generation, any newly selected
symbalic form after the generation is alowed to replace the eisting one in the super
population if and anly if its fitness excds that of at least one individual in the super
popul ation.

No individuals at a generation in the super population are transferred to o injected
into the ordinary populations; they only represent the best individuals that survived upto
the generation. This means that they do not involve themselves in the evolutionary
processes of the ordinary populations. Therefore, we should differentiate the super
population from the concept of elitism [Goldberg 198)]. An dlite individual or the multi-
agent team member [Luke 1996] is ©mehow engaged in the evolutionary processes.

Obvioudy, we neead to avoid any semantic replication in the super population. For
example, (+x, (sin(/ x x,))) is an example of semantic replications posshble for
(+ X, (sin1.0))=x, . Individuals of the super population after the last generation become
the basis functions, Eq. (17.9). If there is any semantic repli cation among basis functions,
it should be avoided before amputing the numerical coefficients.

After operations to kreal offspring are over, migrations occur between the ordinary
popluations. In this chapter, the total number of migration operation is fixed to 1 % of the
total number of individualsin all populations. Single migration is based on four random
numbers. The first and second ones are to identify two populations between which a
migration operation occurs. The third random number is compared with the migration
probability, 0.02 here. The fourth random number is to identify an individua to replace
No migration to and from the super population is al owed.

17.4.3 Dealing with Absurd Attributes of a Symbolic Form

Symbolic forms sometimes contain mathematically or computationaly absurd or
nonsense dtributes. Division-by-zero a negative values given to a function which
reguires only positive argument(s) results in the mathematical absurdity. Computational
absurdity ocaurs when the attributes result in overflow or underflow for given computing
systems.

For these @ses, the numerical equivalent of the attributes is arbitrarily given, and the
performance measures of the symbolic form are reduced by one hundred (100) times.
This policy gives a definite penaty to the symbolic form for having the absurdity. By the
reduced performance measures, their chances of being sdleded as parents to bread
offspring become very small.



17.4.4 Division of the Data Set: Training, Validation and Prediction Regions

There aethreeregionsin thetime series data. That is, T, V, and P regions. Theregion T
is called the “training region”, and comes first. Symbolic forms are cnstructed through
the appli caion of the evolutionary symbdi c computation with resped to theregion T.

Coming next is the V region or the “validation region”. When a regresson model
captures urious information in the T region such as noise, the forecasting performance
becomes low in the “prediction” or P region even if its performancein the T region was
high. The problem is termed as over-fitting. See[Zhang 1993, [Smith 199B] for details.
To prevent the over-fitting or over-training, the performance of any model constructed by
the training data is eval uated with resped to the vali dation region.

When the validation performance deteriorates as compared to that in the former
modeling procedure, the modeling procedure stops on the assumption that the model has
started to capture spurious or excessve information such as noise or disturbance Thisis
the so-call ed early stopping policy [Geman 1992]. Also see[Weigend 1991].

The last region is cdled the “prediction” or P region. And, it is the region where the
red effedivenessof the constructed model is manifested. Unless otherwise spedfied, the
number of data pointsin T, V, and P region was 200, 100, 100 respedivdy for all time
series that were appli ed in this chapter.

17.4.5 Termination Conditions

There may be two kinds of termination conditions. One is set by the limit on the
computational resources; after the predetermined number of the generation is passed, the
processof searching attributes of symbolic formsis terminated. The other oneis natural;
if the desired level of model performance i.e. the performance citeriais achieved, there
is no nedl to continue. For example, if NMSE or CV is 0.01 for a given data set, the
model is sufficiently good and the modeling procedure stops. Deterioration in the
validation performanceal so stops the procedure, seesedion 17.4.4.

17.4.6 Some M anipulations on the Raw Data

A DTS dement T, (x,)of Eq. (17.10) is defined on the interval [ -1, 1]. Therefore, the
raw interval or [minimum, maximum] of any state-space ®ordinate variable x, should
be modified to [ -1, 1]. It is done by the foll owing equation.

2 2Xn—min
yj = a'XJ + b’ a= -max -min )’ b=-H+ —~max : —min (1713)
(=) b= x)



Then, T, (x,) => T, =cosfxarccosy, )] = cos| xarccos@x; +b)]. The minimum
and maximum values of the raw data, x"™™ and x"™, should be determined for all
regions of a data set. If they are determined only for the training region, vaues lessthan
X" or greder than x™™ result in values less than -1 o vaues greder than 1,
respedively, by Eq. (17.13). This situation causes mathematical absurdities. See sedion
17.4.3.

Let x™ and X be the minimum and the maximum of the variable x; encountered
in the training region. In this chapter, they are expanded by the foll owing equations.

Xjn—mln - X;T]II’\ _n(X;ﬂax — X;ﬂln) = (l+ n)xlﬂln _nX;ﬂax

X=X (X - xM) = (L)X - (17.14)
Therefore, the expanded effective interval [ x[™™", X/ ] is 21 +1 times broader than the
raw [ x™, x™]. Inthischapter, the expansion ratiois arbitrarily set to n =2.

17.5 Application to Real World Chaotic Time Series
17.5.1 Benchmarking

GRR was benchmarked with resped to three points of view. The effects of introducing
DTS are not mentioned in this benchmarking, but discussed in the next sedion where
GRR is applied to more stochagtic time series. Seesedion 17.5.2.2. We can see @ident
effeds of DTS for stochastic time series. The threepoints of view are

1. How effective is the adaptive update of the numerical coefficients; for this, a new
terminology “impact step” isintroduced. Theimpact gep y isthe number of data points
between the data point to predict and the last data point of the region with resped to
which the oefficients are updated. To predict x , the numerical coefficients in Eq.
(17.7) or Eq. (17.9) are updated with data x_,_,,, ~ X_, . The performancewas observed
with y =1, 2, 4, 6, 8 12 15 20, 30, 40

2. How effective is the pardle architedure; this was assessd by comparing the
performances from single population with those from multiple populations.

3. How effective is the reaursion; this was asessd by observing the performances with
and without reaursive regresson.

17.5.1.1 Data and Computational Settings

For the benchmarking purpose, the time series data set generated by solving the Mackey-
Glass equation was used, [Oakeley 1994. The Mackey-Glass equation smulates the
nonlinear dynamics of the human blood flow, and iswritten by
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In Eqg. (17.15), the ongtantsarea= 0.1, b=0.2, c= 10, and A= 30. To generate time
series, the first 40 random seeds are prepared in the range [0.5, 1.5]. For the numericd
values after the 40-th datum, Eq. (17.15) was used.

GRR was benchmarked with three groups of computations. Each group has ten (10)
computations, identified by 1D’ s like c## where ##is the computation number. SeeTable
17.1 for detail s. The total number of symbdic forms all owed is 4500 in all computations,
cl ~ ¢30, for the sake of fair evaluation of the three points of view. Early termination
could reducethe number. For the division of the data set, seesedion 17.4.4.

XK—A

17.5.1.2 Benchmarking Results and Discussion

We applied GRR ten times for each computations c1 ~ ¢30. And the best modd from a
computation was taken for inter-comparisons between c1 ~ ¢30.

Effects of the Adaptive Update of the Numerical Coefficients

The dlowed number of modding procedures was 5; the first modeing procedure
followed by four reaursive modeling procedures. Note that all applications of GRR to the
first group computations, c1 ~ c10, stopped only after the first reaursion because the
termination condition of NMSE (0.01 in the region T) had been met.

The performances of the best models in each computation are summarized in Table
17.2. Each numerical entry represents the NMSE value after the first reaursion. Firdt,
observe the remarkabl e performance for every computation. The model was amost exact
in capturing the dynamics carried by the time series data.

Table17.1

Computational settings for benchmarking purpose, see section 17.5.1. There are three computation groups. For
parametersthat are nat specified in thistable, seeTable 17.6.

1% Group 2" Group 39 Group
Computation ID cl~cl10 cll~c20 c21~¢c30
No. of Runs allowed 5 5 1
Population Size 15 30 30
No. of Populations 5 1 5
Generation Limit 12 30 30
Recursion with Recursion with No recursion with

Description multiple populations single population multiple populations




Table17.2
NMSE values from the 1% group computations, see Table 17.1. Y is the impact step, section 17.5.1. In this
table, NT = NMSE in Region T, NV = NMSE in Region V, NP = NMSE in Region P; Section17.4.4

cl c2 c3 c4 c5 c6 c’ c8 c9 cl10
y 1 2 4 6 8 12 15 20 30 40
NT 000345 000767 000437 000345 000767 000437 001083 000586 000345 0.00767
NV 000526 001038 000401 000563 001100 000407 001378 001027 000493 0.01071
NP 000203 001060 000419 000228 001216 000450 000913 000544 000195 0.00693

Since the firgt group computations stopped only after the first reaursive modeling
procedure, the omputational effort was only 1800= the consumed modeling procedure 2
X the number of populations5 X the population size 15 X the number of generation 12.

Although the performances vary with the computations: 0.00345 (c1, ¢4, c9), 0.00437
(c3, ¢6), 0.00336 (c8), 0.00767 (c2, c5, c10), and 0.01083 (c7), we @n seethat the better
the performance in the training region, the better the performances in the validation and
the prediction region.

Eq. (17.15) shows that the dictating variables are x_, and x_, . It is interesting to
note that the impact step y of 1 and 30 (c1 and ¢9) resulted in the highest performances
in all data regions. These observations with resped to the impact step y were generaly
true for bath the seand group of computations (c11 ~ c20) and the third group of
computations (c21 ~ ¢30).

Effects of the Parallel Architecture

The dfectivenessof the paral e architedure or the multiple populations can be seen by
comparing the performances between the first group computations (c1 ~ c10) and the
second group computations (c1l ~ c20). Again, only the best models from each
computations of the second group were taken for comparisons. Table 17.3 summarizes
the comparison.

Except therow for y, each entry represents a relative value between the two groups.
Now, let NM SE (c##, D) represent the NM SE obtained in c## for the dataregion D. Then,
the entry in the row Ratio of NT crossng the wlumn c11 vs. cl is the NMSE (c11, T)
divided by NMSE (c1, T).

Except theimpact steps of 2, 8, 15, 20 and 40 theratios of NT, NV and NP are greder
than 1.0. To take the mmputational efforts (CE) into acoount, the ratios of NT, NV and
NP should be multiplied by Ratio of CE. They become greder than 10 except the impact
step of 15 and 40. This means that the NMSE values are larger in the second group
computations than those in the first group computations.



Table17.3

Performance omparisons between the 1% and 2™ group computations, see Table 17.1. Effeds of the paralld
computational architecture can be seen. CE (Computational Efforts) is the total number of symbdic forms
evaluated to make amodel.

2" Group > cll cl2 cl3 cl4 cl15 cl6 cl7 cl18 c19 c20

VS, VS. VS. VS. VS. VS. VS. VS. VS. VS. VS.
1% Group > cl c2 c3 c4 c5 c6 c7 c8 c9 c10
y 1 2 4 6 8 12 15 20 30 40

Ratio o CE 2 2 2 2 2 25 1 25 2 1

Ratio o NT 161 063 356 274 093 390 06 097 157 073
Ratiod NV 180 0.80 513 236 085 4.60 0.88 043 200 083
Ratiod NP 458 050 420 316 055 370 081 092 390 0.66

Effects of the Recursive M odel Building

As discused earlier, GRR alows multiple modding procedures. The first modding
procedure is just a dandard GSR. But, from the secwond modeling procedure, the
modeling procedure can be mnsidered as the reaursive procedure. See Eq. (17.2) ~ Eq.
(17.4), and Figure 17.2. To see how effedive the reaursive modeling procedure is, the
model performances with and without reaursion are ammpared in Table 17.4 between the
first group andthe third group computations.

The large values of theratios of NT, NV and NP in this table show that NMSE's are
much smaller in the firg group computations as compared to those in the third group
computations. Since no reaursive modeing procedure is allowed in the third group
computations, these enhanced performances, i.e. smaller NMSE’s must come from the
reaursve modeling procedures.

Table17.4
Performance mmparisons between the 1% and 3 group computations, see Table 17.1. Effects of the recursive

model building can be clearly seen.

3 Group > c21 c22 c23 c24 c25 c26 c27 c28 c29 c30

VS, VS. VS. VS. VS. VS. VS. VS. VS. VS. VS.
1% Group > cl c2 c3 c4 c5 c6 c7 c8 c9 c10
y 1 2 4 6 8 12 15 20 30 40

Ratiod CE 25 25 25 25 25 25 25 25 2.5 25
Ratio o NT 495 377 391 495 139 245 158 291 495 139
Ratio o NV 328 298 449 324 113 297 126 159 334 990
Ratiod NP 7.00 275 354 655 443 121 156 253 6.08 555




When we take the ratios of the computational efforts into account, the ratios of NT,
NV and NP bemme even greder; they should be multiplied by the entries in the
corresponding columns crossng the row Ratio of CE. Also note that the reaursive
modeling procedure is much more dfedive than the paralel computational architedure;
compare the foregoing two tables concerning them.

17.5.2 Real World Chaotic Time Series

17.5.2.1 Data and Computational Settings

The Complex Systems Summer Schod at the Santa Fe Institute planned a competition for
time seriesanaysis and prediction in the summer of 1990 Among the vast library of time
series data, five representative data sets were seleded and dstributed through ftp for
competition participants who used their own methodsto predict designated hidden region.
The data ae available from ft p. sant af e. edu/ pub/ Ti ne- Seri es. [Wegend
1993 discusss the results and various methods used by successful participants of Santa
Fe Competition.

ASHRAE (American Society for Heating, Refrigerating, and Air-conditioning
Enginears) held a seminar on June 1993, Denver, Colorado to discuss and award the
results of ASHRAE Competition.

For the mmpetition, a vast range of time series data for weather and actual energy
consumption such as eledricity or hot water in a building is given to participants. See
ftp. cs. col orado. edu/ pub/ ener gy- shoot out for more details. Table 17.5
li ststhe data sources from Santa Fe aaxd ASHRAE competiti ons.

Intable 17.5, the data for intensity fluctuation of the far infrared NH, laser and for
the surface brightnessof a white dwarf star, PG1195 were generated from physics system,
and they were analyzed to be rather deterministic or stationary. Other data ae more
stochastic or non-stationary. At the stochastic extreme is the arrency exchange rate.
[Weigend 1993 discusss the data characteristics in more detail.

For most time series data sets, the competitions required to use the runaway extension
of the forecast data. The runaway extension means that the long-term forecasts should be
based on the lag vedors available from the short-term forecasts by the same forecasters.

The performance measures from GRR are based on the update extension [Smith 1993
of the forecast data, in which the future forecast extension is freeto use the true time
series available up to thetimethat is T steps past from the data point to forecast.

Computational settings for this sedion are summarized in Table 17.6. Note that the
crosover operation was alowed at any pointsin atree For mutation, a terminal symbol
was smply replaced with another terminal symbol, and a function symbol was replaced
with another function symboal that requires same number of arguments.



Table17.5
This study usestime series data from Santa Fe [Weigend 1993 and ASHRAE compstitions, section 17.5.2.1

Sources Data Description
Solar flare flux Solar beam isolation flux data measured with respect to five
ASHRAE different solar positions were given in the competition
Competition WBEC Datafor the whole energy-consumption datain a building (WBEC)
and for the weather data outside the building were given
Laser intensity Intensity fluctuation of the far infra red NH; laser. The data were

analyzed to be deterministic since
Heart rate of a Time series data for the heart rate, chest volume, blood axygen

human patient concentration and EEG of a patient. Only the heart rate data were
Santa Fe tackled inthis study
Competition Currency Currency exchange rate between Swissfranc vs. US$. The data ae
exchangerate highly nondationary or stochastic.
Particle position Time-dependent position of a quantum particlein 4D potential well
Star Time series data observed for surface brightness of a white dwarf

sar, PG1195. The data aealso deterministic

Table 17.6

Computational settings for genetic programming paradigm and time series modeling. See section 17.4 for other
implementation issues of GRR. One run means either standard GSR or recursive GSR. If any termination
condition, section 17.4.5, has been met, the actual number of run becomes snaller than that given here.

Number of populations 5

Population size 30

Generation limit 9

Number of runs 5

Function set +,-, X /,sin,cos,exp,log,expt
Setti ngs for ) Terminal set State-space  coordinate  variables, DTS,
gen;{c Programming e, ssgover fradion 08 ‘ o
paracigm Depth of atree Initial 6, after-crossover 18

Mutation fradion 0.1

Reproduction fraction 0.1

Migration probability 0.02

Migrating indviduals 1% of total individuals

Terminating NM SE 0.01

Delay time 1

Lagtime 1
Settings for Embedding dmension lord
time series modeling Number of data points 400

Dataregion T First 200data

Dataregion V Next 100data after region T

Dataregion P Last 100data after region V




17.5.2.2 Results and Discussion

Depending an the characteristics of the time series data set, the eomputational efforts and
the ohtained performances were quite different. For example, the solar beam isolation
flux and the fluctuations in the laser intensity were relaively easy to model and predict.
That is, higher performance was possble with smaller computational efforts. The highly
stochastic or volatile time series were very difficult.

Table 17.7 summarizes NMSE’'s ohtained by GRR with the cmputational settings
given in Table 17.6. The impact step was 1. For ASHRAE Competition, Multivariate
means the usual time series modeling and forecasting problem, Eq. (17.1) for each time
series, eg. the solar beam isolation flux. This multivariate prodlem was not required in
the ASHRAE Competition.

The competition required only the univariate analysis;, seesedion 17.5.2.1 for details.
n stands for the usual embedding dmension. The names of the time series data sets are
reduced ad hoc for formatting purpose. Seesedion 17.5.2.1 for detail s on them. We can
see that the stochastic time series guch as the human petient heat rate, the currency
exchange rate, etc are much more difficult to tackle.

For stochastic data, the large embedding resulted in poorer performance while the
performances generally improved for deterministic data. Simpli stically assumed val ues of
n, Tand T might have aused much more uncertainties for stochastic time series. We
susped that, with no corred information about n, 7 and T available, a model based on
smaller embedding dmension could be better for highly non-stationary dynamics.

Table17.7
Summary of GRR application to real world chaotic time series data sets.
Time Series NT NV NP
ASHRAE o Multivariate 0.005 0.001 0.002
C etition Unlv'arla'te 0.008 0.024 0.017
( g\r}w)p WEEC Multivariate 0032 0039 0.054
Univariate 0.004 0.003 0018
L ocer n=1 0.007 0018 0015
n=4 0.0014 0.0027 0.0043
n=1 0.0654 0.1895 0.1651
Heat —
n=4 0.1783 0.2587 03547
Santa Fe c n=1 1542 1.666 1247
Eﬁmg‘g“m urrency. —n=3% 8.364 7878 1539
Patide =1 00233 00325 00756
n=4 0.6986 0.3544 01543
Sar n=1 0.0055 0.0075 00331
n=4 0.0016 0.0013 00017




Table17.8
NMSE values with and without the derived terminal set, DTS. DTS has postive dfeds in particular on
stochastic time series such asthe heart rate and the aurrency exchangerate.

NMSE (100) , Region P

Time Series Without DTS ___ With DTS
. Solar 0.002 0.002
ASHRAE Competition WBEC 0.021 0.018
Laser (n = 4) 0.0042 0.0043
Heat rate (n =1) 8.021x10° 0.1651
Santa Fe Competition Currency (n=1) 35.887 1.247
Particle(n=1) 12543 0.0756
Star (n=4) 0.0035 0.0017

Effects of the Derived Terminal Set (DTS)

To seethe dfeds of DTS, GRR was applied to each of the time series used in sedion
17.5.1 and 17.5.2 with and without DTS. Table 17.8 shows selected results.

Observe that DTS has minimal effects for the deterministic time series. For the
stochastic time series, DTS has positive dfects, improving the performance measures. It
may be temporarily safe to say that DTS does contribute to the model performances. The
reasons why DTS has positive dfeds on the stochastic time series are not clear yet.
Various kinds of DTS should be examined to have a conclusion.

17.5.3 Comparisonswith Earlier Works

17.5.3.1 ASHRAE and Santa Fe Competitions

The modd’s forecasting performance reardings for the two time series data sets from
each competition are compared with those of the best winnersin the ASHRAE and Santa
Fe Competiti ons, and summarized in the following table. The performance measures for
comparisons were @ culated for the same number of prediction data points.

Recall that GRR proposed here is based on the update extension whil e the very most
participants used the runaway extension methods. Dired comparisons based on the
runaway extension are topics for further study.

With the simpligic assumptions on the characteristics of time series and the small
quantity (200) of data used to huild a model, the runaway extension method is not
applicable. As[Smith 1993 showed, the runaway extension is best successful when there
is a sufficient data to huild a dense state-space [Kailath 1980]. Coarsdly remnstructed
state-space, as was done in this gsudy, results in the poor forecasts espedally for
stochagtic time series. Table 17.9 is only for numerical comparisons between the best
winners of the mmpetitions and GRR.



Table17.9
NMSE values for four time series data. Recall that the competitions required the runaway extension of the
forecast data while GRR in this study was based on the update extension. See [Smith 1993.

Time Series Best Winner  This Study (GRR)
ASHRAE Solar Bean Isolation Hux 0.0240 0.002
Competition WBEC 0.14084 0.01804
Santa Fe Intensity of the laser light 0.023 0.00433
Competition Position of the quantum particle 0.086 0.0756

The performance measure for the first two time series was CV, and was NMSE for the
last two times sries. Numericdly, it seems that GRR outperforms the best winners of the
two competitions. However, it might be mideading at this stage if we say that GRR is
superior to the methods used in the mmpetitions, e. g. the highly sophisticated neura
networks developed by Eric A. Wan [Wan 1993], the best winner of Santa Fe mompetition.

17.5.3.2 M ackey-Glass Equation

[Casdagli 1989], [Oakdey 1994 and [Iba 1994] also used the time series generated from
Mackey-Glass equation, Eq. (17.15) to test their methods. The results by GRR were
compared with those ealier works. See Table 17.10. Except the number of data points,
computational settings were same as those used for sedion 17.5.2.

Since each of the ealier works used different performance measures, the performance
measure NM SE of this gudy were mnverted to the crresponding performance measures.
In Table 17.10, GRR-c is a variant of GRR. That is, the numerical coefficients obtained
with resped to theregion T are used to predict the time series. No adaptive update of the
numerical coefficientsis made.

Table 17.10

Comparisons of NMSE' s between the works by Casdagli, Oakeley, and GRR. For the numerical values, See
Table 17.4, p. 386 d [Oakeey 1994. GRR-c stands for the constant-coefficient verson of GRR. We @n see
that GRR-c and GRR worked better than earlier works. Comparing GRR-c and GRR revedls that the alaptive
update of the numerical coefficientsin Eq. (17.7) and (17.9) doesimprove the forecast performances.

Performance Earli er works This sudy
Measures [Casdagli 1989]  [Oakeley 1994 GRR-c GRR
NM SE(20) 0.0631 0.0311 0.0247 0.0187
NM SE(30) 0.1585 0.069 0.0085
NM SE(40) 0.316 0.158 0.181 0.0039
NM SE(50) 0.631 0.371 0.258 0.0025

NM SE(60) 0.990 0.6170 0.266 0.0046




See how much the peformance was improved with GRR Moreover, the
computational efforts in the ealier works were much more than GRR. The cmputational
efforts for GRR was only 5 (Number of populations) x 2 (Number of Modeling
Procedure cnsumed; alowed was 5)x 30 (Population Size)x 9 (Generation Limit) =
270Q which is only fraction as compared with the ealier works. See Table 17.3,
[Oakeley 1994.

[Iba 1994 used MSE (Mean Squared Error) as the performance measure. A is 17 for
Iba. Table 17.11 compares MSE’s with increasing computational efforts. Note that 6750
is the limit on the omputational efforts st for GRR. Comparing MSE'’s for the testing
data & 6750 (GRR-c) and 13890 [Iba 1994] reveals that GRR-c outperforms [Iba 1994
0.01261/1.033x10*= 122 times better. Moreover, if we onsider the ratio o the
computational efforts, 13890/6750 = 2.06, the figure goes upto 122x 2.06 = 250.

17.6 Conclusion and | ssues Remaining

This chapter examined a new method to model chaotic time series through the appli cation
of evolutionary symbolic computation. And, if we use the update extension of the
forecast data, the method GRR performed very well espedally for deterministic dynamics
or atime seriesthat is determinidtic.

The major origindity of GRR lies in the reaursive regresson scheme through which
multiple basis functions are derived. Based on the asaimption that the dynamics of atime
series comprise the stochastic part and the deterministic part, GRR has been quite
successfully applied to many red world chactic time series data sets of which modeling
and forecasting were very difficult using the standard GSR.

It is interesting to note that a method known as stochastic modeling [Tong 1990
introduces a variety of noise terms for treaing the stochastic dynamics of time series.
Then, the modeling procedure is a systematic approach to minimize the noise terms or
errors, they say, in amode. See[Tong 1990] for more detail s.

In the field of quantum medanics, there is atheory or method call ed the perturbation
theory to get solutions for very complex system equation that usualy does not alow for
an exact solution. The system for atime series might have such complex system equation.

Perturbation theory assumes that a solution to complex system equation isa sum of the
unperturbed and the perturbed contribution. See [Rae 1992 and [Nayeh 1993] for more
details Thisis somewhat smilar to our assuumption here that a amplex dynamics of red
world chagtic time series comprise the deterministic part and the sochastic part, Eq.
(17.2). It would be interesting if we try to interpret or improve GRR in the context of the
various perturbation techniques to get the unperturbed Hamiltonian of a complex system.



Table17.11

Comparison of the constant coefficient version of the proposed method, GRR-c with works by [Iba 1994. For
this table, the training region was the first 100 data of time series generated from Eq. (17.15) with A =17
The next 400 data were given for testing. Except the number of data, all other computational settings were the
same asthose givenin Table 17.6.

i Mean Squared Error
Cong’ﬁﬁ;ma] This Study (GRR-0) [1ba 1994
Training Data Testing Data Training Data Testing Data

1350 2.632x10° 2.021x10°°

2700 2.935x10™ 3.698x10™

4050 2.931x10™ 3.738x10™

5400 9.932x10°° 2.262x10™

6750 4.219x10° 1.033x10™

13980 0.01215 0.01261
104400 47x10° 5.06x10°

For tuning-up of a regresson model, the numericd coefficients of the model were
simply updated with resped to a predetermined number of data set of which lagt datum is
y, cdled the impact step, behind the datum to forecast. However, if there is plenty of
data such that a sufficiently dense state-space is posshle, the numerical coefficients
should be updated with resped to the nearest k neighbors in the state-space [Casdagli
1993. From the preliminary study, it was observed that the forecsting performance does
depend on the number of the nearest neighbors. The dependency becomes more severe
for stochastic time series than for deterministic time series.

Along with the numerical coefficients, the basis functions $ould also be updeted. If
sufficient computational resources are available, the basis functions could be updated
with resped to newly available time series data. For an on-line or real-time forecasting of
atime series, the update speead should be at least the one that can allow the new basis
functions to be used in time. The update time of 6 hours is nonsense if the forecsting
should be donein lessthan 1 hour or less

Even if the basis functions are updated in atimely manner, it may still be a problem to
update the regresson model. We should have systematic seledion algorithms for basis
functions from the old and the newly updated besis functions.

GRR may be more powerful if it is combined with some kinds of time series
characterization technologies. For example, detail ed information about the lead time, the
embedding dmension, and the delay time for a given time series is extremely important
to have a successful modd. Various chaos-qualifying technologies will also be very
helpful. Fractal dimension isagoad gudeto recmnstruct a state-space



This study used the raw time series data. It is meaningful if we manipulate or represent
the time series data differently. Normalizaion or appropriate data manipulation such as
the firg difference transformation [Chatfield 1989 might be hdpful. The very most
participants in the Santa Fe and ASHRAE competiti ons used the somehow manipul ated
data rather than the raw data. Also, we suspect that any normaization techniques to set
limits on the minimum and maximum values of a moddl, e.g. between —1 and 1, should
also be explored for the runaway extension.

For demondrative comparisons between many time series of different characteristics,
GRR was run in this sudy with only fixed computational parameters of genetic
programming such as the crossover probability, the mutation probability, the migration
probability between multiple populations, Table 17.6. The parents were seleded only in
proportion to the fitness values. Other seledion policies were not examined. The initial
and the after-crossover depth of trees were also fixed. Only the Tschebyshev function was
used to make the derived terminal set. Detailed studies on effects of these parameters and
policies are necessary. In addition, full-scde computational experiments are necessary to
study the runaway extension of the forecast data with GRR.

Acknowledgments

I'd like to thank Professor John R. Koza of Stanford University for his encouragement. |
would like to thank Professor Lee Spedor of Hampshire College who fixed every
spelling and grammaticd bugsin my manuscript. Of course, any remaining errors are my
responsibility.

Bibliography
Casdagli, M. C. (1989, “Nonlinear prediction of chaotic time series,” PhysicsD. 35: 335— 356

Casdagli, M. C. (1993 and A. S. Weigend, “ Exploring The Continuum Between Deterministic And Stochastic
Modeling,” in Time Series Prediction-Forecasting the Future and Understanding the Past, A. S. Weigend, and
N. A. Gershenfeld, Eds, SA Studies in the Science of Complexity, Vol. XV, 347-366, Addson-Wesley
Publishing Co.

Chatfield, C. (1989, The Analysis of Time Series, 4th ed. London : Chapman and Hall.
Geman, S. (1992 et al, “Neural Networks And The Bias/ Variance Dilemma,” Neural Computation, 4, 1-58.

Gershenfeld, N. A. (1993 and A. S. Weigend, “The Future Of Time Series: Learning and Understanding,” in
Time Series Prediction-Forecasting the Future and Understanding the Past, A. S. Weigend, and N. A.
Gershenfeld, Eds,, SFI Studiesin the Science of Complexity, Vol. XV, 1-70, Addison-Wesley Publishing Co.
Goldberg, D. E. (1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Add son-Wesley
Publishing Co.

Habner, U (1993 et al, “Lorenz-Like Chaos In NH; Lasers (Data Set A),” in Time Series Prediction-
Forecasting the Future and Understanding the Past, A. S. Weigend, and N. A. Gershenfeld, Eds., SH Studiesin
the Science of Complexity, Vol. XV, 73-104, Addison-Wesley Publishing Co.



Iba, H. (1994 et &, “Genetic Programming Using A System ldentification, ” ETL-TR-94-11, Electrotechnical
Lab., Japan.

Kailath, T (1980, Linear Systems, Englewood Cliffs, NJ: Prentice Hall.

Koza, J. R. (1992), Genetic Programming, MIT Press

Koza, J. R. (1994, Genetic Programming I, MIT Press.

Luke, S. (1996 and Spector L., “Evolving Teamwork and Coordination with Genetic Programming”, Genetic
Programming 1996: Proceedings of the First Annual Conference, pp. 150-156, MIT Press, 28-31 July 1996

Nayeh, A. H. (1993 and Nayfeh, A. H., Introduction to Perturbation Techniques, JohnWiley & Sons.

Oakeley, H. (1994, “Two Scientific Application Of Genetic Programming: Stack Filters And Non-Linear
Equation Fitting To Chaotic Data’, in Advances in Genetic Programming, Kenneth E. Kinnear Jr., Eds. MIT
Press 369-389.

Smith, L. A. (1993, “Does A Meeting In Santa Fe Imply Chaos ?,” in Time Series Prediction-Forecasting the
Future and Understanding the Past, A. S. Weigend, and N. A. Gershenfeld, Eds.,, SA Studiesin the Science of
Complexity, Vol. XV, 323-343, Addison-Wed ey Publishing Co.

Rae, A. 1. M. (1992, Quantum Mechanics, 3" Edition, University of Birmingham, UK. IOP Rublishing Ltd.

Tong H. (1990, Nonlinear Time Series Analysis: A Dynamical Systems Approach. Oxford: Oxford University
Press

Wan, E. A. (1993, “Time Series Prediction by Using a Connectionist Network with Internal Delay Lines” in
Time Series Prediction-Forecasting the Future and Understanding the Past, A. S. Weigend, and N. A.
Gershenfeld, Eds., SFI Studiesin the Science of Complexity, Vol. XV, 195217, Addison-Wesley Publishing Co.

Weigend, A. S. (199)) and D. E. Rumelhart, “The effective Dimension of the Space of Hidden Units”, in
Proceedings of International Joint Conference on Neural Networks, Sngapore, 2069-2074 Piscataway, NY:
|EEE Service Center.

Weigend, A. S. (1993 and N. A. Gershenfeld, Eds, Time Series Prediction-Forecasting the Future and
Understanding the Past, SR Studiesin the Science of Complexity, Vol. XV, Addison Wed ey Publi shing Co

Zhang, X. (1993 and Jim Hutchinson, “Simple Architectures on Fast Machines : Practical 1ssies In Nonlinear
Time Series Prediction,” in Time Series Prediction-Forecasting the Future and Understanding the Past, A. S.
Weigend, and N. A. Gershenfeld, Eds.,, SFI Studies in the Science of Complexity, Vol. XV, 219241, Addison-
Wed ey Publishing Co.



