
301 ’Advances in Genetic Programming III, Research and Educational use only’

Riccardo Poli and William B. Langdon

CPUs are often seen as sequential, however they have a high degree of internal parallelism, typically
operating on 32 or 64 bits simultaneously. This chapter explores the idea of exploiting this internal
parallelism to extend the scope of genetic programming (GP) and improve its efficiency. We call
the resulting form of GP sub-machine-code GP. The differences between sub-machine-code GP
and the usual form of GP are purely semantic and largely language independent, i.e. any GP system
can potentially be used to do sub-machine code GP. In this chapter this form of GP and some of
its applications are presented. The speed up obtained with this technique on Boolean classification
problems is nearly 2 orders of magnitude.

13.1 Introduction

Genetic Programming (GP) [Koza, 1992; Koza, 1994; Banzhaf et al., 1998] is usually seen
as quite demanding from the computation load and memory use point of view. So, over
the years a number of ideas on how to improve GP performance have been proposed in the
literature. We recall the main speedup techniques published to date in Section 13.2.

Some of these techniques are now used in many GP implementations. Thanks to this and
to the fact that the power of our workstations is increasing exponentially (today’s CPUs
are now more than 10 times faster than those used in early GP work), nowadays we can
run 50 generations a typical GP benchmark problem with a population of 500 individuals
in perhaps ten seconds on a normal workstation. Nonetheless, the demand for more and
more efficient implementations has not stopped. This is because extensive experimental
GP studies (like [Langdon and Poli, 1998] or [Luke and Spector, 1998]) and complex
applications (like [Poli, 1996] or [Luke, 1998]) may still require from days to months of
CPU time to complete.

Most computer users consider the machines on their desks as sequential computers.
However, at a lower level of abstraction CPUs are really made up of parallel components.
In this sense the CPU can be seen as a Single Instruction Multiple Data (SIMD) processor.
In this chapter we present a novel way of doing GP which exploits this form of parallelism
to improve the efficiency and the range of applications of genetic programming. We term
this form of GP sub-machine-code GP.

Sub-machine-code GP which extends the scope of GP to the evolution of parallel pro-
grams running on sequential computers. These programs are faster as, thanks to the paral-
lelism of the CPU, they perform multiple calculations during a single program evaluation.
Since these programs may be very difficult to find for human programmers and are certainly
beyond the scope of current optimising compilers, this is an important new extension.

302 ’Advances in Genetic Programming III, Chapter 13’

In addition, in some domains, sub-machine-code GP can be used to speed up the evalua-
tion of sequential and parallel programs very effectively. In the chapter we show that nearly
2 orders of magnitude speedups can be achieved by any standard GP system, independently
of the implementation language used, with minimal changes.

The chapter is organised as follows. After describing earlier work on speed up tech-
niques for GP (Section 13.2), in Section 13.3 we start exploring the idea of using modern
CPUs at their very lowest level of computational resolution to do genetic programming. In
Section 13.4 we describe applications of sub-machine-code GP to problems where different
components of the CPU perform different calculations concurrently. We illustrate how to
achieve substantial speedups in the evaluation of sequential programs using sub-machine-
code GP in Section 13.5. We give some indications of possible extensions of this idea and
we draw conclusions in Section 13.6.

13.2 Background

John Koza’s first book[Koza, 1992] included a number of tricks to speed up his Lisp GP
implementation. However, soon people started trying to go beyond the inefficiencies of
the Lisp language, and some GP implementations in C and C++ appeared (see for exam-
ple [Singleton, 1994]). These can be several times faster than the equivalent Lisp imple-
mentations. So, they spread very quickly in the community and nowadays many researchers
use some sort of C or C++ GP system. To go beyond the speedup provided by the language,
some drastic changes are required.

Some speed up techniques rely on a better representation for the trees in the popula-
tion. An example is the idea, firstly proposed by Handley[Handley, 1994], of storing the
population of trees as a single directed acyclic graph, rather than as a forest of trees. This
leads to considerable savings of memory (structurally identical subtrees are not duplicated)
and computation (the value computed by each subtree for each fitness case can be cached).
Another idea is to evolve graph-like programs, rather than tree like ones. For example, the
grid-based representation used in Parallel Distributed Genetic Programming (PDGP) [Poli,
1997] has been used to evolve very efficient graph-like programs. In PDGP the speedup
derives from the fact that, on problems with a high degree of regularity, partial results can
be reused by multiple parts of a program without having to be recomputed.

Other techniques are based on trying to speed up as much as possible the execu-
tion of programs. For example, recently techniques have been proposed which are
based on the idea of compiling GP programs either into some lower level, more ef-
ficient, virtual-machine code or even into machine code. For example, in [Fukunaga
et al., 1998] a genome compiler has been proposed which transforms standard GP trees
into machine code before evaluation. The possibilities offered by the Java virtual ma-
chine are also currently being explored [Klahold et al., 1998; Lukschandl et al., 1998a;
Lukschandl et al., 1998b]. Well before these recent efforts, since programs are ulti-

303 ’Advances in Genetic Programming III, Research and Educational use only’

mately executed by the CPU, other researchers proposed removing completely the in-
efficiency in program execution inherent in interpreting trees and directly evolve pro-
grams in machine code form [Nordin, 1994; Nordin and Banzhaf, 1995; Nordin, 1997;
Nordin, 1998]. This idea has recently led to a commercial GP system called Discipulus
(Register Machine Learning Technologies, Inc.) which is claimed to be at least one order
of magnitude faster than any GP system based on higher-level languages.

Since the evaluation of the fitness of programs often involves their execution on many
different fitness cases, some researchers have proposed speeding up fitness evaluation by
reducing the number of fitness cases. For example, this can be done by identifying the
hardest fitness cases for a population in one generation and evaluating the programs in
the following generation only using such fitness cases [Gathercole and Ross, 1997]. Al-
ternatively, the evaluation of fitness cases can be stopped as soon as the destiny of a par-
ticular program (e.g. whether the program will be selected to be a parent or not and, if
so, how many times) is known with a big enough probability [Teller and Andre, 1997;
Langdon, 1998]. A related idea is to reduce the computation load associated with program
execution by avoiding the re-evaluation of parts of programs. This can be done, for exam-
ple, by caching the results produced by ADFs the first time they are run with a certain set
of arguments, and using the stored results thereafter [Langdon, 1998].

Finally, some research has been devoted to parallel and distributed implementations of
GP (see for example [Andre and Koza, 1996; Stoffel and Spector, 1996; Juille and Pollack,
1996; Sian, 1998]). These are usually based on the idea of distributing a population across
multiple machines with some form of communication between them to exchange useful
genetic material. A similar, but more basic, speed up technique is to perform independent
multiple runs of a same problem on different machines. It should be noted that in a sense
these are not really speed up techniques, since the amount of CPU time per individual is
not affected by them.

�

13.3 Sub-machine-code GP

As indicated in the introduction CPUs can be seen as made up of a set of interacting SIMD
1-bit processors. In a CPU some instructions, such as all Boolean operations, are performed
in parallel and independently for all the bits in the operands. For example, the bitwise AND
operation (see Figure 13.1(a)) is performed internally by the CPU by concurrently activat-
ing a group of AND gates within the arithmetic logic unit as indicated in Figure 13.1(b).
In other instructions the CPU 1-bit processors can be imagined to interact through com-
munication channels. For example, in a shift left operation each processor will send data

�

It has been reported in [Andre and Koza, 1996] that the use of subpopulations and a network of transputers
delivered a super-linear speed-up in terms of the ability of the algorithm to solve a problem. So, the amount
of CPU time per individual was reduced. This happened because partitioning the population was beneficial for
the particular problem being solved. The same benefits could be obtained by evolving multiple communicating
populations on a single computer.

304 ’Advances in Genetic Programming III, Chapter 13’

to its left neighbour while in an add operation some 1-bit processors will send a carry bit
to one of their neighbouring processors. Other operations might involve more complicated
patterns of communication.

Some operations (like Boolean operations or shifts) can be imagined to be executed
synchronously by all 1-bit processors at the same time. Others, like addition, require some
different form of synchronisation (e.g. in some CPUs carry bits are only available after the
corresponding 1-bit processors have performed their bit-addition). Nonetheless, as far as
the user of a CPU is concerned the CPU 1-bit processors run in parallel, since the results
of the operation of all processors become available at the same time.

If we see the CPU as a SIMD computer, then we could imagine that each of its 1-bit
processors will be able to produce a result after each instruction. Most CPUs do not allow
handling single bits directly. Instead all the values to be loaded into the CPU and the results
produced by the CPU are packed into bit vectors, which are normally interpreted as as
integers in most programming languages.

�

For example, in many programming languages
the user will see a bitwise AND operation as a function which receives two integers and
returns an integer, as indicated in Figure 13.1(c).

All this powerful parallelism inside our CPUs has been ignored by the GP community so
far, perhaps because many of us are not used to think in term of bits, nibbles, carries, reg-
isters, etc. For example, to the best of our knowledge, in every implementation operations
like the logical AND shown in Figure 13.2(a) are executed sequentially. This exercises
only one of the 1-bit processors within the CPU as indicated in Figure 13.2(b).

The simplest ways to exploit the CPU’s parallelism to do GP is to make it execute the
same program on different data in parallel and independently. This can be done as fol-
lows:

� The function set should include operations which exploit the parallelism of the CPU, e.g.
bitwise Boolean operations.

� The terminal set should include integer input variables and constants, which should be
interpreted as bit vectors where each bit represents the input to a different 1-bit processor.
For example, the integer constant 21, whose binary representation is 00010101 (assuming
an 8-bit CPU), would be see as 1 by the 1-bit processors processing bits 1, 3 and 5. It would
be seen as 0 by all other 1-bit processors.

� The result produced by the evaluation of a program should be interpreted as a bit vector,
too. Each bit of this vector represents the result of a different 1-bit processor. E.g. if the
output of a GP program is the integer 13, this should be converted into binary (obtaining
00001101) and decomposed to obtain 8 binary results (assuming an 8-bit CPU).

�

Often bit vectors of different sizes are allowed (e.g. bytes, words, double words), but this is irrelevant for the
present discussion.

305 ’Advances in Genetic Programming III, Research and Educational use only’

0000000101011111

1001000110011111

000000100011111

Bitwise AND351
37279

287

(b)

Bitwise AND

(a)

0

1
0

0

0
0

0

0
0...

1

1
1

1

1
1

(c)

Figure 13.1
Three different ways of looking at a bitwise AND operation as performed by a 16-bit CPU: (a) bitwise AND
between binary numbers, (b) implementation of the operation in (a) within the CPU, and (c) the same bitwise
AND as seen by a CPU’s user as an operation between integers.

306 ’Advances in Genetic Programming III, Chapter 13’

Logical AND
True

False
False

(a)

0

1
0

(b)

Figure 13.2
A logical AND (a), and its equivalent using AND gates (b).

To exploit the parallelism of the CPU it is not necessary to manipulate machine code di-
rectly. In fact, most high level languages include some operations which the compiler con-
verts directly into the corresponding machine code operations. E.g. integer arithmetic op-
erations (multiplication, addition, subtraction, division), bitwise logical operations (AND,
OR, NOT), bit shift and rotate operations. By using such high level instructions in the
function set of GP, it is possible to exploit the parallel nature of the CPU in most high level
languages. Since the other differences w.r.t. the usual form of GP are related only to the
interpretation of the inputs and outputs of each program, any GP system can potentially be
used to do sub-machine code GP.

An ideal application for this paradigm is to evaluate multiple fitness cases in parallel.
Boolean induction problems lend themselves to this use of sub-machine-code GP, leading
to 1.5 to 1.8 orders of magnitude speedups (for 32 and 64 bit machines, respectively). We
describe this in detail in Section 13.5.

More complex applications of this idea can be envisaged in which the CPU 1-bit pro-
cessors, although executing the same program, can still perform different computations.
Obviously, this could be done by re-wiring a CPU so as to do something it has not being
designed to do (except when the CPU’s microcode is stored in rewritable memory, which
is not the case for the CPUs in standard workstations). However, it is possible to do it by
passing different data to different processors thus making them behave differently. This
can be done either by feeding different data in the various bits of the input variables, or by
using constants with different bits set. For example, let us consider a 2-bit CPU which is
computing a bitwise XOR between a variable x and a constant c = 2 (which is the binary
10), and suppose that x is either 0 (binary 00) or 3 (binary 11). In these conditions, the
first 1-bit processor will perform (XOR x 1) and will therefore return the negation of
the corresponding bit in x, i.e. it will compute the function (NOT x). The second 1-bit
processor will instead compute (XOR x 0) and so will simply copy the corresponding
bit in x, i.e. it will compute the identity function.

307 ’Advances in Genetic Programming III, Research and Educational use only’

13.4 Examples

In this section we will describe a few sample applications of sub-machine-code GP. The
runs described in the section were performed with our own GP implementation in Pop-
11. The results presented in Section 13.5 were instead obtained with a C implementation.
Reimplementing these examples within GP systems written in other languages is trivial.

13.4.1 1-bit and 2-bit Adder Problems

Let us consider the problem of evolving a 1-bit adder program based on Boolean operations.
The adder has two inputs a and b and two outputs sum and carry. The truth table for the
adder is:

a b sum carry

0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

Each row in this table can be used as a fitness case.
This problem would be extremely easy to solve by hand if one could use two separate

program trees to express the solution. In that case it would be sufficient to use (XOR a b)
to compute sum and (AND a b) to compute carry. However, by exploiting the paral-
lelism in the CPU it is possible to perform both computations at the same time. This could
be done by slicing the output of a single program into its component bits and interpreting
one of them as sum and one as carry. Of course to do this it would be necessary to
include in the program some appropriate constants which would excite differently different
parallel components of the CPU.

This version of the problem is much harder to solve for humans, but can be easily solved
by evolution using sub-machine-code GP. To do that and to keep the example simple we
decided to use only the bit-0 and bit-1 processors within the CPU since there are only
two outputs in this problem. The function set was

�
AND, OR, NOT, XOR � , where all

functions where implemented using bitwise operations on integers. The terminal set was�
x1, x2, 1, 2 � . The constants 1 and 2 where selected since they have the binary

representation 01 and 10 which allows GP to modify selectively the behaviour of different
parts of the program for different 1-bit processors.

For each of the four fitness cases, the variable x1 took the value 3 (which corresponds to
the binary number 11) when the corresponding entry in column a of the truth table above
was 1, the value 0 (i.e. the binary number 00) otherwise. Likewise, x2 took the value 3
when b was 1, 0 otherwise. This was done to provide the same inputs both to the bit-0
processor and to the bit-1 processor of the CPU.

308 ’Advances in Genetic Programming III, Chapter 13’

Each program in the population was run with each of the four possible settings for the
variables x1 and x2. The two least significant bits of the integer produced as output in
each fitness case were compared with the target values for sum and carry indicated in
the previous table. The fitness function was the sum of the number of matches between
such bits, i.e. a perfect program had a fitness of 8, 4 for sum and 4 for carry.

Except for the fitness function, no change of our standard-GP system was necessary
to run sub-machine-code GP. As far as GP was concerned it was solving, using bitwise
primitives, a symbolic regression problem with fitness cases:

x1 x2 target

0 0 0
3 0 2
0 3 2
3 3 1

rather than the 1-bit adder problem. Under this interpretation, in the fitness function the
program outputs and the target outputs were compared to produce a fitness measure in a
way quite unusual for symbolic regression problems. For example, if in one fitness case
the program output was 2 (binary 10) and the target was 1 (01) that gave a contribution of
0 to the total fitness, while if the program output was 3 (11) the fitness contribution of the
fitness case was 1!

In our runs we used a population of 1000 individuals, up to 100 generations, stan-
dard subtree crossover (with uniform probability of selection of the crossover points) with
crossover probability 0.7, no mutation and tournament selection with tournament size 7.
The random initialisation of the population was performed so as to obtain a uniform distri-
bution of program sizes between 1 and 50 nodes.

Figure 13.3(a) shows a solution to this problem discovered by GP at generation 3 of a
run. As far as the bit-0 processor of the CPU (the one which computes sum) is concerned
this program is equivalent to the one shown on the left of Figure 13.3(b). This version of
the program has been obtained by replacing the constants in Figure 13.3(a) with the LSB
of their binary representation (i.e. 1 (binary 01) is replaced with 1 and 2 (binary 10) with
0). As shown on the right of the same figure, as expected this program is equivalent to the
XOR function. Figure 13.3(c) shows the program as seen by the bit-1 processor (the one
which computes carry), which is equivalent to the AND function.

In another run we solved also the two-bit adder (without carry) problem which requires
the use of four input variables: x1, x2 which represent the least significant bit and the most
significant bit of the first operand, respectively, and x3 and x4 to represent the second
operand. All the other parameters were the same as in the 1-bit adder problem except
that we included also the constants 0 and 3 in the terminal set and that the output bits are
interpreted as sum1 and sum2 rather than sum and carry. Figure 13.4 shows a solution
found by sub-machine-code GP at generation 11.

309 ’Advances in Genetic Programming III, Research and Educational use only’

x2 AND

XOR

x1x2 21

XOROR

(a)

x2 AND

XOR

x1x2 01

XOROR

x2 AND

XOR

x1

x2 1

OR

x2 AND

XOR

x11

x2

XOR

x1

= = =

(b)

x2 AND

XOR

x1x2 10

XOROR

=
x2 AND

XOR

x2 AND

XOR

x1

x2 NOT

AND

x1x2= =

x2 0

OR

x1

NOT

(c)

Figure 13.3
(a) Program evolved using sub-machine-code GP to solve the 1-bit adder problem, (b) the same program as seen
by the bit-0 processor within the CPU (in thick line) and some of its simpler equivalents (in thin line), and (c) the
corresponding program executed by the bit-1 processor and its simplifications.

310 ’Advances in Genetic Programming III, Chapter 13’

x1

OR

XOR

x2

x4

2 x1

XOR

XOR x3

x3

AND XOR

Figure 13.4
Program evolved using sub-machine-code GP to solve the 2-bit adder problem without carry.

By slightly modifying the setup of the experiments described above we were also able to
evolve a solution to the two-bit adder problem where the carry bit is also computed. This
problem has three output bits and so requires using three 1-bit processors. So, the inputs
variables x1, x2, x3 and x4 (which have the same meaning as in the previous paragraph)
took the values 0 and 7 (i.e. binary 111) depending on whether the corresponding bit of the
2-bit adder truth table was 0 or 1. The constants 0, 1, 2, 3, 4, 5, 6 and 7 were included in
the terminal set. The fitness function was the sum (over all the 16 possible combinations
of inputs) of the number of matches between the actual output of each program (i.e. sum1,
sum2 and carry) and the desired output (maximum score 48) decreased by 0.001 times
the number of nodes in a program. This was done to promote parsimonious solutions. All
the other parameters were as in the previous experiments. A solution to this problem was
found by GP at generation 27 of a run. The solution included 80 nodes. By allowing the
run to continue, by generation 69 GP had simplified this solutions down to 29 nodes. The
simplified solution is shown in Figure 13.5.

13.4.2 Character Recognition Problem

In the adder problems the 1-bit processors used to perform the task did not communicate
in any way. However, in some problems, like the character recognition problem described
below, adding some form of communication between processors can be useful.

311 ’Advances in Genetic Programming III, Research and Educational use only’

x3

x2x1NOTx4

x4

XORNOTAND

OR

3x2

AND

OR

XOR

6

ANDXOR

4

XOR

x3

4

x1

OR

OR

x1

1

XOR

AND

Figure 13.5
Program evolved using sub-machine-code GP to solve the 2-bit adder problem with carry.

The character recognition problem we considered to illustrate this idea included only
three input patters, an A, a B and a C, represented by the ����� bitmaps shown in Figure 13.6.
The black squares represent 1’s and white ones represent 0’s of the corresponding bit map
(the additional role of the squares with gray borders is explained below). Each character
represented one fitness case. The objective was to evolve a program capable of identifying
the three characters.

Each character in Figure 13.6 was represented by a 25-bit binary string by read-
ing the bits from each bit map from left to right and top to bottom. This produces
the strings A=0010001010100011111110001, B=1111010001111101000111110 and
C=0111010001100001000101110. So we decided to use 25 1-bit processors. The terminal
set included only one variable, x, and random integer constants between 0 and 33554431
(which corresponds to the binary number 1111111111111111111111111). The variable
x takes the values 4540401, 32045630 or 15254062 which are the decimal equivalents of
the bit-strings representing the characters A, B and C, respectively. In order to determine
which character was present in input we designated the bit-11, bit-12 and bit-13 processors
as result returning processors (i.e. all the bits of the integer resulting from the evaluation of
each program were ignored except bits 11, 12 and 13). When an A was presented in input,
the target output was the pattern 100. When a B was presented the target was 010. The

312 ’Advances in Genetic Programming III, Chapter 13’

Figure 13.6
A, B and C bitmaps used in the character recognition problem.

target was 001 when C was the input. The fitness function was the sum (over the 3 possible
inputs, A, B and C) of the number of matches between the actual output and the desired
output for bits 11, 12, and 13 (maximum score 9) decreased by 0.001 times the number of
nodes in a program.

Bits 11, 12 and 13 were chosen as outputs since the characters A and C cannot be dif-
ferentiated just by looking at bits 11, 12 and 13 of their binary representations as it can be
easily inferred by comparing the patterns in the squares with gray borders in Figure 13.6.
Therefore, this problem could not be solved without allowing some form of communication
between processors. To keep things as simple as possible we decided to try using simple
bit shift operations to start with. So, we used the function set

�
NOT, OR, AND, XOR,

SL, SR � , where SR (SL) is an arity-1 function which performs a 1-bit shift to the right
(left) of the bit pattern representing its integer argument.

Expecting this problem to be much harder than the previous ones we used a population
of 10,000 individuals in our runs. The other parameters where as in the 2-bit adder with
carry problem. However, the problem was in fact quite easy to solve: a solution was found
at generation 0 of each of the five runs we performed. In one run the generation-0 solution
included 31 nodes, but by allowing the run to continue for 7 more generations we obtained
the simplified 8-node solution shown in Figure 13.7.

This solution is quite clever. It uses communication to create two modified (shifted)
versions of the input bit pattern. In the first version the characters B and C can be differ-
entiated from A by looking at bits 11, 12 and 13. In the second version A and C can be
differentiated from B. Then by combining such modified bit patters with an XOR not only
the three characters can be properly differentiated, but the desired encoding for the result is
also achieved. The steps performed by the program when A, B or C are presented in input
are shown in Table 13.1.

The only changes necessary to solve this problem with our GP implementation in Pop-11
were within the fitness function. To clarify how little effort these required we report in Fig-
ure 13.8 the actual implementation of the fitness function used in the character recognition
experiments.

313 ’Advances in Genetic Programming III, Research and Educational use only’

SL

NOT SR

SL

XOR

x

SL x

Figure 13.7
Program evolved using sub-machine-code GP to solve the character recognition problem.

13.4.3 Discussion

The evolution of the programs described in the previous subsections was very quick except
for the 2-bit adder with carry, which was solved only in 2 runs out of 10. At this stage we
cannot say whether evolving one program that does more than one job using sub-machine-
code GP always requires less effort than evolving separate programs in independent runs. It
is entirely possible that the constraints imposed by the SIMD nature of the CPU will make
the search harder when one wants to use several 1-bit processors to do totally unrelated
tasks. In this case, it would be possible that the advantage in terms of evaluation time
offered by sub-machine-code GP programs would be outweighed by an increased number
of evaluations required to solve the problem.

Given the relative difficulty with which the 2-bit adder with carry was solved, we ex-
pected that this would happen in the character recognition problem where we used 25 pro-
cessors. However, evolution seemed to be greatly facilitated by the representation adopted.
So, clearly there are domains where sub-machine-code GP can exploit the CPU parallelism
fully. Even if there are cases where finding a parallel program with sub-machine-code GP
is hard, if one is able to find one such program, then execution of it will presumably still
be much faster than if using multiple standard sequential programs. This advantage may

314 ’Advances in Genetic Programming III, Chapter 13’

Table 13.1
Steps in the execution of the program in Figure 13.7. The bits read as the output of the program are shown in bold.

Input pattern

Subexpression A B C

x 00100
01010
10001
11111
10001

11110
10001
11110
10001
11110

01110
10001
10000
10001
01110

(SL (SL (SL x))) 00010
10100
01111
11100
01000

10100
01111
10100
01111
10000

10100
01100
00100
01011
10000

(NOT (SL (SL (SL x)))) 11101
01011
10000
00011
10111

01011
10000
01011
10000
01111

01011
10011
11011
10100
01111

(SR x) 00010
00101
01000
11111
11000

01111
01000
11111
01000
11111

00111
01000
11000
01000
10111

(XOR (NOT (SL (SL (SL x)))) (SR x)) 11111
01110
11000
11100
01111

00100
11000
10100
11000
10000

01100
11011
00011
11100
11000

become prevalent over the search effort, whenever the programs are used in applications
where they are run repeatedly and frequently for an extended period of time.

CPUs are not the only computational devices available within modern workstations. For
example, devices like graphic accelerators can also perform certain forms of computation
in parallel on huge quantities of data very efficiently. For example, most graphic cards are
able to shift and to perform bitwise operations on large portions of their video memory in
microseconds using specialised, very high speed processors. Good graphics libraries will
exploit such operations. Sub-machine-code GP could be run on a video card, rather than
on the CPU, with minimum effort (perhaps one day we will even have sub-machine-code
GP screen savers!). Some CPUs also include similar specialised high-throughput graphics
operations (like the MMX extensions on Pentium processors) which could be exploited to
do GP.

315 ’Advances in Genetic Programming III, Research and Educational use only’

define char_rec_fitness_function(prog);
vars match_count = 0, target, output, x, i;

fast_for x, target in_vectorclass ;;; This FOR loop binds X and
;;; TARGET simultaneously

{2:0010001010100011111110001 ;;; Inputs A, B, C
2:1111010001111101000111110 ;;; (2:XXXX = XXXX in base 2)
2:0111010001100001000101110},

{2:0000000000010000000000000 ;;; Desired outputs for A, B, C
2:0000000000001000000000000 ;;; (all bits ignored except 11,
2:0000000000000100000000000};;; 12 and 13)
do

eval(prog) -> output; ;;; Run evolved program

for i from 11 to 13 do
if getbit(i,output) == getbit(i,target) then

1 + match_count -> match_count;
endif;

endfor;
endfor;
match_count - 0.001 * nodes(prog) -> fitness(prog);

enddefine;

Figure 13.8
Pop-11 implementation of the character recognition problem fitness function.

13.5 Fast Parallel Evaluation of Fitness Cases

As indicated in the previous sections, sub-machine-code GP offers many advantages. How-
ever, given the SIMD nature of the CPU, it might also require an increased number of
evaluations to solve problems where the 1-bit processors of a CPU are required to perform
unrelated tasks in parallel. These additional search costs disappear when using the CPU
processors to do exactly the same task but on different input data.

One such cases is the use of sub-machine-code GP to evaluate multiple fitness cases in
parallel. This can be done very easily in Boolean classification problems. The approach
used is a simple modification of the approach used in the examples in the previous sections.
The only differences with respect to standard GP are: independently. This can be done as
follows:

� Bitwise Boolean functions are used.

� Before each program execution the input variables need to initialised so as to pass a
different fitness case to each of the different 1-bit processors of the CPU.

316 ’Advances in Genetic Programming III, Chapter 13’

� The output integers produced by a program need to be unpacked since each of their bits
has to be interpreted as the output for a different fitness case.

In the Appendix we provide a simple C implementation of this idea which demonstrates
the changes necessary to do sub-machine-code GP when solving the even-5 and even-10
parity problems.

In practical terms this evaluation strategy means that all the fitness cases associated with
the problem of inducing a Boolean function of � arguments can be evaluated with a single
program execution for � � � on 32 bit machines, and � ���

on 64 bit machines. Since this
can be done with any programming language, this technique could lead to speedups of up
to 1.5 or 1.8 orders of magnitude.

Because of the overheads associated to the packing of the bits to be assigned to the input
variables and the unpacking of the result the speedup factors achieved in practice are to be
expected to be slightly lower than 32 or 64. However, these overheads can be very small.
For example, it is possible to pre-pack the values for the input variables and store them in
a table (this has been done only in part in the code in the Appendix). If also the targets
are precomputed (we did not do that in our implementation), in many problems the only
computation required with the output returned by a program would be the calculation of
the Hamming distance between two integers.

The implementation in the Appendix (with a slightly different main func-
tion) was used to perform an evaluation of the overheads in sub-machine-code
GP. We ran our tests on an Sun Ultra-10 300MHz workstation using a 32-
bit compiler. In the tests we first evaluate 1,000,000 times the 20-node pro-
gram (NOT (XOR (X1 (XOR (X2 (XOR (X3 (XOR (X4 (XOR X5 (XOR X6
(XOR X7 (XOR X8 (XOR X9 X10))....))) using the even-10 parity function
which involves 1024 test cases. This required 134 seconds of CPU time. Running the
one-node program x1 required 38 seconds. The difference between the two, 96 seconds,
indicates that our implementation is able to evaluate

�����
	���

� ��� �
���������

�
��������� �!�����
� ��� �
�#"�$�% &�$�')(�!���

�
�*�+���-,

� ��� �. ')�����)� /�$��)���
0 12�

�+�����3 46587 (')�

90 : ��+�����3 465 ')(;<�

= � �!1����>�������

primitives per second. However, there are 38 seconds of overheads (evaluating the tar-
get, unpacking, etc.), which reduce the actual number of primitives per second to around
4,800,000 (i.e.

���
�
��������� �!�����

�
�?���2�@,60@1���
�06��1-,

). So, rather than a 32-fold speed up we
obtain a speed up of approximately 24 times for programs of 20 nodes. However, the speed
up is better for longer programs. For example, for a program including 200 nodes the actual
number of primitives per second is around 6,100,000 with a 31-fold speedup. To match this
with standard GP one would have to find a computer capable of evaluating around 190 mil-
lion primitives per second (in C): not an easy task. For larger programs the speed up can be
even better. For 64 bit machines these performance figures can be substantially improved.
Indeed we found speedups exceeding 60-fold.

317 ’Advances in Genetic Programming III, Research and Educational use only’

In a typical run of our C implementation of sub-machine-code GP on the even-10 parity
problem, a DEC Alpha 500 workstation with a 400MHz 64-bit CPU can evolve a pop-
ulation of 1000 individuals for 100 generations in 140.6 seconds. The number of nodes
evaluated by the system in this time is more than 1.2 billion (

�����
) which is approximately

8,600,000 nodes per second. This figure needs to be multiplied by 64 to obtain the number
of primitives per second. The result is above 550 millions, which is bigger than the clock
speed of the machine (400MHz). Sub-machine-code GP executes 1.3 operations per clock
tick. Since this is more than any other GP implementation (where at most one instruction
per clock tick is executed), the claim that on 64-bit machines our GP implementation is the
fastest in the world would seem justifiable.

Together with other new techniques, sub-machine-code GP has allowed us to solve very
high-order parity problems without ADFs (manuscript in preparation).

Finally, it should be noted that the technique described in this section and those used in
the previous section can be combined. For example, if for a particular problem only a small
number of 1-bit processors is necessary, it is then possible to evaluate multiple fitness cases
of the same problem using the remaining processors.

13.6 Conclusions

In this chapter we have presented a GP technique which exploits the internal parallelism
of CPUs, either to evolve efficient programs which solve multiple problems in parallel,
or to compute multiple fitness cases in parallel during a single execution of a program.
We call this form of genetic programming sub-machine-code GP. We have demonstrated
remarkable speedups and presented examples where we have evolved parallel programs
which can be executed directly and efficiently on standard computer hardware.

Sub-machine-code GP has a considerable potential which we will continue to explore in
future research. One particularly interesting issue is whether it is possible to use this form
of GP to solve efficiently also problems which require primitives with side effects. Another
issue is to see on which classes of problems the bias imposed by the SIMD nature of the
CPU is not a limit but an advantage for sub-machine-code GP.

The potential of sub-machine-code GP is real and already available. This is demonstrated
by the 24- to 60-fold speedups it can achieve in Boolean classification problems without
requiring any significant change to the GP system used and independently of the language
it is implemented in. On a 64-bit machine, with this technique GP is able to evaluate 64
fitness cases with a single program evaluation. This means that the fitness function for
a problem like the even-10 parity problem, which has never been solved with standard
GP without ADFs or recursion, now has about the same computation load as the fitness
function of an even-4 parity problem.

On Boolean classification problems, the speedup achieved by sub-machine-code GP
makes our 64-bit C implementation of the fastest GP system in the world. If we believe

318 ’Advances in Genetic Programming III, Chapter 13’

Moore’s law (which predicts a doubling in speed of computers every 1.5 years), the speed
up obtained is equivalent to the one we should expect to obtain in approximately 10 years
using standard GP.

13.A Appendix: Implementation

This appendix describes a simple C program which illustrates the ideas behind the fast
parallel evaluation of fitness cases with sub-machine-code GP. The code has been only
partly optimised. No optimisation has been performed in the packing of program inputs, in
the target output determination, and in the comparison between actual and target output.

13.A.1 Description

The program includes the following functions:

run() is a simple interpreter capable of handling variables and a small number of
Boolean functions. The interpreter executes the program stored in prefix notation as a
vector of bytes in the global variable program. The interpreter returns an unsigned long
integer which is used for fitness evaluation.

e5parity() computes the target output in the even-5 parity problem for a group of 32
fitness cases.

e10parity() does the same but in the even-10 parity problem.

even5 fitness function(char *Prog) given a vector of characters repre-
senting a program, executes it and returns the number of entries of the even-5 parity truth
table correctly predicted by the program.

even10 fitness function(char *Prog) does the same for the even-10 par-
ity problem. In this case the program is executed 32 times (instead of 1024), once of each
iterations of the five for loops. These loops are used to make the interpreter evaluate the
program on a different part of the truth table of the even-10 parity function. This is why
the variables x1 to x5 initialised in the loops take the binary values 000...000 or 111...111
(i.e. FFFFFFFF in hexadecimal).

main() runs the even-5 parity fitness function on two programs:
a non-solution, (XOR X1 X2), and a solution, (NOT (XOR (X1 (XOR (X2 (XOR
(X3 (XOR (X4 (X5)))))))))). It then does the same for the even-10 parity fit-
ness function with the programs (XOR X1 X2) (a non-solution) and (NOT (XOR (X1
(XOR (X2 (XOR (X3 (XOR (X4 (XOR X5 (XOR X6 (XOR X7 (XOR X8
(XOR X9 X10)))))))))))))) (a solution).

319 ’Advances in Genetic Programming III, Research and Educational use only’

13.A.2 Code

#include <stdio.h>

enum {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, NOT, AND, OR, XOR};

unsigned long x1, x2, x3, x4, x5, x6, x7, x8, x9, x10;
char *program;

unsigned long run() /* Interpreter */
{
switch (*program++)

{
case X1 : return(x1);
case X2 : return(x2);
case X3 : return(x3);
case X4 : return(x4);
case X5 : return(x5);
case X6 : return(x6);
case X7 : return(x7);
case X8 : return(x8);
case X9 : return(x9);
case X10 : return(x10);
case NOT : return(˜run()); /* Bitwise NOT */
case AND : return(run() & run()); /* Bitwise AND */
case OR : return(run() | run()); /* Bitwise OR */
case XOR : return(run() ˆ run()); /* Bitwise XOR */
}

}

unsigned long e5parity() /* Bitwise Even-5 parity function */
{
return(˜(x1ˆx2ˆx3ˆx4ˆx5)); /* (NOT (XOR x1 (XOR x2 (XOR x3 (XOR x4 x5))))) */

}

int even5_fitness_function(char *Prog) /* Even-5 parity fitness function */
{
char i;
int fit = 0;
unsigned long result, target, matches, filter;

x1 = 0x0000ffff; /* x1 = 00000000000000001111111111111111 */
x2 = 0x00ff00ff; /* x2 = 00000000111111110000000011111111 */
x3 = 0x0f0f0f0f; /* x3 = 00001111000011110000111100001111 */
x4 = 0x33333333; /* x4 = 00110011001100110011001100110011 */
x5 = 0xaaaaaaaa; /* x5 = 01010101010101010101010101010101 */

program = Prog;
result = run();

target = e5parity();
matches = ˜(result ˆ target); /* Find bits where TARGET = RESULT */
filter = 1;
for(i = 0; i < 32; i ++) /* Count bits set in MATCHES */

{
if(matches & filter) fit ++;
filter <<= 1;

}

return(fit);
}

320 ’Advances in Genetic Programming III, Chapter 13’

unsigned long e10parity() /* Bitwise Even-10 parity function */
{
return(˜(x1ˆx2ˆx3ˆx4ˆx5ˆx6ˆx7ˆx8ˆx9ˆx10));

}

int even10_fitness_function(char *Prog) /* Even-10 parity fitness function */
{
char cx1, cx2, cx3, cx4, cx5, i;
int fit = 0;
unsigned long result, target, matches, filter;

for(cx1 = 0; cx1 < 2; cx1 ++) /* Set x1, ..., x5 to 000...000 and 111....111 */
{
x1 = cx1 ? 0 : 0xffffffff;
for(cx2 = 0; cx2 < 2; cx2 ++)
{
x2 = cx2 ? 0 : 0xffffffff;
for(cx3 = 0; cx3 < 2; cx3 ++)
{
x3 = cx3 ? 0 : 0xffffffff;
for(cx4 = 0; cx4 < 2; cx4 ++)
{
x4 = cx4 ? 0 : 0xffffffff;
for(cx5 = 0; cx5 < 2; cx5 ++)
{
x5 = cx5 ? 0 : 0xffffffff;
x6 = 0x0000ffff; /* x6 = 00000000000000001111111111111111 */
x7 = 0x00ff00ff; /* x7 = 00000000111111110000000011111111 */
x8 = 0x0f0f0f0f; /* x8 = 00001111000011110000111100001111 */
x9 = 0x33333333; /* x9 = 00110011001100110011001100110011 */
x10 = 0xaaaaaaaa; /* x10 = 01010101010101010101010101010101 */

program = Prog;
result = run();

target = e10parity();
matches = ˜(result ˆ target); /* Bits where TARGET = RESULT */
filter = 1;
for(i = 0; i < 32; i ++) /* Count bits set in MATCHES */
{
if(matches & filter) fit ++;
filter <<= 1;

}
}

}
}

}
}

return(fit);
}

321 ’Advances in Genetic Programming III, Research and Educational use only’

void main()
{
/* Incorrect solution */
char s1[] = {XOR, X1, X2};

/* Even-5 parity solution */
char s2[] = {NOT, XOR, X1, XOR, X2, XOR, X3, XOR, X4, X5};

/* Even-10 parity solution */
char s3[] = {NOT, XOR, X1, XOR, X2, XOR, X3, XOR, X4, XOR, X5,

XOR, X6, XOR, X7, XOR, X8, XOR, X9, X10};

printf("Even-5 Problem\n"
"Testing (XOR X1 X2)\n"
"Score %d\n\n", even5_fitness_function(s1));

printf("Even-5 Problem\n"
"Testing (NOT (XOR (X1 (XOR (X2 (XOR (X3 (XOR (X4 (X5))))))))))\n"
"Score %d\n\n", even5_fitness_function(s2));

printf("Even-10 Problem\n"
"Testing (XOR X1 X2)\n"
"Score %d\n\n", even10_fitness_function(s1));

printf("Even-10 Problem\n"
"Testing (NOT (XOR (X1 (XOR (X2 (XOR (X3 (XOR (X4 \n"
"(XOR X5 (XOR X6 (XOR X7 (XOR X8 (XOR X9 X10))))))))))))))\n"
"Score %d\n\n", even10_fitness_function(s3));

}

/* This file is also available at:
ftp://ftp.cs.bham.ac.uk/pub/authors/R.Poli/code/smc_gp.c */

Acknowledgements

The authors wish to thank the members of the Evolutionary and Emergent Behaviour Intel-
ligence and Computation (EEBIC) group at Birmingham for useful comments and discus-
sion.

Bibliography

Andre, D. and Koza, J. R. (1996), “Parallel genetic programming: A scalable implementation using the transputer network
architecture,” in Advances in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr. (Eds.), Chapter 16, pp 317–338,
Cambridge, MA, USA: MIT Press.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998), Genetic Programming – An Introduction; On the Automatic
Evolution of Computer Programs and its Applications, Morgan Kaufmann, dpunkt.verlag.

Fukunaga, A., Stechert, A., and Mutz, D. (1998), “A genome compiler for high performance genetic programming,” in Genetic
Programming 1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo (Eds.), pp 86–94, University of Wisconsin, Madison, Wisconsin,
USA: Morgan Kaufmann.

Gathercole, C. and Ross, P. (1997), “Tackling the boolean even N parity problem with genetic programming and limited-error
fitness,” in Genetic Programming 1997: Proceedings of the Second Annual Conference, J. R. Koza, K. Deb, M. Dorigo, D. B.
Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.), pp 119–127, Stanford University, CA, USA: Morgan Kaufmann.

322 ’Advances in Genetic Programming III, Chapter 13’

Handley, S. (1994), “On the use of a directed acyclic graph to represent a population of computer programs,” in Proceedings of
the 1994 IEEE World Congress on Computational Intelligence, pp 154–159, Orlando, Florida, USA: IEEE Press.

Juille, H. and Pollack, J. B. (1996), “Massively parallel genetic programming,” in Advances in Genetic Programming 2, P. J.
Angeline and K. E. Kinnear, Jr. (Eds.), Chapter 17, pp 339–358, Cambridge, MA, USA: MIT Press.

Klahold, S., Frank, S., Keller, R. E., and Banzhaf, W. (1998), “Exploring the possibilites and restrictions of genetic programming
in Java bytecode,” in Late Breaking Papers at the Genetic Programming 1998 Conference, J. R. Koza (Ed.), University of
Wisconsin, Madison, Wisconsin, USA: Stanford University Bookstore.

Koza, J. R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press.

Koza, J. R. (1994), Genetic Programming II: Automatic Discovery of Reusable Programs, Cambridge, Massachusetts: MIT Press.

Langdon, W. B. (1998), Data Structures and Genetic Programming: Genetic Programming + Data Structures = Automatic
Programming!, Boston: Kluwer.

Langdon, W. B. and Poli, R. (1998), “Why ants are hard,” in Genetic Programming 1998: Proceedings of the Third Annual
Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and
R. Riolo (Eds.), pp 193–201, University of Wisconsin, Madison, Wisconsin, USA: Morgan Kaufmann.

Luke, S. (1998), “Genetic programming produced competitive soccer softbot teams for robocup97,” in Genetic Programming
1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo (Eds.), pp 214–222, University of Wisconsin, Madison, Wisconsin, USA:
Morgan Kaufmann.

Luke, S. and Spector, L. (1998), “A revised comparison of crossover and mutation in genetic programming,” in Genetic Pro-
gramming 1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B.
Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo (Eds.), pp 208–213, University of Wisconsin, Madison, Wisconsin,
USA: Morgan Kaufmann.

Lukschandl, E., Holmlund, M., and Moden, E. (1998a), “Automatic evolution of Java bytecode: First experience with the Java
virtual machine,” in Late Breaking Papers at EuroGP’98: the First European Workshop on Genetic Programming, R. Poli,
W. B. Langdon, M. Schoenauer, T. Fogarty, and W. Banzhaf (Eds.), pp 14–16, Paris, France: CSRP-98-10, The University of
Birmingham, UK.

Lukschandl, E., Holmlund, M., Moden, E., Nordahl, M., and Nordin, P. (1998b), “Induction of Java bytecode with genetic
programming,” in Late Breaking Papers at the Genetic Programming 1998 Conference, J. R. Koza (Ed.), University of Wisconsin,
Madison, Wisconsin, USA: Stanford University Bookstore.

Nordin, P. (1994), “A compiling genetic programming system that directly manipulates the machine code,” in Advances in Genetic
Programming, K. E. Kinnear, Jr. (Ed.), Chapter 14, pp 311–331, MIT Press.

Nordin, P. (1997), Evolutionary Program Induction of Binary Machine Code and its Applications, PhD thesis, der Universitat
Dortmund am Fachereich Informatik.

Nordin, P. (1998), “AIMGP: A formal description,” in Late Breaking Papers at the Genetic Programming 1998 Conference, J. R.
Koza (Ed.), University of Wisconsin, Madison, Wisconsin, USA: Stanford University Bookstore.

Nordin, P. and Banzhaf, W. (1995), “Evolving turing-complete programs for a register machine with self-modifying code,” in
Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), L. Eshelman (Ed.), pp 318–325, Pittsburgh,
PA, USA: Morgan Kaufmann.

Poli, R. (1996), “Genetic programming for image analysis,” in Genetic Programming 1996: Proceedings of the First Annual
Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), pp 363–368, Stanford University, CA, USA: MIT
Press.

Poli, R. (1997), “Evolution of graph-like programs with parallel distributed genetic programming,” in Genetic Algorithms:
Proceedings of the Seventh International Conference, T. Back (Ed.), pp 346–353, Michigan State University, East Lansing, MI,
USA: Morgan Kaufmann.

Sian, C. F. (1998), “A java based distributed approach to genetic programming on the internet,” Master’s thesis, Computer Science,
University of Birmingham.

323 ’Advances in Genetic Programming III, Research and Educational use only’

Singleton, A. (1994), “Genetic programming with C++,” BYTE, pp 171–176.

Stoffel, K. and Spector, L. (1996), “High-performance, parallel, stack-based genetic programming,” in Genetic Programming
1996: Proceedings of the First Annual Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), pp 224–229,
Stanford University, CA, USA: MIT Press.

Teller, A. and Andre, D. (1997), “Automatically choosing the number of fitness cases: The rational allocation of trials,” in Genetic
Programming 1997: Proceedings of the Second Annual Conference, J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H.
Iba, and R. L. Riolo (Eds.), pp 321–328, Stanford University, CA, USA: Morgan Kaufmann.

