
217 ’Advances in Genetic Programming III, Research and Educational use only’

10.1 Introduction

What is a building block in genetic programming (GP)? Intuitively, we might answer simple
pieces of code, subprograms, that GP uses to build more complex programs. Intuitively,
too, that idea resonates with some theoretical developments in genetic algorithms. Some
have taken building blocks as a given and have built algorithms and systems to enhance
their production (e.g., [Iba and de Garis 1996; Rosca and Ballard 1996; Ito et al. 1998]).
However, one would be hard pressed to describe exactly what constitutes a building block.
One would be even harder pressed to show what they are analytically (i.e., what are the
salient mechanisms, processes, and mathematics that describe the creation, propagation,
and use of a building block). Answers to those questions would likely be found at the core
of understanding the dynamics associated with GP. Unfortunately, as researchers have found,
such answers have not been easily forthcoming.

Towards this end, an increasing amount of basic research has focused on addressing the
question “what is a building block?” This includes work in GP theory, including [Altenberg
1994; O’Reilly and Oppacher 1995; Whigham 1995; Poli and Langdon 1997; Rosca 1997;
Banzhaf et al. 1998]. Of these, [O’Reilly and Oppacher 1995] stands out because they were
one of the first who applied the corresponding theory from genetic algorithms to genetic
programs. They found that the resulting building block definition was insufficient in de-
scribing the kind of dynamics that occur in GP. There is also work, mostly empirical, that
either focuses or speculates on the nature of building blocks. These include [Koza 1992;
Angeline 1994; Haynes 1997; Poli and Langdon 1997; Langdon and Poli 1998; Luke and
Spector 1998; Poli et al. 1998]. Alternatives to what conventional wisdom would dictate
about building blocks also appear in [Tackett 1994; Mulloy et al. 1996; Punch et al. 1996;
Soule et al. 1996; Angeline 1997; Fuchs 1998].

10.1.1 Current Usages and Definitions

At face-value, the term building blocks refers to a conceptually simple definition: simple
components out of which more complex things can be made. In evolutionary computation,
the term first gained widespread usage in describing the dynamics that underlie genetic

Jason M. Daida, Robert R. Bertram, John A. Polito 2, and Stephen A. Stanhope

This chapter addresses the question “what is a building block in genetic programming?” by examin-
ing the smallest subtree possible—a single leaf node. The analysis of these subtrees indicates a con-
siderably more complex portrait of what exactly is meant by a building block in GP than what has
traditionally been considered.

218 ’Advances in Genetic Programming III, Chapter 10’

algorithms (e.g., see [Holland 1975,1992; Goldberg 1989).1 At the outset of GP, Koza (1992)
suggested that GP uses building blocks in a similar fashion. Early anecdotal information
seemed to bear this out, as a few have reported seeing repeated code in their results that
have been highly suggestive of building blocks (e.g., [Tackett 1993]).

However, subsequent research has yielded several meanings of the term building block,
if only to rigorously define it. A building block of a GP tree has been defined to be a subtree
of a solution tree [Iba and de Garis 1996; Ito et al. 1998]; blocks of code [Altenberg 1994];
and a rooted subtree [Rosca 1997]. The dynamics of building blocks, especially concerning
how they are created and propagated, has been a subject of contention [Altenberg 1994;
O’Reilly and Oppacher 1995; Rosca and Ballard 1996; Haynes 1997; Poli and Langdon
1997]. Part of this contention, however, is driven by what exactly constitutes a building
block. We would also maintain that what exactly constitutes a building block has been
driven, in part, by the metaphors that have been applied to explain it.

Of these metaphors, two stand out: genotype and phenotype. Many in the field would
agree that there is a distinction between the two and that both have origins in the biological
sciences. However, what exactly in evolutionary computation maps to genotype and pheno-
type is open to debate.

Genotype is often equated with structures. Depending on one’s point of view, genotype
is akin to information carried within bit strings or parse trees. Alternatively, genotype is that
which underlies a single trait or a set of traits [Bäck and Fogel 1997]. There is probably
little disagreement that the computational genotype is analogous to a biological genotype.

What is meant by phenotype is less than clear. A common definition is that a phenotype
is the behavioral expression of the genotype in a specific environment [Bäck and Fogel
1997]. Some researchers simply define phenotype as observed behaviors [Fogel 1992].
Some have gone so far as to define the phenotype as equivalent to vector values, as in those
used for fitness scoring [Altenberg 1994]. Others have opted for a more abstract definition
by equating phenotype with semantics [Haynes 1997].

The relationships between building blocks, genotype, and phenotype have also been
open to debate. The prevailing view is that building blocks are genotypes (structures) and
that the mathematical formalism of a building block is a schema. Schemata have long been
regarded as similarity templates [Holland 1975, 1992; Goldberg 1989]. With regard to GP,

1Recently, [Macready and Wolpert 1998] challenges the prevailing formalization of building blocks in genetic
algorithms [Holland 1973]. If that paper does hold true, it means that the prevailing formalization may not repre-
sent an accurate description of building blocks in genetic algorithms. The outcome is not clear-cut, since genetic
algorithms were developed independently from the formalization (i.e., see [Goldberg 1989]). It could mean, for
example, that the phenomena of building blocks exists in genetic algorithms, but just not in the way described by
the Schema Theorem. The implications of [Macready and Wolpert 1998] are even less clear for GP, since GP
theory is not necessarily contingent on theoretical findings in genetic algorithms.

219 ’Advances in Genetic Programming III, Research and Educational use only’

schemata have been further formalized as tree fragments that represent multiple
subexpressions (e.g., [O’Reilly and Oppacher 1995; Poli and Langdon 1997]). Schemata
have also been formalized to represent single subexpressions (e.g., [Whigham 1995]). Some
have formalized schemata as rooted tree fragments (e.g., [Rosca and Ballard 1996]). One
alternative view holds that for GP, the genotype and the phenotype are one and the same
(i.e., [Nordin et al. 1996]). Another alternative view is that building blocks in GP exist in
both the genotype and the phenotype (e.g., [Haynes 1997]).

10.1.2 Objectives

The goal of this chapter is to query the nature of a GP building block by observing single-
node subtrees from a fitness-enhancing perspective and a population-building-blocks-dy-
namics perspective. We have sought to push the extent of what has generally been consid-
ered a GP building block—a subtree—by considering the smallest possible subtree—a single
leaf node (i.e., a terminal). Of interest to us is how GP discovers and exploits existing subtrees.
Our interest differs from previous work, which have examined how GP creates and discov-
ers new subtrees, then exploits them for solution building. By considering single-node units,
we have simplified analysis by setting aside the effects that have been associated with cross-
over within a building block. As this chapter demonstrates, even if building blocks were
somehow indivisible (as are single-node subtrees or automatically defined functions (ADFs)),
the dynamics associated with such blocks are far from simple.

While there are a large number of contexts among which to examine a single-node subtree,
we have chosen to focus on the contexts concerning whether a single-node subtree is func-
tionally expressed in a GP individual. In our case, this means considering at least a second
type of subtree that can control the functional expression of single-node subtrees. For us,
this interaction is significant because it addresses the issues of genotype and phenotype.

The crux of this chapter lies in determining whether these single-node subtrees are, in
fact, building blocks. Using a simple, conceptual sense of the term, we would say yes, this
chapter supports that. On the other hand, the analysis of these subtrees suggests a consider-
ably more complex portrait of what exactly is meant by a building block in GP than what
has traditionally been considered.

This chapter consists of six other sections. Section 10.2 discusses the setup and methods
covered in this chapter. Sections 10.3 and 10.4 describe the experiments, while Section 10.5
discusses the results of these experiments in the context of the question “what is a building
block?” Section 10.6 summarizes our conclusions. The three appendices augment our rea-
soning behind the case-study selection and type of analyses employed.

220 ’Advances in Genetic Programming III, Chapter 10’

10.2 Case Study Description

For our case study, we used an example from symbolic regression and had GP solve for the
problem f(x) = (x + 1)3. We analyze the propagation and use of ephemeral random constants
(ERCs), a specific type of single-node subtree. The following subsections highlight our
reasoning for featuring this problem and describe the setup used in our experiments.

10.2.1 Motivations

One of the earliest, intuitive applications of GP has involved data modeling under the label
of symbolic regression (i.e., [Koza 1989]). In [Koza 1992], symbolic regression has been
synonymous with function identification, which involves finding a mathematical model
that fits a given data set. Closely linked problems have included sequence induction, Bool-
ean concept learning, empirical discovery, and forecasting. Typically, practitioners use GP
and symbolic regression in several ways: as a benchmark problem to test GP systems, as a
software demonstration or tutorial, and as a means of generating mathematical models for
real-world data sets. The latter area includes examples in control systems, bioengineering,
biochemistry, and finance.

We specifically chose f(x) = (x + 1)3, in part because there are a few thousand approaches
to obtain a solution and, in part, because there exist several opportunities in which
subsolutions can be reused. This problem has well-known mathematical properties that can
be exploited for analysis. For example, GP solutions can be constructed from several differ-
ent coefficients, two of which can be reused: i.e., “1,” “2,” and “3.” These coefficients
appear in the following solutions: (x + 1)3, (1 + 2x + x2)(x + 1), and (1 + 3x + 3x2 + x3).
Equivalent solutions can also be constructed with other permutations of addition, subtrac-
tion, multiplication, and division. Approximate solutions can also be obtained with rational
polynomials. See Appendix A.10.1.

We chose to generate fitness cases on the interval [-1, 0) to introduce some ambiguity to
the problem, since that interval exists on just one side of that function’s only inflection
point. Consequently, both even and odd polynomials could, in theory, be used to approxi-
mate a solution.

We had three major reasons to use ERCs to setup GP to solve this problem. First and
foremost, ERCs are individually traceable throughout the course of a GP trial (also called a
GP run; we use the words run and trial interchangeably). The term ephemeral random
constant is somewhat of a misnomer, at least for some implementations of GP. In the imple-
mentation of GP that we used, an ERC is created just once at population initialization. All
ERCs remain—values unchanging—in the population for as long as they are used by at

221 ’Advances in Genetic Programming III, Research and Educational use only’

least one individual. We have specified that at the outset of a GP trial, that ERCs have a
uniform probability density function (PDF) (i.e., uniformly distributed between specified
values). In this way, usage of certain values, if any, are noted by changes in the probability
density function of ERC values. Also at the outset of a GP trial, there are large numbers of
ERCs that are generated and used in a population. In our case, this amounts to several
thousand unique ERC values (floating point, double precision) being used by every trial—
enough to generate ERC statistics at the level of a generation within a GP run.

Second, ERCs have variable worth with respect to solving for f(x) = (x + 1)3. For in-
stance, an ERC can either be “noise” or be a “contributing” value. In effect, GP has to solve
not one, but two problems. One problem involves creating a mathematical model such that
this model fits the supplied data points. This problem is the one a user specifies. The other
problem involves creating error-correcting mechanisms to deal with errant ERC values, as
we show in Appendix A.10.2. This other problem is an emergent one that GP needs to
address in order to solve for f(x). We can illustrate the latter, emergent problem with the
following scenario. Let f´(x) be an individual in a GP population. Furthermore let f´(x) = f(x)
+ r, where r is an ERC with a value of 5. GP can obtain the desired solution f(x) in the next
generation by eliminating r, i.e., by exchanging r with a subtree that evaluates to zero. GP
might also be able to absorb r by multiplying that ERC with a subtree that evaluates to zero.
In this scenario, either elimination or absorption represent error-correcting mechanisms
that deal with errant ERC values.

Third, the valuation of an ERC at any given generation may not be well correlated with
the larger context for solving for f(x). Just as GP would need to eliminate “extraneous”
ERCs, ERCs on the whole would be propagating and increasing in number. Furthermore,
this propagation and increase in number would occur in spite of the different approaches to
solving for f(x). What we would need to do in order to demonstrate this is measure the
change in ERC PDFs. In a sense, ERC implicit fitness would be measured by counting the
total number of ERCs in a population and noting what ERC values were used. If there exists
an implicit fitness for ERCs, there would likely exist a pattern in ERC PDFs that would
transcend the approaches used by GP to solve for f(x) = (x + 1)3. In Appendix A.10.3, we
present a derivation supporting this conjecture.

10.2.2 Method

We have listed three reasons for using ERCs, with the latter two suggesting the following
questions:
1. How does GP solve for the data model that fits data points generated by the equation
f(x
�����

x ��� � 3, given that ERCs may both aid or interfere with this process?

222 ’Advances in Genetic Programming III, Chapter 10’

2. How do ERCs remain in a population in spite of some ERCs having questionable worth
with respect to solving f(x)?

These questions suggest two different viewpoints for analysis. One viewpoint is fitness-
centric and focuses on how ERCs are used by GP to solve for f(x). The other viewpoint is
ERC-centric and focuses on how ERCs are maintained in a population. We examine each of
these viewpoints by conducting an experiment. For either viewpoint, we emphasize that we
are looking at the same phenomena.

Those phenomena are described by the following experimental setup. Fitness cases were
50 equidistant points generated from the equation f(x) = (x + 1)3 over the interval [-1, 0).
Raw fitness score was the sum of absolute error. A hit was defined as being within 0.01 in
ordinate of a fitness case: 50 hits total. The stop criterion was when an individual in a
population scored 50 hits. Adjusted fitness was the reciprocal of the quantity one plus the
raw fitness score.

The terminal set consisted of {X, R}. ERCs in R were generated with a uniform distribu-
tion over a specified interval of the form [-a

R
, a

R
], where a

R
 is a real number that specifies

the range for the ERCs. The function set consisted of {+, -, ×, ÷}, where ÷ is the protected
division operator that returns one if the denominator is exactly zero.

We used lilgp to generate the data.2 Most of the GP parameters were identical to those
mentioned in Chapter 7 [Koza 1992]. Population size = 500; crossover rate = 0.9; replica-
tion rate = 0.1; population initialization with ramped half-and-half; initialization depth of
2–6 levels; and fitness-proportionate selection. Other parameter values were maximum gen-
erations = 200 and maximum tree depth = 26. (Note: these last two parameters differ from
those presented in [Koza 1992], which specifies a maximum number of generations = 51
and a maximum depth = 17. Part of the reason we extended these parameters was to avoid
possible effects that occur when GP processes individuals at these limits.)

2We used a patched version of lilgp v.1.02 [Zongker and Punch 1995], a C implementation of GP that is in use
in the research community. The patches came from three sources: Luke, Andersen, and Daida. Luke’s patches
consist of memory leak fixes, multi-threading bug fixes. His enhancements also include provisions for strong-
typing (which we did not use) and population initialization. Andersen’s fixes included patches to Luke’s popula-
tion initialization routine, so that population initialization could include integer-valued ERCs. Our patches include
modifications to the population initialization routine, so that population initialization could include real-valued
ERCs.

Our patches also include a different random number generator (RNG). The effect of an RNG on empirical
results has been noted in [Koza 1992; Daida, Ross et al. 1997]. Of concern has been that the empirical results
obtained are possibly biased: differences between theoretical and empirical results could exist not because of
genuine discrepancies between either, but because of idiosyncrasies corresponding to a particular random number
generator. Because of concerns with the generator used in lilgp (see [Daida, Ross et al. 1997]), we used the
Mersenne Twister [Matsumoto and Nishimura 1997; Matsumoto and Nishimura 1998], a recent variant of TT800.
This particular generator is fast, has immense periodicity (219,937 -1, as opposed to 231 -2 for some generators), and
has excellent theoretical support for its use. We note, too, that we used lilgp in single-thread mode (as opposed to
using multi-thread) because of possible concerns in parallelizing RNGs. (See [Hellekalek 1997; Hellekalek 1998]
for recent accounts on choosing and using an appropriate RNG.) cont.

223 ’Advances in Genetic Programming III, Research and Educational use only’

10.3 Fitness-Centric Experiment

The first experiment addressed the following question: how does GP solve for the data
model that fits data points generated by the equation f(x) = (x + 1)3, given that ERCs may
both aid or interfere with this process?

To understand ERCs from this fitness-centric viewpoint, we changed the range a
R
 of the

ERCs. We used three values of a
R
: 1, 10, 100. We also ran one control with no ERCs. Four

data sets were collected: Control (no ERCs), Unity (ERC: [-1, 1]); Ten (ERC: [-10, 10]);
Hundred (ERC: [-100, 100]). Each data set consisted of 600 trials for a total of 2400 runs
for this experiment. (We note that increasing a

R
 does not increase the size of the combinato-

rial search space for GP. While it is true that increasing a
R
 is likely to increase the absolute

value apportioned to each ERC, the total number of ERCs observed in any given population
remains statistically constant. See Appendix A.10.3.)

What we were looking for was the effect of varying ERC content on GP’s ability to
solve for f(x). If ERCs are building blocks (which presupposes “useful” content), we should
note an effect by changing ERC values. Towards this end, we were interested in the gross
characteristics of the best-of-trial individuals: e.g., size (number of nodes), generation in
which a best-of-trial individual is found, depth, and adjusted fitness.

10.3.1 Fitness-Centric Results

Figure 10.1 summarizes and discusses the results from the following data sets: Control,
Unity, Ten, and Hundred. Each plot shows 600 points, with each point corresponding to a
best-of-trial individual. Columns are arranged by data set.

In creating the plots for the second and third rows, we added a small amount of uniform
random noise to both (x, y) coordinates of each point. We did this for visualization only. The
quantities corresponding to node count, depth, and generation are integer values—because
of this, a single dot could correspond to many data points. The noise was added to displace
points visually away from each other. That technique was not repeated for the first row, if
only because adjusted fitness is a real-, not integer-valued quantity.

Footnote 2 cont. We also installed non-invasive data taps to collect population snapshots of a run. One of these
taps is a modified version of a checkpoint file, which saves the entire state of a GP system at some intermediate
step. This tap allows for capturing populations at some arbitrary interval prior to the specified last generation.
These population dump files contain only an ERC listing, plus a human-readable version of every individual in
that population. This tap also allows for us to capture the initial population, which lilgp does not do when
checkpointing.

This patched version of lilgp v.1.02 served as the system for most of the trials that we discuss in this chapter.
For the remaining runs, we generated one additional version (called version No-Null). In this version, we installed
a problem specific patch in the population generation portion of lilgp. In Section 10.4, we note that a prevalent and
pivotal structure was a null of the form (- X X). This patch was designed to knock out that null by replacing the
last X in this structure with an ERC.

224 ’Advances in Genetic Programming III, Chapter 10’

Figure 10.1 First Row shows the effect of ERC range on node count versus adjusted
fitness. There are what appear to be four groupings. These groupings are indicated roughly
as follows: a line interval between 25 and 29 nodes with adjusted fitness 1.0; a vertical cloud
that exists in the interval between 25 and 210 nodes with an adjusted fitness of nominally
0.85; a horizontal cloud that exists in the interval of 0.2 and 0.9 in adjusted fitness with a
node count of nominally 29; and a steeply inclined cloud in the interval between 24 and 210

nodes with adjusted fitness of nominally 0.15.
Figure 10.1 Second Row shows the effect of ERC range on node count versus the gen-

eration in which the best-of-trial individual was identified. Note that individuals that occur
near generation 0 are concise and have likely required less computational effort to generate

Figure 10.1
Best-of-trial results of fitness-centric experiment. Each column summarizes a data set, where each data set con-
sisted of 600 trials. This figure shows the effect of increasing ERC values on the size and shape of best-of-trial
individuals.

210

28

26

24

210

28

26

24

210

2
8

2
6

2
4

210

2
8

2
6

2
4

210

2
8

2
6

2
4

210

28

26

24

210

2
8

2
6

2
4

210

28

26

24

210

2
8

2
6

2
4

210

28

26

24

210

2
8

2
6

2
4

210

28

26

24

1.00.50.0 1.00.50.01.00.50.0 1.00.50.0
Adjusted Fitness Adjusted FitnessAdjusted Fitness Adjusted Fitness

2001000
Generation

2001000
Generation

2001000
Generation

2001000
Generation

2520151050
Depth

2520151050
Depth

2520151050
Depth

2520151050
Depth

N
od

es
N

od
es

N
od

es

Control Unity Ten Hundred

N
od

es
 v

. A
dj

. F
itn

es
s

N
od

es
 v

. G
en

er
at

io
n

N
od

es
 v

. D
ep

th

225 ’Advances in Genetic Programming III, Research and Educational use only’

than those solutions that occur near generation 200. The distribution suggests two group-
ings, one near generation 0 and another near the maximum number of generations (200).

Figure 10.1 Third Row shows the effect of ERC range on node count versus the depth
of the best-of-trial individuals. The lines indicate the upper and lower bounds for the num-
ber of nodes that can be present in a tree for a certain depth.3 There appears to have been
only one grouping that occurs near the maximum depth specification.

10.3.2 Fitness-Centric Discussion

ERCs can have a significant effect on whether GP can solve for f(x). Essentially, the greater
the ERC range beyond a

R
 = 1, the more difficulty GP encountered. The easiest task for GP

was the Control case (no usage of ERCs), with 283 individuals (out of 600 possible) having
perfect 1.0 adjusted fitness scores. The next easiest was the Unity case, except there was
only one individual having a perfect adjusted fitness score.4

The overall effect of increasing the range of ERCs used in our problem was detrimental.
The detrimental effect increased with increasing a

R
, even though there were no statistical

differences in the total number of ERCs that were initially allocated.
The idea of increasing difficulty with increasing a

R
 is not altogether surprising. We note,

however, that the reason for these phenomena was not because there were many more ERCs
from which to choose. Rather, the phenomena of increasing difficulty may have occurred
because there can be an increase in fitness penalty for choosing an increasingly “wrong”
ERC. As an illustration, let r be an ERC value in a GP individual of the form (x + r)3. The
consequences for having r picked from the interval [-1, 1] differ markedly for having r
picked from the interval [-100, 100]: on the whole, fitness scores would be lower for [-100,
100]. (Alternately, the phenomena of increasing difficulty may have also occurred because
there are fewer numbers of potentially useful ERCs from which to use.) For that reason, a
significant fraction of ERCs in Ten and Hundred would likely be “noise.” On the other
hand, ERCs in Unity could serve either as “noise” or as “contributing” value. A manual
examination of 50-hit individuals in Unity (numbering 219 best-of-trial individuals) veri-
fied that many of those individuals had ERCs integrated into the solutions represented by
those individuals.

3The upper bound represents trees that are completely filled (i.e., binary trees with no vacancies). The lower
bound represents sparse trees, where for the most part, each depth consists of one operator and one terminal.

4Adjusted fitness and hits served two different purposes in our experiments. Adjusted fitness was used in
determining fitness-proportionate selection. Hits were used as a rough indicator of solution quality—50-hits means
that an individual has met this indicator perfectly. Note that a 50-hits individual does not necessarily correspond to
a perfect-adjusted-score individual, which is f(x) exactly and has an adjusted score of exactly 1.0. A 50-hits indi-
vidual generally had an adjusted score in the range of 0.8 – 1.0. Consequently, although there was only one perfect-
adjusted-score individual in Unity, it turned out that 219 trials (out of 600) had 50-hits (i.e., a third of the trials
produced a “reasonable” individual). Likewise for Control, there were 502 trials (out of 600) with 50-hits.

226 ’Advances in Genetic Programming III, Chapter 10’

We selected the Unity data set for further examination, in part because the effect of
ERCs for that data set was both deleterious and positive. We also note that in terms of the
groupings shown in Figure 10.1, the Unity data set seemed to represent a transitional “snap-
shot” between Control and the remaining data sets.5

10.4 ERC-Centric Experiment

The second experiment addressed the following question: how do ERCs remain in a popu-
lation in spite of some ERCs having questionable worth with respect to solving f(x)?

To understand ERCs from this ERC-centric viewpoint, we manipulated the contexts in
which ERCs can appear. (This is in contrast to the fitness-centric experiment, which in-
volved manipulating ERC contents, not their contexts.) As we mentioned earlier, while there
are a large number of contexts among which to examine ERCs, we have chosen to focus on
just a few. In particular, we have been interested in whether an ERC is expressed in a GP
individual. Towards that end, we have identified a key structure as (- X X), which we
have called the null structure.

We note that there are many other null structures that are possible (i.e., those that map to
exactly zero everywhere in x) in the course of a GP run. However, it is (- X X) that
represents the highest probability structure to occur either at population initialization or
later. (Note that this even exceeds the probability of obtaining an ERC value of an exact
zero by several orders of magnitude.) See Appendix A.10.2. For that reason, we use the
terms null, null structure, and (- X X) interchangeably in subsequent sections of this
chapter. Note that a null structure is similar to an approximate zero because it can be used to
zero out other subtrees (when used with multiplication or division). A null structure is dis-
tinguished from an approximate zero because only it can be used with protected division to
create an exact one, which happens to be a coefficient for f(x) = (x + 1)3.

Null structures introduce the most pronounced context shift possible for an ERC. De-
pending on where an ERC occurs with respect to a null structure, an ERC may ultimately be
incorporated to form a solution coefficient or it may ultimately be voided.

We subsequently generated a companion data set, Unity No-Null, with a No-Null ver-
sion of the kernel. In this version of kernel, all occurrences of the null structure (- X X)
were removed at population initialization and replaced with (- X r), where r ∈ R. Unity

5Of particular concern has been the groupings near limits of specification (e.g., maximum generations = 200
or maximum depth of trees = 26). These groupings are essentially artifacts. However, other works (e.g., [McPhee
and Miller 1995; Banzhaf, Nordin et al. 1998]) suggest that different processes (e.g., compression) may predomi-
nate in regions suggested by these groupings. For instance, Banzhaf, Nordin et al. (1998) would contend that
dynamics that describe GP at the beginning of a run would differ from the dynamics when GP operates on indi-
viduals that are near the specifications for the maximum size.

227 ’Advances in Genetic Programming III, Research and Educational use only’

No-Null consisted of 600 trials and ERCs in the range of [-1, 1]. Furthermore, we reran both
the Unity and Unity No-Null data sets and took a snapshot of both the initial population and
the population in which the best individual was found. The specific interval of which to take
these snapshots was subsequently determined a posteriori.

Of interest are the gross statistical characteristics concerning ERCs. In particular, if
building blocks do exist among ERCs, we should eventually find evidence for that in a
nonuniform statistical distribution of ERCs. Furthermore, if the contexts in which ERCs
appear are significantly altered, we should find a corresponding change in statistical distri-
bution between Unity and Unity No-Null.

10.4.1 ERC-Centric Results

The results in this section have been divided into two parts. The first-half results overlap
Section 10.3 by examining a few fitness-centric characteristics of the Unity No-Null data
set, the companion to Unity. We expect differences between Unity and Unity No-Null, if
only because we have altered the contexts in which ERCs appear in GP individuals. These
differences should subsequently appear at the level of individual.

Figure 10.2 summarizes part of the Unity No-Null data set, the companion to Unity.
Figure 10.2a depicts a slight but noticeable fraction of points that have been affected by
removing the null structure. The shift in pattern is downwards: in comparison to Unity, the
Unity No-Null results show an enhancement in the region from 24 to 26 nodes and a shift of
the cloud from 0.5 to 0.7 in adjusted fitness. Figures 10.2b and 10.2c show slight shifts
towards the origin in comparison to their Unity counterparts in Figure 10.1.

2
10

2
8

2
6

2
4

1.00.50.0

(a) Adjusted Fitness

2
10

2
8

2
6

2
4

2520151050

(c)Depth

2
10

2
8

2
6

2
4

200100

(b) Generation

N
od

es

0

Figure 10.2
Best-of-trial results of ERC-centric experiment. These three scatterplots depict results from Unity No-Null, the
companion data set to Unity (shown in the second column in Figure 10.1). This figure shows the effect of remov-
ing (-X X) from population initialization.

228 ’Advances in Genetic Programming III, Chapter 10’

Figure 10.3 compares histograms from Unity and Unity No-Null. Each histogram de-
picts the frequency of trials versus the generation in which a best-of-trial individual was
identified. This figure shows a slight but noticeable fraction of trials that shifted away from
the maximum generation possible (200) in the Unity data set to the peak at 30 generations in
the Unity No-Null data set.

In the second-half results, we distinguish between node types and focus the remaining
analysis on ERC distributions.

Figure 10.4 shows distributions of all node types for the best-of-trial individuals in both
Unity and Unity No-Null data sets. The spider plot at left compares the raw counts of termi-
nals and functions that were used in constructing best-of-trial individuals for Unity and

40

20

0

2001000
Generations

40

20

0

2001000
Generations

N
um

be
r

of
 T

ria
ls

 (a) Unity (b) Unity No-Null

10
20
30
40×103

No Null

Unity
Plus

Minus

Times

X

ERC

Divide

(a) Usage Totals (ERC: [-1, 1])

ERC 25%

X 25%

÷ 8%

Times 16%

Minus 13%

Plus 13% ERC 30%

X 21%

÷ 7%

Times 16%

Minus13%

Plus 13%

(b) Unity (c) Unity No-Null

Figure 10.3
Comparison of histogram distributions of generation in which a best-of-trial individual was found. Removing���������

 reduced the computational effort required to produce a best-of-trial individual.

Figure 10.4
Comparison of node-type distributions for best-of-trial individuals from Unity and Unity No-Null data sets. This
figure shows the effect of removing

���������
 on components that made up best-of-trial individuals.

229 ’Advances in Genetic Programming III, Research and Educational use only’

Unity No-Null. The hull pattern described by Unity No-Null is not affine with respect to the
corresponding pattern for Unity. The pie charts at middle and right have the raw counts
normalized. The pie charts in Figure 10.4 show that the ratio of ERCs to X in Unity is lower
than the corresponding ratio for Unity No-Null.

Figure 10.5 shows the statistics corresponding to ERC distribution. The left-hand side
illustrates our process of data reduction. The bottom row corresponds to the raw data col-
lected from Unity and Unity No-Null. As mentioned in Section 10.2.1, we needed to look at
frequencies of ERC values in a population, and not just for best-of-trial individuals. Conse-
quently, each point in the bottom row corresponds to the frequency count of an ERC value
as it occurs in a population for a single trial. Each scatterplot subsequently depicts the ERC
node counts from 30,000 individuals (500 individuals per population per trial, 600 trials
total). The scatterplot for Unity, then, is a summary of 26.0 million ERCs; for Unity No-
Null, 23.2 million.

Since scatterplots represent only the ensemble of histogrammic data per trial, we needed
to integrate the trial data over all trials to create a normalized distribution: a numerical PDF
with discretized bins in 0.01 intervals. The staircase plots in the upper row just above the
scatterplots show the numerical PDFs corresponding to Unity and Unity No-Null. To indi-
cate general trends, we overlaid a 20th-order polynomial fit (dark line) on each staircase
plot (gray line). The right-hand side of Figure 10.5 is a comparison of those general trends.

14

12

10

8

6

4

2

0

N
or

m
al

iz
ed

 F
re

q
(x

10
-3)

-1.0 -0.5 0.0 0.5 1.0
ERC Value

40

30

20

10

Fr
eq

ue
nc

y
(x

10
3)

14

12

10

8

6

4

2

0

-1.0 -0.5 0.0 0.5 1.0
ERC Value

40

30

20

10

10

8

6

4

2

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (

x1
0-3

)

-1.0 -0.5 0.0 0.5 1.0
ERC Value

Tr
ia

l D
at

a
D

is
cr

et
e

PD
F

ERC [-1, 1] ERC[-1, 1] (no (-X X)) ERC [-1, 1]
ERC [-1, 1] (no (-X X))

(a) ERC Distribution Over Trials (b) Detail of Curve Fits
Figure 10.5
Comparison of ERC distributions. This figure shows that ERCs were nonuniformly distributed by the times the
best-of-trial individuals were identified. The statistics shown in this figure are for all ERCs in all individuals in
every population that a best-of-trial individual was identified (600 populations total). Figure 10.5a shows the
intermediate steps taken to generate Figure 10.5b.

230 ’Advances in Genetic Programming III, Chapter 10’

10.4.2 ERC-Centric Discussion

The first-half results showed that by altering the low-level contexts in which ERCs appear
in GP individuals, we can induce changes at the higher level of individual.

By removing the null structure (- X X) from the initial population, we have essentially
removed a means by which ERCs can “hide” in the introns (i.e., unexpressed code) of an
individual (i.e., either through multiplication or protected division of ERC-bearing subtrees
with the null structure). We suspect that these otherwise hidden ERC values would then
appear as “contributing” values, which would subsequently affect the fitness of any given
GP individual.

Larger individuals would have correspondingly larger numbers of expressed ERCs, which
may increase the likelihood that ERCs might negatively affect the fitness of an individual.
Figure 10.2 supports the notion that for the fraction of larger individuals that were affected
by this altered context, these individuals were selected against (i.e., as depicted in shifts
toward smaller individuals). Smaller individuals are more likely to occur near the outset of
a GP run, as shown in Figure 10.3.

The second-half results showed that ERCs exhibit a nonuniform distribution and that
those distributions are also affected by altering the low-level contexts in which ERCs ap-
pear. Furthermore, the nonuniform distributions are not well correlated with what one would
intuit in solving for f(x) = (x + 1)3. (In particular, we would reasonably expect values -1, 1,
and maybe 0.)

We start this part of the discussion by comparing ERCs with other node types. On one
hand, in comparison with these other types, ERCs do not appear remarkably different. Fig-
ure 10.4 shows that ERCs constitute roughly half of all the terminals used in the best of trial
individuals for either Unity or Unity No-Null. On the other hand, the gross differences in
the Figure 10.4 spider plot supports the earlier observation that Unity No-Null individuals
are, on the whole, smaller than their Unity counterparts.

The smaller differences suggest that altering contexts also changes the way in which
ERCs are maintained in GP individuals. Not only are the Unity No-Null individuals smaller,
but the constituent node types are apportioned differently from their counterparts in Unity.
In particular, the ratio of ERCs to X in Unity is 1:1; the corresponding ratio in Unity No-
Null is 3:2. Figure 10.4 indirectly suggests that the underlying ERC PDFs would also differ.

We do offer a caveat in interpreting the ERC distributions between Unity and Unity No-
Null. We noted earlier that at population initialization, the No-Null kernel replaces the sec-
ond X in (- X X) with r. Although we felt that this replacement was minimally invasive,
the replacement not transparent and increased the ratio of ERCs to X on the order of 5–6%.
In Figure 10.4, we show comparative differences on that order. We emphasize, however,

231 ’Advances in Genetic Programming III, Research and Educational use only’

that the replacement strategy used in the No-Null kernel occurred only at population initial-
ization; the plots shown in Figure 10.4 (as well as Figure 10.5) were taken from results
sometime after GP had run for several generations. We do not have, as of this writing, a full
explanation of why these differences at population initialization were maintained, if in fact
“maintenance” is what actually happened.6

Indeed, the term maintenance does not easily convey the GP dynamics that transform a
uniformly distributed set of ERCs to the results shown in Figure 10.5. To appreciate the
amount of transformation that occurs, one needs only to examine the trial data. As we men-
tioned earlier, each point represents the frequency (number of times) that one ERC value
occurs in the best-of-trial population for a particular GP run. Typical values range from
1,000 to 10,000 counts. Those figures by themselves do not seem remarkable, unless one
takes into account that each of those figures arose from just one instance of that ERC value
at start. Amplifications for single ERC values usually meant amplification for ERCs as a
whole in a given GP run, albeit not as dramatically; often just a fraction of the initial ERC
values persisted until the best-of-trial generation. Nevertheless, the total number of ERCs
in a best-of-trial population can easily be an order of magnitude more than at start.7

Not all ERC values were of equal worth. Figure 10.5b generally depicts what we would
expect if ERCs were used as building blocks: enhanced distribution in the intervals of “use-
ful” ERC values and diminished distribution in the intervals of “less-than-useful” ERC
values. Noteworthy is that this pattern transcends approaches for solving for f(x). In other
words, this pattern occurred across Unity and Unity No-Null data sets, across the 600 popu-
lations represented by each data set, across the 30,000 individuals represented by those
populations, and across the few thousand different approaches represented by those indi-
viduals. That the pattern exists is not in question, but what exactly determined ERC valua-
tions of use?

It is not a given that ERCs are valued at all, since in Section 10.3 we established that GP
can build solutions without ERCs. However from Figure 10.5b, we can surmise that at least
part of ERC valuation comes from solving for f(x). Note that in that figure, both Unity and
Unity No-Null have similar, but not identical, distributions. We contend that these differ-
ences in distribution occurred largely because in Unity No-Null, we have essentially re-
moved a means by which ERCs can hide in the introns of an individual. One consequence
we mentioned in the discussion of the first-half results was that individuals were smaller in

6Note that population initialization does not account for the differences in the ratio of function types. At
population initialization for both Unity and Unity No-Null, there were roughly equal amounts of each function
type allocated at generation 0. In the best-of-trial individuals, that ratio changed substantially.

7Typically, about 4,500 to 5,000 ERCs are generated at population initialization using the GP parameters
described in Section 10.2.2.

232 ’Advances in Genetic Programming III, Chapter 10’

Unity No-Null than in Unity. Figure 10.5b supports another consequence: that more ERCs
in Unity No-Null individuals were expressed than in Unity individuals. More ERCs ex-
pressed means that more ERCs contributed in solving for f(x), which further implies that
ERCs with greater worth in solving for f(x) were selected for (and the corollary that ERCs
with less worth were selected against). In terms of an ERC distribution, then, we would
expect two key differences. First, we would expect Unity No-Null to have exhibited greater
enhancements over those ERC values most used in solving for f(x) than Unity would ex-
hibit. Second, we would also expect Unity No-Null to have exhibited lower distributions
over those ERC values least used in solving for f(x) than Unity would exhibit. Figure 10.5b
shows most of these two key differences in distributions between Unity No-Null and Unity—
we consequently surmise that part of the ERC valuation came from solving for f(x).

We would also contend, however, that ERC valuation was not well correlated with the
task of solving for f(x). The most useful ERC distributions in solving for f(x) involve narrow
peaks around ±1, and maybe a peak at 0. In fact, Figure 10.5b shows a peak at 0 (for both
Unity and Unity No-Null), but also shows peaks at roughly ±0.75. It is not obvious why
peaks exist at ±0.75. The evidence suggests that these peaks were not statistical aberrations:
both curves represent over fifty million ERCs. The evidence also suggests that these peaks
were not artifacts from processing or smoothing: these peaks can also be found in the raw
trial data and the numerical PDFs in Figure 10.5a. The data strongly suggests that the values
around ±0.75 have worth—the peaks are highly pronounced—but to what can that worth be
ascribed?

In Section 10.2.1 and Appendix A.10.3, we mentioned that we might expect this type of
behavior from ERCs. Namely, we might obtain a pattern in distribution that would tran-
scend the approaches used to solve for f(x) and that would also not be well correlated with
the larger context for solving for that problem. Although there is not yet a formal analysis as
of this writing, the derivation that led to this speculation in the first place may shed some
insight on the direction such an analysis might take.

Our derivation, simply put, involved arbitrarily designating the GP Control case con-
figuration (no ERCs) as host and ERCs as symbionts (parasites in this case).8 The experi-
ment configuration subsequently represented a symbiosis of host and parasites. The goal of
the host was solve for f(x). The goal of the parasites was to increase their progeny. If we
were to extend this frame further, we could expect the following. The host attempts to shed
its parasites, but does not have sufficient mechanisms by which to do so. Parasites attempt
to infiltrate the host, but do so at the host’s expense. An evolutionary stable strategy be-

8We defer to the original definition of symbiosis—Zusammenleben ungleichnamiger Organismen [de Bary
1879], relationships that are constant and intimate between dissimilar species. Under Anton de Bary’s definition,
symbiosis subsumes all systems of dissimilar species that live in this type of relationship, whether that system is
characterized as mutualistic, commensal, or parasitic.

233 ’Advances in Genetic Programming III, Research and Educational use only’

tween host and parasites is represented by the scenario whereby the host manages to fill its
own niche while carrying as many parasites as is possible to survive in that niche.

Given this frame, it may well be that the peaks around ±0.75 occurred not because those
were the values most needed to solve for f(x), but because those were the values that en-
abled the most numbers of ERCs to persist in spite of GP solving for f(x). We leave explor-
ing this conjecture to further work.

10.5 Implications for Building Blocks

Are ERCs building blocks?
In the intuitive sense of the term building blocks (i.e., simple components out of which

more complex things can be made), our response would be a qualified yes, ERCs are build-
ing blocks. We have observed that GP assembled individuals that solved for f(x) by using
multiple instances of particular ERC values within an individual. This chapter has further
shown that multiple instances of particular ERC values are distributed throughout a popula-
tion.

We would not contend, however, that ERCs correspond to the view of building blocks as
context-free structural schemata—the evidence did not totally support that. Context mat-
tered. We showed that altering contexts changed the ability of GP to solve for f(x) and
modified the distribution of ERCs within a population. ERCs manifested themselves in
different contexts throughout the course of a GP run—say, as “contributing value” (when
creating numerical constants required by an individual) or as “don’t care” (when appearing
in an intron). At best, we would say that ERCs are structural schemata, which are some-
times used to build a solution.

Even the notion that ERCs are structural schemata may be open to debate. The prevail-
ing view of structural schemata as genotype is questionable, as far as ERCs are concerned.
The evidence in this chapter suggests that ERCs may be simultaneously both genotype (i.e.,
heritable information) and phenotype (i.e., behavior weakly coupled to solving for f(x)). It
has not escaped our attention that our treatment of ERCs in this chapter does not preclude
extension to other single-node subtree types (e.g., other terminals) or even encapsulated
code (such as ADFs).

For that reason, we would contend that the assumption of a GP parse tree as a biological
analog for real-world DNA may be tenuous. Goldberg and O’Reilly’s comment in [Goldberg
and O’Reilly 1998] was particularly insightful. The question, they claimed, is not so much
what is a building block, but what is a gene. In biology, a gene maps to a particular physical
structure. Heritable information and physical DNA structure are bijective quantities: a
polypeptide generally maps to a particular gene, which is equivalent to saying that a polypep-

234 ’Advances in Genetic Programming III, Chapter 10’

tide maps to a particular structure in DNA. As the results suggest, subtrees do not behave in
this manner because of content and context dependency. In particular, we have demon-
strated that an ERC can have germane information or can mean nothing at all depending on
the particular location, content, context, and approach being employed in a given run. The
mathematical structure that underlies a parse tree is fundamentally different from that of its
biological counterpart—structure and heritable information in GP are not bijective. In the
history of genetics, a gene was the heritable unit of information of which little was known.
It just so happened that a biological gene maps bijectively to a DNA structure. In GP this is
not the case. Consequently, to treat structures, whether single-node or multiple-node subtrees,
as a biological gene is at best tenuous, and at worst, fallacious. We would say that usual
metaphors of genotype and phenotype break down at this level of description. We subse-
quently argue that we would need to revisit the metaphors of genotype and phenotype.

We conjecture that unlike biology, building blocks in GP are ephemeral, just as the
informational worth of an ERC changes over the course of a GP run. Building blocks are
ephemeral because the projection of a parse tree into the space of worthwhile information
would result in blocks that alternately appear and disappear.9 Unlike the other implied meta-
phor of real building blocks, GP building blocks apparently phase in and out of worth. It
isn’t children’s blocks that GP “plays” with—that scenario implies the existence of simple
components to be available for use during the entire playing time. It’s more like a cosmic
game of Tetris, where one tries to solve a two-dimensional problem with N-dimensional
blocks—so that now a block can seemly disappear at one moment and maybe reappear at
another moment at another location with another shape.

10.6 Conclusions

This chapter has described the analysis of single-node subtrees, ephemeral random con-
stants (ERCs), for a simple symbolic regression problem, which has as its target solution
f(x) = (x +1)3. We have shown that in the intuitive sense of the term building blocks (i.e.,
simple components out of which more complex things can be made), our response would be
a qualified yes, such single-node subtrees are building blocks.

We have demonstrated that we can manipulate the efficacy of GP to solve for f(x) by
adjusting the contents within the bounds of the allocated type corresponding to these single-
node subtrees (as opposed to changing the structural complexity of an ERC or by increasing
combinatorial search space). By so doing, we have demonstrated that these single-node

9This work supports O’Reilly and Oppacher’s (1995) speculation on the idea of building blocks disappearing
and reappearing, even though their discussion centered on building block disruption.

235 ’Advances in Genetic Programming III, Research and Educational use only’

building blocks are significant to understanding the dynamics of GP for more than just their
structural (single-node) aspect. Their intrinsic content mattered to the degree that different
content resulted in different individual program sizes and depths.

We have also demonstrated that we can manipulate the efficacy of GP to solve for f(x) by
adjusting the contexts surrounding these single-node subtrees. By altering ERC contexts,
we have shown that ERCs exhibit a pattern of distribution that transcends the many ap-
proaches that GP can use to solve for f(x). We have also shown that this ERC distribution
was not well correlated with the larger context of solving for f(x) and have suggested an
alternative frame based on a metaphor of symbiosis to account for this behavior. Using this
frame, we have indicated that ERCs may be maintained in GP individuals not because they
are useful in solving for f(x), but because GP individuals allow for their existence. In other
words, we have suggested that ERCs may exhibit dynamics that are only somewhat related
to the selection pressure indicated by solving for f(x).

Finally, we have discussed various implications of the results from this study in under-
standing what is a building block. As we have indicated, a building block in GP appears to
be quite different from what we would expect to find in their biological counterpart. We
contended that the assumption of a GP parse tree as a biological analog for real-world DNA
may be tenuous. We subsequently argued that we would need to revisit the metaphors of
genotype and phenotype with respect to their current usage in defining a GP building block.

For more information (other papers and code), please see our research group’s site at
http://www.sprl.umich.edu/acers.

Acknowledgments

The authors thank the editors L. Spector, W. Langdon, U.-M. O’Reilly, and P. Angeline for their kind invitation and
support; W. Langdon and U.-M. O’Reilly, for their reviews, D. Ampy and S. Chang, for analysis tool support; D.
Zongker and W. Punch for lilgp, S. Luke and P. Andersen for their patches to lilgp; M. Matsumoto and T. Nishimura
for mt19937.c, their C implementation of the Mersenne Twister; and the original Challenges team of S. Ross,
J. McClain, D. Ampy, and M. Holczer for doing early unpublished work on the empirical case study. We thank R.
Riolo for his critique on an early draft of this chapter, A. Armstrong for allowing us to give a seminar on this
chapter, as well as the following who gave additional reviews: S. Chaudhary, O. Chaudhri, G. Eickhoff, J. Khoo,
H. Li, P. Litvak, M. Ratanasavetavadhana, and S. Yalcin. This chapter has benefited from our informal conversa-
tions with P. Angeline, W. Banzhaf, T. Bersano-Begey, D. Fogel, J. Foster, D. Goldberg, T. Haynes, W. Langdon,
U.-M. O’Reilly, J. Rice, R. Poli, and J. Rosca. This research was partially supported through grants from U-M
CoE, SPRL, NSF, OVPR, and UROP. We thank J. Vesecky, S. Gregerman, T. Killeen, and M. Combi for their
continued support. The first author acknowledges I. Kristo and S. Daida. In memory of T. Daida, A. Bertram, F.
Polito, and K. Daida.

Appendix A.10.1 Approaches to Solving f(x)

Although identifying the f(x) = (x + 1)3 from 50 equidistant points distributed on the interval [-1,0) might seem
straightforward, the means by which GP could obtain a solution—either perfect or approximate—are not. Some

236 ’Advances in Genetic Programming III, Chapter 10’

solutions are concise, but that is more the exception than the rule. The ability to analyze the mappings between a
solution and parse tree structure is not trivial, even given our problem. One can begin to appreciate the difficulty of
this task by realizing that one approach (an approximate solution valid only on the given interval) consists of
building a rational polynomial of order 50.

Of perfect solutions, there exist several approaches. A few of these approaches can be categorized as (x + 1)3, (1
+ 2x + x2)(x + 1), and (1 + 3x + 3x2 + x3). (See Table 10.1.) For the purposes of this paper, we call these categories
transitive equivalence classes. We define an equivalence class as a mathematical abstraction of structures that
evaluates individuals to a particular expression. An equivalence class is not assumed to have the properties of
closure, transitivity, associativity, and is not assumed to be distributive. However, in our case, we are not con-
cerned about the ordering of factors (e.g., (1 + 2x + x2)(x + 1) = (x + 1)(1 + 2x + x2) and (1 + 3x + 3x2 + x3) = (x ×
3 + 1 + x3 + 3x2)), so we use the term transitive equivalence class. For the remainder of this appendix, then, we
assume that transitive equivalence and equivalence to mean the same, even though, technically speaking, they are
somewhat different.

To illustrate the difficulty of exhaustively enumerating all GP approaches to solving for f(x), we describe the
approaches that can be taken with just those shown in Table 10.1. Note that each approach subsumes three differ-
ent primary components: I, II, and III. Out of these primary components, come 56 total component variations,
which includes both the primary components and close approximates. A close approximate is defined as a compo-
nent that has parameter values that are within a specified tolerance of those in the corresponding primary compo-
nent. Note, too, that we distinguish between implicit and explicit parameters. Terms like 1x and x are subsequently
different, if only because the explicit parameter “1” maps to particular structures and the implicit “1” usually refers
to an absence of associated structure. Note that Table 10.1 does not include the approaches that are purely approxi-
mate, which include solutions of more than three zeros and rational polynomials.

For the sake of completeness, there are nine other equivalence classes, in addition to the three shown in Table 1,
that are based on addition and multiplication. These classes include the following: (x + 1)(1 + x + x + x2), (1 + x +
x + x + x2 + x2 + x2 + x3), (1 + 2x + x + x2 + x2 + x2 + x3), (1 + 3x + x2 + x2 + x2 + x3), (1 + x + x + x + 2x2 + x2 + x3),
(1 + x + x + x + 3x2 + x3), (1 + 2x + x + 2x2 + x2 + x3), (1 + 2x + x + 3x2 + x3), (1 + 3x + 2x2 + x2 + x3). There are also
further equivalence classes based on other permutations of subtraction, division, multiplication, and addition.

An equivalence class in GP is rarely bijective with an associated parse tree structure. As demonstrated in our
particular problem, multiple structures can be mapped to a single equivalence class. For example, the equivalence
class that corresponds to the value “1” subsumes structures like (÷ X X), (÷ X 0), (÷ r 0). It is also true that
multiple equivalence classes can be mapped to a single structure. For example, the structure (÷ X X) belongs as
a partial solution to equivalence classes “3,” “2,” “1,” and even “0.” We defer to [Koza 1992] for further discussion
of the building of numerical constants with GP.

As mentioned previously, each equivalence class presumes a different approach and different blocks for solution
generation. That roots form a basis for solutions for many of these approaches is not surprising: root finding is a
well established numerical technique. Finding roots is also a rapid way to come close to a target function, since a
factor intersects with at least part of the target solution. Consequently, finding roots is one way to establish part of
the “shape” of a solution.

Note that this analysis has been extended just to perfect solutions and their close approximates. It does not
include any other types of approximations with, say, those that are purely approximate, which include solutions of
more than three roots and rational polynomials. Purely approximate polynomials can be used to fit the fitness cases
of 50 equidistant points on the interval [-1, 0) within a given tolerance bound, but not necessarily to fit any other
points taken from f(x). A common rational polynomial approach has been to place poles in the intervals outside of
[-1,0), although some approaches feature poles inside the interval [-1, 0) and between points from the fitness case.
A conservative estimate on the number of equivalence classes with approximate approaches, including rational
polynomials, is on the order of a few thousand.

Appendix A.10.2 Known ERC Strategies

From a listing of equivalence classes, one could infer that there are only a few low-level strategies that are required
to solve the problem of ERCs: incorporation, elimination, and absorption. An ERC can be incorporated into an
individual by serving as a component parameter. For example, an ERC with value 0.99 could find use wherever a
unity value is required. An ERC can be eliminated from an individual via crossover. An ERC can also be elimi-
nated from further consideration (i.e., a population) if individuals bearing this ERC neither reproduce nor replicate

237 ’Advances in Genetic Programming III, Research and Educational use only’

for the next generation. An ERC can be absorbed by being part of a structure that is, for all practical purposes, not
expressed. For example, an ERC could be multiplied by the null structure (- X X) so that the overall subtree
evaluates to null. In GP jargon, structures that do not directly affect a solution’s fitness are called introns (after
[Angeline 1994]). (Both theoretical and empirical evidences support the notion that introns emerge because ge-
netic operators can result in decreased fitness [Nordin and Banzhaf 1995; Rosca and Ballard 1995; Nordin et al.
1996; Soule et al. 1996; Banzhaf et al. 1998]. Introns tend to grow exponentially in numbers. Introns may have
differing effects before and after exponential growth of introns begins [McPhee and Miller 1995; Banzhaf et al.
1998]. Opinion on whether introns benefit or hinder GP is moot, since supportive research can be found on either
side of the subject, (e.g., [Andre and Teller 1996] versus [Nordin et al. 1996]).)

There are 12 different ways to construct either an approximate zero or a null structure, for trees up to depth 2 and
for r ≅ 0 (where r ∈ R) using a tolerance of 0.01. Note that the most likely structure(- X X) to appear out of
these ways also represents the only structure that evaluates to a perfect null: probability P(structure|depth) = 6.25%
for (- X X), in comparison to the next highest probability structure, an approximate zero, which has a
P(structure|depth) = 1.36%. The remaining approximate zero structures have P(structure|depth) no greater than
0.5%.

Note that by multiplying a subexpression with a perfect null, any number of ERCs can be absorbed. In contrast,
an approximate null has only a limited ability to absorb ERC values through multiplication. By dividing a
subexpression with a perfect null, again any number of ERCs can be absorbed, but with the added benefit that
protected division returns unity. (The value “1” can subsequently be used as a component parameter in variants of
I, II, or III.) Dividing a subexpression with an approximate null would likely result in anything but unity.

Table 10.1
Detail of perfect and close approximate approaches using addition and multiplication.

ssalC
(x)1+ 3 (x x()1+ 2 2+ x)1+ (x3 3+ x2 3+ x)1+

yramirP
tnenopmoC

I II,I III

stnairaV I 1,_ I, 1,1 I, γ
1

1, I, ,_ γ
1 I, ,1 γ

1,
Iγ

1
,γ

1 I, γ
1
,γ

2

I 1,_ I, 1,1 I, γ
1

1, I, ,_ γ
1 I, ,1 γ

1,
Iγ

1
,γ

1 I, γ
1
,γ

2

II ,_ a 1, II, ,1 a 1, II, γ
1
,a 1, ,

II ,_ a,γ
1 II, ,1 a,γ

1 II, γ
1
,a,γ

1,
II γ

1
,a,γ

2,
erehw a ∈ ,2{ λ}

III ,_ a,b 1, III, ,1 a,b 1, ,
III γ

1
,a,b 1, III, ,_ a,b,γ

1,
III ,1 a,b,γ

1 III, γ
1
,a,b,γ

1,
III γ

1
,a,b,γ

2 erehw, a ∈ ,3{
η1 dna} b ∈ ,3{ η1}

III ,_ η
1
,η

2
1, III, ,1 η

1
,η

2
1, ,

III γ
1
,η

1
,η

2
1, III, ,_ η

1
,η

2
,γ

1,
III ,1 η

1
,η

2
,γ

1 III, γ
1
,η

1
,η

2
,γ

1,
III γ

1
,η

1
,η

2
,γ

2

rebmuN
stnairaV

)7(I)41(II,)7(I)53(III

tooR
srotcaF

3 1 0

retemaraP
seulaV

1 2,1 3,1

238 ’Advances in Genetic Programming III, Chapter 10’

Appendix A.10.3 Alternative Frame for Analyzing GP and ERCs

Conventional wisdom concerning ERCs would suggest that ERCs are but another software component in GP from
which to build solutions. Upon second look, though, we found GP using ERCs as reminiscent of a class of hybrid
systems that we had been studying for several years [Daida et al. 1995; Daida et al. 1996] and have developed
several systems around the concept. Although we used the concept for synthesis, it occurred to us that we could use
the associated theoretical concepts developed in [Daida et al. 1995] as an alternative frame for this chapter’s
analysis.

Our theoretical framework has used biological symbiosis—relationships that are constant and intimate between
dissimilar species—as a metaphor. In [Daida et al. 1995], we define a symbiotic system as follows:

Let system S represent a set of adaptive systems

B I i j, i j, Bi j

i i, j
k

k

⊃ ∃ ≠ ∀ ≠ ≠ ∅∈
∀ ∈

, .: : and Σ
Σ

U

S S S A Bi i i i i i

B B= : , , , , , , ,= (){ }
∀ ∈

Ω Ω
Σ

τ τi i i

i

IU

where Σ is an index set corresponding to elements in S, A is the set of attainable structure and is the domain of
action for the adaptive plan, Ω is the set of operators for modifying structures A, τ is the adaptive plan that deter-
mines what operator is to be applied, B is the set of attainable artifacts generated by the adaptive system. Ω

B
 is the

set of operators for modifying artifacts, τ
B
 is the adaptive plan that determines what operator is to be applied to B,

and I is the set of possible inputs to the system from the environment. System S is symbiotic if and only if there
exists an instance where

A symbiotic system S is considered minimal if and only if only one element Si describes an adaptive system.

We use the concept of a minimal symbiotic system to create our alternative frame of analysis. To do so, we
arbitrarily define a minimal symbiotic system S that consists of two component systems S1 and S2. In our case we
designate S1 as the adaptive system and S2 as the non-adaptive one. We let S1 be a GP system (adaptive) with the
terminal set = {x, Γ}, where Γ is a set of indexed terminal placeholders. We further let S2 be an ERC generator
(non-adaptive) that outputs {ρ}, where ρ is an indexed set of random number values that are uniformly distributed
in the interval [-aR, aR]. Under this definition, we share the set of indices that point to Γ and ρ such that indexes in
Γ serve as input to ρ and indexes in ρ serve as input to Γ. We let indexes in Γ serve as pointers, and indexes in ρ
serve as addresses. In a sense, the shared indices serve as simple tags, numerical labels that formed the interface
between the two systems.

Framing the GP system (and ERC generator) in this way has been helpful because it is similar to one we studied
in [Daida et al. 1995]. That system S also had two component systems S1 and S2, where S1 was a genetic algorithm
and S2 an arbitrary, but fixed heuristic. Both component systems interacted via numerical tags. For instance, for S2,
the numerical tags served as “locks,” while for S1, numerical tags served as “keys.” Locks and keys were indepen-
dently generated by either system. Behind every lock was a vector that was generated by the fixed heuristic.
Behind every key was a function that used elements from an indexed vector (like one generated by the fixed
heuristic). Although matching lock and key sets could be rapidly determined, the task of discovering “useful”
content was left to S1. We showed in that experiment that the selection of locks and keys was not deterministic, was
subject to positive feedback, and was opportunistic. The pattern of which heuristics were chosen also seemed
probabilistic— S1 would build a solution around a vector by choosing a vector first, rather finding the best attain-
able solution and then finding the heuristic that would make further refinements. Given that type of behavior, we
were able to demonstrate a few ways to manipulate the search dynamics of S1 through tags.

In the GP system that we used, keys would be the kernel’s pointers to ERCs; locks would be the hash table
associated with ERC values. ERC values are generated once at population initialization. Unlike the system de-
scribed in [Daida et al. 1995], each GP individual that uses ERCs uses not one, but a set of keys. Our hypothesis,
however, was that we would find a similar type of behavior.

239 ’Advances in Genetic Programming III, Research and Educational use only’

Bibliography

Altenberg, L. (1994). The Evolution of Evolvability in Genetic Programming. In K. E. Kinnear, Jr. (Ed.), Advances
in Genetic Programming (pp. 47–74). Cambridge: The MIT Press.

Andre, D. and A. Teller (1996). A Study in Program Response and the Negative Effects of Introns in Genetic
Programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), Genetic Programming 1996:
Proceedings of the First Annual Conference: July 28–31, 1996, Stanford University (pp. 12–20). Cambridge: The
MIT Press.

Angeline, P. (1994). Genetic Programming and Emergent Intelligence. In K.E. Kinnear, Jr. (Ed.), Advances in
Genetic Programming (pp. 75–97). Cambridge: The MIT Press.

Angeline, P. J. (1997). Subtree Crossover: Building Block Engine or Macromutation? In J. R. Koza, K. Deb, M.
Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings of the
Second Annual Conference, July 13-16, 1997, Stanford University (pp. 9–17). San Francisco: Morgan Kaufmann
Publishers, Inc.

Bäck, T. and D. B. Fogel (1997). Glossary. In T. Bäck, D. B. Fogel, and Z. Michalewicz (Eds.), Handbook of
Evolutionary Computation (pp. Glos:1–Glos:10). Bristol: Institute of Physics Publishing.

Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone (1998). Genetic Programming: An Introduction: On the
Automatic Evolution of Computer Programs and Its Applications. San Francisco, Morgan Kaufmann Publishers,
Inc.

Daida, J. M., C. S. Grasso, S. A. Stanhope, and S. J. Ross (1996). Symbionticism and Complex Adaptive Systems
I: Implications of Having Symbiosis Occur in Nature. In L. J. Fogel, P. J. Angeline and T. Bäck (Eds.), Evolution-
ary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming (pp. 177–86).
Cambridge: The MIT Press.

Daida, J. M., S. J. Ross, and B. C. Hannan (1995). Biological Symbiosis as a Metaphor for Computational Hybrid-
ization. In L. J. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp.
328–35). San Francisco: Morgan Kaufmann Publishers, Inc.

Daida, J. M., S. J. Ross, J. J. McClain, D. S. Ampy, and M. Holczer (1997). Challenges with Verification, Repeat-
ability, and Meaningful Comparisons in Genetic Programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M.
Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Confer-
ence, July 13-16, 1997, Stanford University (pp. 64–9). San Francisco: Morgan Kaufmann Publishers, Inc.

de Bary, A. (1879). Die Erscheinung der Symbiose. Vortrag, Gehalten auf der Versammlung Deutscher Naturforscher
und Aerzte zu Cassel. Strassburg: R.J. Trübner.

Fogel, D. B. (1992). A Brief History of Simulated Evolution. In The First Annual Conference on Evolutionary
Programming (pp. 1–16). San Diego: Evolutionary Programming Society.

Fuchs, M. (1998). Crossover versus Mutation: An Empirical and Theoretical Case Study. In J. R. Koza, W. Banzhaf,
K. Chellapilla, et al. (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference, July 22–
25, 1998, University of Wisconsin, Madison (pp. 78–85). San Francisco: Morgan Kaufmann Publishers, Inc.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Addison-
Wesley Publishing Company, Inc.

Goldberg, D. E. and U.-M. O’Reilly (1998). Where Does the Good Stuff Go, and Why? In W. Banzhaf, R. Poli, M.
Schoenauer, and T. C. Fogarty (Eds.), Proceedings of the First European Conference on Genetic Programming,
Paris, France. Berlin: Springer-Verlag.

Haynes, T. (1997). Phenotypical Building Blocks for Genetic Programming. In T. Bäck (Ed.), Proceedings of the
Seventh International Conference on Genetic Algorithms (pp. 26–33). San Francisco: Morgan Kauffmann Pub-
lishers.

Hellekalek, P. (1997). A Note on Pseudorandom Number Generators. Simulation Practice and Theory 5(6): 6–8.

240 ’Advances in Genetic Programming III, Chapter 10’

Hellekalek, P. (1998). Good Random Number Generators Are (Not So) Easy to Find. Mathematics and Computers
in Simulation 46(5–6): 487–507.

Holland, J. H. (1973). Genetic Algorithms and the Optimal Allocation of Trials. SIAM Journal on Computing 2(2):
88–105.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. Cambridge, The MIT Press.

Iba, H. and H. de Garis (1996). Extending Genetic Programming with Recombinative Guidance. In P. J. Angeline
and K.E. Kinnear, Jr. (Eds.), Advances in Genetic Programming (pp. 69–88). Cambridge: The MIT Press.

Ito, T., H. Iba, and S. Sato (1998). Depth-Dependent Crossover for Genetic Programming. In The 1998 IEEE
International Conference on Evolutionary Computation Proceedings: IEEE World Congress on Computational
Intelligence (pp. 775–80). Piscataway: IEEE Press.

Koza, J. R. (1989). Hierarchical Genetic Algorithms Operating on Populations of Computer Programs. In N. S.
Sridharan (Ed.), Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 768–
74). San Francisco: Morgan Kaufmann.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, The MIT Press.

Langdon, W. B. and R. Poli (1998). Why Ants Are Hard. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M.
Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1998:
Proceedings of the Third Annual Conference, July 22–25, 1998, University of Wisconsin, Madison (pp. 193–201).
San Francisco: Morgan Kaufmann Publishers, Inc.

Luke, S. and L. Spector (1998). A Revised Comparison of Crossover and Mutation in Genetic Programming. In J.
R. Koza, W. Banzhaf, K. Chellapilla, et al (Eds.), Genetic Programming 1998: Proceedings of the Third Annual
Conference, July 22–25, 1998, University of Wisconsin, Madison (pp. 208–13). San Francisco: Morgan Kaufmann
Publishers, Inc.

Macready, W. G. and D. H. Wolpert (1998). Bandit Problems and the Exploration/Exploitation Tradeoff. IEEE
Transactions on Evolutionary Computation 2(2): 2–22.

Matsumoto, M. and T. Nishimura (1997). mt19937.c. Keio, Department of Mathematics, Keio University. http://
www.math.keio.ac.jp/~matumoto/emt.html.

Matsumoto, M. and T. Nishimura (1998). Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseu-
dorandom Number Generator. ACM Transactions on Modeling and Computer Simulation 8(1): 3–30.

McPhee, N. F. and J. D. Miller (1995). Accurate Replication in Genetic Programming. In L. J. Eshelman (Ed.),
Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 303–309). San Francisco: Morgan
Kaufmann Publishers, Inc.

Mulloy, B. S., R. L. Riolo, and R. S. Savit (1996). Dynamics of Genetic Programming and Chaotic Time Series
Prediction. In J. R. Koza, D. E. Goldberg, D. B. Fogel and R. L. Riolo (Eds.), Genetic Programming 1996: Pro-
ceedings of the First Annual Conference: July 28–31, 1996, Stanford University (pp. 166–74). Cambridge: The
MIT Press.

Nordin, P. and W. Banzhaf (1995). Complexity Compression and Evolution. In L. J. Eshelman (Ed.), Proceedings
of the Sixth International Conference on Genetic Algorithms (pp. 310–17). San Francisco: Morgan Kaufmann
Publishers, Inc.

Nordin, P., F. Francone, et al. (1996). Explicitly Defined Introns and Destructive Crossover in Genetic Program-
ming. In P. J. Angeline and K.E. Kinnear, Jr. (Eds.), Advances in Genetic Programming (pp. 111–34). Cambridge:
The MIT Press.

241 ’Advances in Genetic Programming III, Research and Educational use only’

O’Reilly, U.-M. and F. Oppacher (1995). The Troubling Aspects of a Building Block Hypothesis for Genetic
Programming. In L. D. Whitley and M. D. Vose (Eds.), Foundations of Genetic Algorithms 3 (pp. 73–88). San
Francisco: Morgan Kaufmann Publishers, Inc.

Poli, R. and W. B. Langdon (1997). An Experimental Analysis of Schema Creation, Propagation and Disruption in
Genetic Programming. In T. Bäck (Ed.), Proceedings of the Seventh International Conference on Genetic Algo-
rithms (pp. 18–25). San Francisco: Morgan Kauffmann Publishers, Inc.

Poli, R. and W. B. Langdon (1997). A New Schema Theory for Genetic Programming with One-Point Crossover
and Point Mutation. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.),
Genetic Programming 1997: Proceedings of the Second Annual Conference, July 13-16, 1997, Stanford University
(pp. 279–85). San Francisco: Morgan Kaufmann Publishers, Inc.

Poli, R., W. B. Langdon, and U.-M. O’Reilly (1998). Analysis of Schema Variance and Short Term Extinction
Likelihoods. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Confer-
ence, July 22–25, 1998, University of Wisconsin, Madison (pp. 284–92). San Francisco: Morgan Kaufmann Pub-
lishers, Inc.

Punch, W., D. Zongker, and E. Goodman (1996). The Royal Tree Problem, A Benchmark for Single and Multiple
Population Genetic Programming. In P. J. Angeline and K.E. Kinnear, Jr. (Eds.), Advances in Genetic Program-
ming (pp. 299–316). Cambridge: The MIT Press.

Rosca, J. P. (1997). Analysis of Complexity Drift in Genetic Programming. In J. R. Koza, K. Deb, M. Dorigo, D.
B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings of the Second
Annual Conference, July 13-16, 1997, Stanford University (pp. 286–94). San Francisco: Morgan Kaufmann Pub-
lishers, Inc.

Rosca, J. P. and D. H. Ballard (1995). Causality in Genetic Programming. In L. J. Eshelman (Ed.), Proceedings of
the Sixth International Conference on Genetic Algorithms (pp. 256–63). San Francisco: Morgan Kaufmann Pub-
lishers, Inc.

Rosca, J. P. and D. H. Ballard (1996). Discovery of Subroutines in Genetic Programming. In P. J. Angeline and
K.E. Kinnear, Jr. (Eds.), Advances in Genetic Programming (pp. 177–201). Cambridge: The MIT Press.

Soule, T., J. A. Foster, and J. Dickinson (1996). Code Growth in Genetic Programming. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), Genetic Programming 1996: Proceedings of the First Annual
Conference: July 28–31, 1996, Stanford University (pp. 215–23). Cambridge: The MIT Press.

Soule, T., J. A. Foster, and J. Dickinson (1996). Using Genetic Programming to Approximate Maximum Clique. In
J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (Eds.), Genetic Programming 1996: Proceedings of the
First Annual Conference: July 28–31, 1996, Stanford University (pp. 400–405). Cambridge: The MIT Press.

Tackett, W. A. (1993). Genetic Programming for Feature Discovery and Image Discrimination. In S. F. Forrest
(Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 303–309). San Mateo: Mor-
gan Kaufmann Publishers, Inc.

Tackett, W. A. (1994). Recombination, Selection and the Genetic Construction of Computer Programs. Ph.D.
Thesis, Electrical Engineering. Los Angeles, University of Southern California.

Whigham, P. (1995). A Schema Theorem for Context-Free Grammars. In The 1995 IEEE Conference on Evolu-
tionary Computation (pp. 178–81). Piscataway: IEEE Press.

Zongker, D. and W. Punch (1995). lilgp. Lansing, Michigan State University, Genetic Algorithms Research and
Applications Group. http://garage.cps.msu.edu/software/software-index.html.

