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The design of an electrical circuit entails creation of the circuit's topology, sizing, placement, and
routing. Each of these tasks is either vexatious or computationally intractable. Design engineers
typically perform these tasks sequentially– thus forcing the engineer to grapple with one vexatious
or intractable problem after another. This chapter describes a holistic approach to the automatic
creation of a circuit's topology, sizing, placement, and routing. This approach starts with a high-
level statement of the requirements for the desired circuit and uses genetic programming to
automatically and simultaneously create the circuit's topology, sizing, placement, and routing. The
approach is illustrated with the problem of designing an analog lowpass filter circuit. The fitness
measure for a candidate circuit considers the area of the fully laid-out circuit as well as whether the
circuit passes or suppresses the appropriate frequencies. Genetic programming requires only about
1 1/2 orders of magnitude more computer time to create the circuit's topology, sizing, placement,
and routing than to create the topology and sizing for this illustrative problem.

6.1 Introduction

The design process entails creation of a complex structure to satisfy user-defined
requirements. Design is a major activity of practicing engineers. Since the design process
typically involves tradeoffs between competing considerations, the end product is usually
a satisfactory, as opposed to a perfect, design. The design process is usually viewed as
requiring human intelligence. Consequently, the field of design is a source of challenging
problems for automated techniques of machine learning and artificial intelligence.

The design process for electrical circuits begins with a high-level description of
the circuit's desired behavior and entails creation of the circuit's topology, sizing,
placement, and routing. The topology of a circuit involves specification of the gross
number of components in the circuit, the type of each component (e.g., a capacitor), and a
netlist specifying where each of a component's leads are to be connected. Sizing involves
specification of the values (typically numerical) of each component. Placement involves
the assignment of each of the circuit's components to a particular physical location on a
printed circuit board or silicon wafer. Routing involves the assignment of a particular
physical location to the wires between the leads of the circuit's components.

All four of the above aspects of circuit design (topology, sizing, placement, and
routing) are vexatious or computationally intractable for analog electrical circuits.

Specifically, until recently, there has been no general technique for automatically
creating the topology and sizing for an entire analog electrical circuit from a high-level
statement of the circuit's desired behavior. In describing the process of creating the
topology and sizing of an analog circuit, Aaserud and Nielsen [1995] observed,



Analog designers are few and far between. In contrast to digital design, most
of the analog circuits are still handcrafted by the experts or so-called 'zahs' of
analog design. The design process is characterized by a combination of
experience and intuition and requires a thorough knowledge of the process
characteristics and the detailed specifications of the actual product.

Analog circuit design is known to be a knowledge-intensive, multiphase,
iterative task, which usually stretches over a significant period of time and is
performed by designers with a large portfolio of skills. It is therefore
considered by many to be a form of art rather than a science.

The placement problem and the routing problem (for both analog and digital
circuits) are examples of computationally intractable combinatorial optimization
problems that require a computing effort that increases exponentially with problem size
[Wong, Leong, and Liu 1988; Garey and Johnson 1979; Ullman 1984]. Since it is
considered unlikely that efficient algorithms can be found for such problems,
considerable effort has been expended on finding efficient approximate solutions to such
problems [Wong, Leong, and Liu 1988; Cohn, Garrod, Rutenbar, and Carley 1994;
Maziasz and Hayes 1992; Joobbani 1986; Sechen 1988]. The most important
consideration in placement and routing is that there must be a wire connecting 100% of
the nodes that must be connected. Wires cannot cross on a particular layer of a silicon
chip or on a particular side of a printed circuit board. While it is possible to make
connections (called vias) from another layer of the silicon chip or printed circuit board,
the number of layers that are available and the type of components that can be located on
each layer is strictly limited by the particular technology being used. For example, a
printed circuit board or silicon chip may consist of one, two, or some other (small)
number of layers. However, only one layer of currently used silicon chips can house
components other than wires and at most two layers of a printed circuit boards can house
anything other than wires. Once an acceptable placement and routing is discovered for a
particular circuit, the next most important consideration is usually minimization of the
area of the bounding rectangle of the laid-out circuit. Minimization of area has a
substantial and direct economic impact in the manufacture of electronic circuitry. In
addition, it is often desirable to minimize the length of wires connecting components and
to minimize the number of vias.

As shown in figure 6.1, each of the above four vexatious or computationally
intractable phases of circuit design (topology, sizing, placement, and routing) are
currently tackled more or less sequentially.

The question arises as to whether all four aspects of circuit design can be
combined into a unified automatic process. At first glance, it would appear that the four
aspects are so different in character that such a combination would be impossible. Or, if
such a combination is possible, it would appear that such a combination might require
prohibitively large amounts of computer time. This chapter demonstrates that genetic
programming can be used to automatically create the topology, sizing, placement, and
routing of analog electrical circuits.
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The process of designing a circuit includes creation of the circuit’s topology, sizing of the circuit’s
components, placement of the components onto the substrate, and the routing of wires between the
components.

Section 6.2 provides background. Section 6.3 presents our method. Section 6.4
describes an illustrative problem of designing an analog lowpass filter circuit. Section 6.5
details the preparatory steps required to apply our method to the illustrative problem.
Section 6.6 presents the results. Section 6.7 discusses the amount of computer time
required. Section 6.8 speculates on the role of genetic programming as an invention
machine.

6.2 Automatic Creation of Circuit Topology and Sizing

There has been extensive previous work on the problem of automating various aspects of
the design of electrical circuits using simulated annealing, artificial intelligence, and
other optimization techniques (as detailed in Koza, Bennett, Andre, and Keane 1999),
including genetic algorithms [Kruiskamp and Leenaerts 1995; Grimbleby 1995;
Thompson 1996]. All of the existing techniques are limited to certain highly specialized
types of circuits or address only one or two of the four aspects (topology, sizing,
placement, and routing) of circuit design. Some of these techniques involve choosing pre-
established alternative subcircuits for pre-established places within a pre-established
overall circuit design. Many preexisting non-genetic techniques require the user to supply
a reasonably good working circuit as a starting point (with the automated technique then
merely adjusting the sizing of the components) or require repeated interactive
intervention by the user.

Recently, a general technique using genetic programming has emerged for
automatically creating the topology and sizing for an analog electrical circuit from a
high-level statement of the circuit's desired behavior [Koza, Bennett, Andre, Keane, and
Dunlap 1997; Koza, Bennett, Andre, and Keane 1999].

Genetic programming [Koza 1992; Koza and Rice 1992] is an extension of the
genetic algorithm [Holland 1975] that automatically creates computer programs to solve
problems. Genetic programming is also capable [Koza 1994a, 1994b] of evolving multi-



part programs consisting of a main program and one or more reusable, parametrized,
hierarchically-called automatically defined functions (subroutines). Architecture-altering
operations [Koza 1995; Koza, Bennett, Andre, and Keane 1999] enable genetic
programming to automatically determine the number of subroutines, the number of
arguments that each possesses, and the nature of the hierarchical references, if any,
among such automatically defined functions. They also enable genetic programming to
automatically determine whether and how to use internal memory, iterations, and
recursion in evolved programs. Additional information on current research in genetic
programming can be found in Banzhaf, Nordin, Keller, and Francone 1998; Langdon
1998; Kinnear 1994; Angeline and Kinnear 1996; Koza, Goldberg, Fogel, and Riolo
1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza, Banzhaf,
Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and Riolo 1998; and Banzhaf,
Poli, Schoenauer, and Fogarty 1998.

Numerous circuits have been designed using genetic programming, including
lowpass, highpass, bandpass, bandstop, crossover, multiple bandpass, and asymmetric
filters, amplifiers, computational circuits, a temperature-sensing circuit, a voltage
reference circuit, a frequency-measuring circuit, and source identification circuits. The
circuits evolved using genetic programming include eleven previously patented circuits.

Genetic programming can be applied to circuit design by establishing a mapping
between the rooted, point-labeled acyclic graphs (trees) with ordered branches used in
genetic programming and the specialized type of cyclic graphs germane to electrical
circuits. The creative work of Kitano [1990] on using developmental genetic algorithms
to evolve neural networks, the innovative work of Gruau [1992] on using genetic
programming to evolve neural networks (cellular encoding), and the principles of
developmental biology suggest a method for mapping trees into electrical circuits by
means of a growth process that begins with a simple embryo. For electrical circuits, we
use an embryo consisting of one (and sometime more) modifiable wires. The embryo is
embedded into a test fixture consisting of fixed (hard-wired) components (such as a
source resistor and a load resistor) and certain fixed wires that provide connectivity to the
circuit's external inputs and outputs and that enable the behavior of the evolving circuitry
to be evaluated. Until the modifiable wires are modified by the developmental process,
the circuit produces only trivial output. An electrical circuit is developed by progressively
applying the functions in a circuit-constructing program tree (in the population being bred
by genetic programming) to the modifiable wires of the original embryo and to the
modifiable components and modifiable wires created during the developmental process.

An electrical circuit is created by executing the functions in a circuit-constructing
program tree. The functions are progressively applied in a developmental process to the
embryo and its successors until all of the functions in the program tree are executed. That
is, the functions in the circuit-constructing program tree progressively side-effect the
embryo and its successors until a fully developed circuit eventually emerges. The
functions are applied in a breadth-first order.

The functions in the circuit-constructing program trees are divided into five
categories: (1) topology-modifying functions that alter the circuit topology, (2)
component-creating functions that insert components into the circuit, (3) development-



controlling functions that control the development process by which the embryo and its
successors is changed into a fully developed circuit, (4) arithmetic-performing functions
that appear in subtrees as argument(s) to the component-creating functions and specify
the numerical value of the component, and (5) automatically defined functions that
appear in the function-defining branches and potentially enable certain substructures of
the circuit to be reused (with parameterization).

Each branch of the program tree is created in accordance with a constrained
syntactic structure (strong typing). Each branch is composed of topology-modifying
functions, component-creating functions, development-controlling functions, and
terminals. Component-creating functions typically have one arithmetic-performing
subtree, while topology-modifying functions, and development-controlling functions do
not. Component-creating functions and topology-modifying functions are internal points
of their branches and possess one or more arguments (construction-continuing subtrees).
This constrained syntactic structure is preserved using structure-preserving crossover
with point typing. For details, see Koza, Bennett, Andre, and Keane 1999.

The foregoing method for automatically creating circuit topology and sizing does
not address the problem of automatically placing and routing of components and wires at
particular physical locations on a printed circuit board or silicon wafer.

6.3 Method for  Automatic Creation of Circuit Topology, Sizing, Placement, and
Routing

This section describes how all four aspects of circuit design (topology, sizing, placement,
and routing) can be combined into a unified approach using genetic programming.

6.3.1 The Initial Circuit

An electrical circuit is created in a developmental process by executing a circuit-
constructing program tree that contains various component-creating, topology-modifying,
and development-controlling functions. The starting point of the developmental process
for transforming a program tree in the population into a fully developed electrical circuit
is an initial circuit consisting of an embryo and a test fixture.

All the wires and components of the initial circuit are located at specified physical
locations on a printed circuit board or silicon wafer. A board or wafer has a limited
number of layers that are available for wires and a limited number of layers (usually one
for a wafer and one or two for a board) that are available for both wires and components.

The embryo is an electrical substructure consisting of at least one modifiable wire.
The test fixture is a substructure composed of nonmodifiable wires and nonmodifiable
electrical components. The test fixture provides access to the circuit's external input(s)
and permits testing of the circuit’s behavior and probing of the circuit's output. An
embryo has one or more ports that enable it to be embedded into a test fixture.
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Figure 6.2
One-input, one-output initial circuit consisting of two ground points G, an incoming voltage signal
V, a source resistor RSRC, a modifiable wire Z, a load resistor RLOAD, and three pieces of
nonmodifiable wire. Each element is of a particular size and is located at a certain location. In
addition, the two resistors have components values (1 kΩ  each).

Figure 6.2 shows a one-input, one-output initial circuit located on one layer of a
silicon wafer or printed circuit board. This initial circuit consists of the ground G (at the
far left), the source V for the incoming voltage signal, a piece of nonmodifiable wire
(hashed), a fixed 1 kilo-Ohm (kΩ) source resistor RSRC, another piece of nonmodifiable
wire, a piece of modifiable wire Z, another piece of nonmodifiable wire, a fixed 1 kΩ
load resistor RLOAD, and the ground G (at the far right). The output probe point VOUT
is the place where the circuit’s output voltage is measured.

Each element of a circuit resides at particular physical location on the circuit’s
two-dimensional substrate and occupies a particular amount of space. The two resistors
each occupy a 3 × 3 area while all the other elements of this initial circuit each occupy a
1 × 1 area. The location of the 1 × 1 ground point G at the far left of the figure is (13, 20);
the location of the incoming signal source V is (14,20); the location of the center of the 3
× 3 source resistor RSRC is (17, 20), and the location of the 1 × 1 modifiable wire Z is
(20, 20). As will be seen momentarily, circuit elements typically change locations
numerous times during the developmental process.

The embryo of this initial circuit consists of the single 1 × 1 piece of modifiable
wire Z. All development originates from this embryo. The remaining elements (all fixed)
of the initial circuit constitute the test fixture.

6.3.2 Circuit-Constructing Functions

A program tree may contain component-creating functions, topology-modifying
functions, and development-controlling functions. Each of these three types of functions
is associated with a modifiable wire or modifiable component in the developing circuit.
The construction-continuing subtree(s), if any, of these functions point to a successor
function or terminal in the circuit-constructing program tree.



A program tree may also contain arithmetic functions and constants. The
arithmetic-performing subtree of a component-creating function consists of a
composition of arithmetic functions (addition and subtraction) and random constants (in
the range -1.0 to +1.0). The arithmetic-performing subtree specifies the numerical value
of a component by returning a floating-point value that is interpreted on a logarithmic
scale as the value for the component in a range of 10 orders of magnitude (using a unit of
measure that is appropriate for the particular type of component). The details of this
process are the same as used in Koza, Bennett, Andre, and Keane 1999.

6.3.2.1  Component-Creating Functions

The component-creating functions insert a component into the developing circuit and
assign component value(s) to the new component.

The two-argument capacitor-creating LAYOUT- C function inserts a capacitor into
a developing circuit in lieu of a modifiable wire (or modifiable component). Figure 6.3
shows a partial circuit containing four capacitors (C2, C3, C4, and C5) and a modifiable
wire Z0. Each capacitor occupies a 3 × 3 area.  Each piece of wire occupies a 1 × n or an
n × 1 area. The modifiable wire Z0 occupies a 1 × 1 area and is located at (20, 20).
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Figure 6.3
Partial circuit with a 1 × 1 piece of modifiable wire Z0 at location (20, 20) and four capacitors.
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The application of the LAYOUT- C function to the modifiable wire Z0 of figure 6.3 causes a 3 × 3
capacitor C6 to be inserted at location (20, 20). The insertion of the new capacitor C6 forces a
change in location for the other capacitors in the figure.

Figure 6.4 shows the result of applying the two-argument capacitor-creating
LAYOUT- C function to the modifiable wire Z0 of figure 6.3. The newly created capacitor
C6 occupies a 3 × 3 area and is centered at location (20, 20). The newly created
component is larger in both directions than the 1 × 1 piece of modifiable wire that it
replaces. Thus, its insertion affects the locations of all preexisting components in the
developing circuit. In particular, preexisting capacitor C2 is pushed north and west by
one unit thereby relocating it from (18, 23) to (17, 24). Similarly, preexisting capacitor
C5 is pushed south and east by one unit thereby relocating it from (22, 17) to (23, 16). In
our actual implementation, all adjustments in location are made after the completion of
the entire developmental process; however, we will explain each circuit-constructing
function as if the required adjustment is made at the time that the function is executed.
The first argument of the capacitor-creating function is an arithmetic-performing subtree
that specifies the value of the newly created capacitor in micro-Farads. The second
argument of the capacitor-creating function is the construction-continuing subtree. The
newly created capacitor C6 remains subject to subsequent modification.

Similarly, the two-argument inductor-creating LAYOUT- L function causes an
inductor to be inserted into a developing circuit in lieu of a modifiable wire (or other
modifiable component). The inductors in this chapter each occupy a 3 × 3 area; however,
different components may, in general, have different dimensions. The value of the new
inductor in micro-Henrys is specified by the arithmetic-performing subtree (the function's
first argument). The function's second argument is the construction-continuing subtree.
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Figure 6.5
The application of LAYOUT- CMOS- TRANSI STOR function to the modifiable wire Z0 of figure
6.3 causes a three-leaded transistor Q6 occupying a 3 × 3 area to be inserted at location (18, 20).

Three-leaded components, such as transistors, may also be inserted into a
developing circuit. Figure 5 shows the result of applying the one-argument transistor-
creating LAYOUT- CMOS- TRANSI STOR function to the modifiable wire Z0 of figure 3.
The newly created transistor Q6 occupies a 3 × 3 area and is located at (18, 20). The
newly created component is larger than that which it replaces thereby affecting the
locations of two preexisting components (C2 and C3) in the developing circuit.
Specifically, preexisting capacitor C2 is pushed north by one unit thereby relocating it
from (18, 23) to (18, 24). Similarly, preexisting capacitor C3 is pushed south by one unit
thereby relocating it from (18, 17) to (18, 16). The argument of the transistor-creating
function is an arithmetic-performing subtree that specifies the transistor’s width. The
newly created transistor Q6 is not subject to subsequent modification (and hence this
function possesses only one argument and takes no construction-continuing subtree).



6.3.2.2  Topology-Modifying Functions

Each topology-modifying function modifies the topology of the developing circuit.
The two-argument SERI ES- LAYOUT function creates a series composition

consisting of the modifiable wire or modifiable component with which the function is
associated and a copy of it. The function also creates two new nodes. Figure 6.6 shows a
partial circuit containing six capacitors (C2, C3, C4, C5, C6, and C7). Figure 6.7 shows
the result of applying the SERI ES- LAYOUT function to modifiable capacitor C6 located
at (20, 20) of figure 6.6. The SERI ES- LAYOUT function creates a new capacitor C8
occupying a 3 × 3 area. The newly created capacitor C8 has the same values as
modifiable capacitor C6. The function does not move the preexisting component (C6).
Instead, room is made for the newly created capacitor C8 in the direction of a specified
one of the two leads (the positive lead) of the preexisting component. Thus, C8 is located
at (22, 20) to the east of C6 in this example. The addition of the four units horizontally to
accommodate C8 affects the horizontal (but not vertical) location of the four preexisting
capacitors. For example, preexisting capacitor C2 is pushed west by two units thereby
relocating it from (17, 24) to (15, 24). Similarly, preexisting capacitor C5 is pushed east
by two units thereby relocating it from (23, 16) to (25, 16). The addition of the four units
horizontally to accommodate C8 also affects other parts of the developing circuit. For
example, the wires to the east and west of preexisting capacitor C7 are lengthened (by
two units each) to reflect the addition of the four horizontal units associated with the
creation of C8. Both arguments of the SERI ES- LAYOUT function are construction-
continuing subtrees, so that both C6 and C8 remain subject to subsequent modification.
New node 3 is located between preexisting capacitor C6 and new capacitor C8 at the
original location(20, 20) of preexisting capacitor C6.
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Figure 6.6
Partial circuit with a 3 × 3 modifiable capacitor C6 at location (20, 20) with five nearby capacitors.
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Figure 6.7
The application of the SERI ES- LAYOUT function to the modifiable capacitor C6 of figure 6.6
causes a new 3 × 3 capacitor C8 to be inserted at location (22, 20) in series with C6.

Each of the two functions in the PARALLEL- LAYOUT family of four-argument
functions creates a parallel composition consisting of two new modifiable wires, the
preexisting modifiable wire or modifiable component with which the function is
associated, and a copy of the modifiable wire or modifiable component. Each function
also creates two new nodes. Figure 6.8 shows the result of applying the PARALLEL-
LAYOUT- LEFT function to modifiable capacitor C6 located at (20, 20) of figure 6.4.
The function does not change the location of the modifiable component or modifiable
wire with which the function is associated. The function creates a new capacitor C7
occupying a 3 × 3 area with the same values as modifiable capacitor C6. The function
positions the new capacitor C7 to the left of C6 (looking from the negative to positive
lead of the modifiable component or modifiable wire with which the function is
associated). The function does not affect the location of preexisting circuitry to the right
of C6 (i.e., C3 and C5). The function inserts a new 1 × 1 modifiable wire Z9 at (23, 22)
to the left of C6, a new 1 × 1 piece of wire between preexisting node 2 and new
modifiable wire Z9, and a new 1 × 1 piece of wire between new node 4 and Z9. The
function inserts a new 1 × 1 modifiable wire Z8 at (17, 22) to the left of C6, a new 1 × 1
piece of wire between preexisting node 1 and new modifiable wire Z8, and a new 1 × 1
piece of wire between new node 3 and Z8. The new capacitor C7 is located at (20, 24).
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Figure 6.8
The application of the PARALLEL- LAYOUT- LEFT function to the modifiable capacitor C6 of
figure 6.4 causes a new 3 × 3 capacitor C7 to be inserted at location (20, 24) in parallel with C6.
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The application of the PARALLEL- LAYOUT- RI GHT function to the modifiable capacitor C6 of
figure 6.4 causes a new 3 × 3 capacitor C7 to be inserted at location (20, 16) in parallel with C6.

The function also relocates the preexisting circuitry to the left of C6. Specifically,
preexisting capacitor C2 is pushed to the north from (17, 24) to (17, 28) and preexisting
capacitor C4 is pushed to the north from (23, 24) to (23, 28).

Figure 6.9 shows the result of applying the PARALLEL- LAYOUT- RI GHT
function to modifiable capacitor C6 located at (20, 20) of figure 6.4. This function



operates in a manner similar to the PARALLEL- LAYOUT- LEFT function, except that
new capacitor C7 is located to the right of C6 and the location of preexisting circuitry to
the right of C6 is pushed south.

The one-argument polarity-reversing FLI P function reverses the polarity of the
modifiable component or modifiable wire with which the function is associated.

All of the foregoing circuit-constructing functions operate in a plane. However,
most practical circuits are not planar. Vias provide a way to connect distant points of a
circuit. Each of the four functions in the VI A- TO- GROUND- LAYOUT family of three-
argument functions creates a T-shaped composition consisting of the modifiable wire or
modifiable component with which the function is associated, a copy of it, two new
modifiable wires, and a via to ground. The function also creates two new nodes.

Figure 6.10 shows the result of applying the VI A- TO- GROUND- NEG- LEFT-
LAYOUT function to modifiable capacitor C6 located at (20, 20) of figure 6.4. The
function creates a new node 3 at the location (20, 20) of the modifiable component or
modifiable wire with which the function is associated and also creates a new 2 × 1 area at
the negative end of the modifiable component or modifiable wire with which the function
is associated and a new 4 × 1 area to the left.

The new 4 × 1 area consists of a new 1 × 1 piece of wire perpendicular and to the
left of the modifiable component or modifiable wire with which the function is associated
(facing from the negative to positive lead of the modifiable component or modifiable
wire with which the function is associated), a new 1 × 1 modifiable wire Z9 at location
(20, 22) beyond the new 1 × 1 piece of wire, a new node 4 at (20, 23) beyond Z9 and the
new 1 × 1 piece, and a via to ground G at (20, 24) beyond node 4, Z9, and the new 1 × 1
piece.
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Figure 6.10
The application of the VI A- TO- GROUND- NEG- LEFT- LAYOUT function to the modifiable
capacitor C6 of figure 6.4 causes a new 1 × 1 connection to ground G to be inserted at location (20,
24).



The new 2 × 1 area consists of a new 1 × 1 piece of wire at (19, 20) at the negative
lead of the modifiable component or modifiable wire with which the function is
associated and a new modifiable wire Z8 at (18,20). Since the VI A- TO- GROUND- NEG-
LEFT- LAYOUT function creates a new 2 × 1 area at the negative end of preexisting
capacitor C6 and a new 1 × 1 node 3, capacitor C6 is pushed to the east by three units so
that C6 becomes centered at (23, 20). Consequently, preexisting capacitor C4 is pushed
east from (23, 24) to (26, 24) and preexisting capacitor C5 is pushed east from (23, 16) to
(26, 16).

The three other members of this family of functions are named to reflect the fact
that they create the new 2 × 1 area at the positive (instead of negative) end of the
modifiable component or modifiable wire with which the function is associated and that
they create the new 4 × 1 area to the right (instead of left).

If desired, similar families of three-argument functions can be defined to allow
direct connections to a positive power supply or a negative power supply.

In addition, if desired, numbered vias can be created to provide connectivity
between two different parts of a circuit. A distinct four-member family of three-argument
functions is used for each via. For example, VI A- 2- NEG- LEFT- LAYOUT makes
connection with an imaginary layer numbered 2 of the imaginary multi-layered silicon
wafer (or multi-layered printed circuit board) on which the circuit resides.

The initial circuit complies with the requirement that wires cannot cross on a
particular layer of a silicon chip or on a particular side of a printed circuit board and with
the requirement that there must be a wire connecting 100% of the leads. Each of the
component-creating and topology-modifying functions preserves compliance with these
two mandatory requirements for successful placement and routing, so any sequence of
such functions yields a fully laid-out circuit that complies with these two requirements.

6.3.2.3 Development-Controlling Functions

The zero-argument END function makes the modifiable wire or modifiable component
with which it is associated into a non-modifiable wire or component (thereby ending a
particular developmental path).

The one-argument NOOP (“No Operation” ) function has no effect on the
modifiable wire or modifiable component with which it is associated; however, it has the
effect of delaying the developmental process on the particular path on which it appears.

6.3.3 The Developmental Process

An electrical circuit is created by executing the functions in a circuit-constructing
program tree. The functions are progressively applied in a developmental process to the
embryonic circuit and its successors until all of the functions in the program tree are
executed. That is, the functions in the circuit-constructing program tree progressively
side-effect the embryonic circuit and its successors until a fully developed circuit
eventually emerges. The functions are applied in a breadth-first order.



6.4 Statement of the I llustrative Problem

The method will be illustrated on the problem of creating the topology, sizing, placing,
and routing for a lowpass filter. A simple filter is a one-input, one-output circuit that
passes the frequency components of the incoming signal that lie in a specified range
(called the passband) while suppressing the frequency components that lie in all other
frequency ranges (the stopband). The desired lowpass filter is to pass all frequencies
below 1,000 Hertz (Hz) and to suppress all frequencies above 2,000 Hz. The circuit is to
be constructed on a two-sided printed circuit board whose top side contains discrete
components (capacitors and inductors) that are connected by perpendicularly intersecting
metallic wires and whose bottom side is devoted to connections to ground.

6.5 Preparatory Steps

Before applying genetic programming to a problem of circuit design, seven major
preparatory steps are required: (1) identify the initial circuit, (2) determine the
architecture of the circuit-constructing program trees, (3) identify the terminals, (4)
identify the primitive functions, (5) create the fitness measure, (6) choose parameters, and
(7) determine the termination criterion and method of result designation.

6.5.1 Initial Circuit

The one-input, one-output initial circuit consisting of an embryo with one modifiable
wire and a test fixture as shown in figure 6.2 is suitable for this problem.

6.5.2 Program Architecture

Since there is one result-producing branch in the program tree for each modifiable wire in
the embryo, the architecture of each circuit-constructing program tree has one result-
producing branch. Neither automatically defined functions nor architecture-altering
operations are used in this chapter.

6.5.3 Function and Terminal Sets
The function set, Fccs, for each construction-continuing subtree is

Fccs = { C- LAYOUT, L- LAYOUT, SERI ES- LAYOUT, PARALLEL- LAYOUT- LEFT,

PARALLEL- LAYOUT- RI GHT, FLI P, NOOP, VI A- TO- GROUND- NEG- LEFT-
LAYOUT, VI A- TO- GROUND- NEG- RI GHT- LAYOUT, VI A- TO- GROUND-

POS- LEFT- LAYOUT, VI A- TO- GROUND- POS- RI GHT- LAYOUT} .



These functions possess 2, 2, 1, 4, 4, 1, 1, 3, 3, 3, and 3 arguments, respectively.
The terminal set, Tccs, for each construction-continuing subtree is

Tccs = { END} .

The terminal set, Taps, for each arithmetic-performing subtree consists of

Taps = { ℜ} ,

where ℜ represents floating-point random constants from –1.0 to +1.0.
The function set, Faps, for each arithmetic-performing subtree is,

Faps = { +, - } .

6.5.4 Fitness Measure

The high-level statement of requirements for the desired circuit is translated into a well-
defined measurable quantity (the fitness measure) that is used by genetic programming to
guide the evolutionary search for a satisfactory solution.

The fitness measure for this problem is multiobjective. It is expressed in terms of
minimization of area of the bounding rectangle around the fully laid-out circuit,
suppression of frequencies in the stopband of the desired filter, and passage at full power
of frequencies in the passband of the desired filter.

The evaluation of each individual circuit-constructing program tree in the
population begins with its execution. This execution progressively applies the functions
in the program tree to the embryo of the circuit, thereby creating a fully developed (and
fully laid out) circuit. A netlist is created that identifies each component of the developed
circuit, the nodes to which each component is connected, and the value of each
component. The netlist becomes the input to our modified version of the SPICE
(Simulation Program with Integrated Circuit Emphasis) simulation program [Quarles,
Newton, Pederson, and Sangiovanni-Vincentelli 1994]. SPICE is a 217,000-line
industrial-strength electrical circuit simulator written over a period of several decades at
the University of California at Berkeley. The SPICE simulator (and its many spinoffs)
dominates the field of simulation for general-purpose electrical circuits. There are several
hundred thousand copies in daily use by practicing electrical engineers throughout the
world [Perry 1998]. Our modified version of SPICE (described in Koza, Bennett, Andre,
and Keane 1999) then determines the circuit’s behavior. Since the high-level statement of
the behavior for the desired circuit is expressed (in part) in terms of frequencies, the
output voltage VOUT is measured in the frequency domain. SPICE performs an AC
small signal analysis and report the circuit's behavior over five decades (between 1 Hz



and 100,000 Hz) with each decade being divided into 20 parts (using a logarithmic scale),
so that there are a total of 101 fitness cases (sampled frequencies).

Since the developmental process for creating the fully developed circuit in this
problem includes the actual physical placement of components and the actual physical
routing of wires between the components, the area of the bounding rectangle for the fully
developed circuit is easily computed.

The desired lowpass filter has a passband below 1,000 Hz and a stopband above
2,000 Hz. Each circuit is driven by an incoming AC voltage source with a 2 volt
amplitude. Each circuit is tested by a test fixture containing a 1 kΩ source (internal)
resistor RSRC and a kΩ load resistor RLOAD. There should be a sharp drop-off from 1
to 0 Volts in the transitional (“don't care” ) region between 1,000 Hz and 2,000 Hz.

The attenuation of the filter is defined in terms of the output signal relative to the
reference voltage (half of 2 volts here). A decibel is a unitless measure of relative voltage
that is defined as 20 times the common (base 10) logarithm of the ratio between the
voltage at a particular probe point and a reference voltage (1 volt).

In this problem, a voltage in the passband of exactly 1 volt and a voltage in the
stopband of exactly 0 volts is regarded as ideal. The (preferably small) variation within
the passband is called the passband ripple. Similarly, the incoming signal is never fully
reduced to zero in the stopband of an actual filer. The (preferably small) variation within
the stopband is called the stopband ripple. A voltage in the passband of between 970
millivolts and 1 volt (i.e., a passband ripple of 30 millivolts or less) and a voltage in the
stopband of between 0 volts and 1 millivolts (i.e., a stopband ripple of 1 millivolts or
less) is regarded as acceptable. Any voltage lower than 970 millivolts in the passband and
any voltage above 1 millivolts in the stopband is regarded as unacceptable.

A fifth-order elliptic (Cauer) filter with a modular angle Θ of 30 degrees (i.e., the
arcsin of the ratio of the boundaries of the passband and stopband) and a reflection
coefficient ρ of 24.3% can satisfy the above design goals [Williams and Taylor 1995].

Fitness is defined for this problem using one or two of the following terms.
The first term is the sum, over the 101 fitness cases (sampled frequencies), of the

absolute weighted deviation between the actual value of the voltage that is produced by
the circuit at the probe point VOUT and the target value for voltage (0 or 1 volts).
Specifically, this term is
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where fi is the frequency of fitness case i; d(x) is the absolute value of the difference

between the target and observed values at frequency x; and W(y,x) is the weighting for
difference y at frequency x.

The second term is the area of the bounding rectangle for the fully developed
circuit divided by 100,000 square units of area.

The term of the fitness measure involving the filter's frequency response is
designed to not penalize ideal voltage values, to slightly penalize every acceptable
voltage deviation, and to heavily penalize every unacceptable voltage deviation.



Specifically, the procedure for each of the 61 points in the 3-decade interval between 1
Hz and 1,000 Hz for the intended passband is as follows: If the voltage equals the ideal
value of 1.0 volt in this interval, the deviation is 0.0. If the voltage is between 970
millivolts and 1 volt, the absolute value of the deviation from 1 volt is weighted by a
factor of 1.0. If the voltage is less than 970 millivolts, the absolute value of the deviation
from 1 volt is weighted by a factor of 10.0.

The acceptable and unacceptable deviations for each of the 35 points from 2,000
Hz to 100,000 Hz in the intended stopband are similarly weighed (by 1.0 or 10.0) based
on the amount of deviation from the ideal voltage of 0 volts and the acceptable deviation
of 1 millivolts. For each of the five “don't care”  points between 1,000 and 2,000 Hz, the
deviation is deemed to be zero. The number of hits is defined as the number of fitness
cases for which the voltage is acceptable or ideal or that lie in the “don't care”  band.

The term involving the bounding rectangle is much smaller than the term
involving the filter's frequency response until a circuit scores 101 (or near 101) hits. For
individuals not scoring the maximum number (101) of hits, fitness is the sum of the two
terms. For individuals scoring the maximum number of hits, fitness is only the area-based
term. In any event, the smaller the value of fitness, the better. A value of zero is
unattainable because no actual circuit occupies zero area and because no actual analog
filter can perfectly satisfy the problem's requirements in the frequency domain.

The SPICE simulator is remarkably robust; however, it cannot simulate every
conceivable circuit. In particular, many circuits that are randomly created for the initial
population of a run of genetic programming and many circuits that are created by the
crossover and mutation operations in later generations are so pathological that SPICE
cannot simulate them. These circuits receive a high penalty value of fitness (108) and
become the worst-of-generation programs for each generation.

6.5.5 Control Parameters

The population size, M, is 1,120,000. A maximum size of 600 points (functions and
terminals) was established for each circuit-constructing program tree. Our usual control
parameters are used [Koza, Bennett, Andre, and Keane 1999, Appendix D].

6.5.6 Termination Cr iter ion and Results Designation

The maximum number of generations, G, is set to an arbitrary large number and the run
was manually monitored and manually terminated when the fitness of the best-of-
generation individual appeared to have reached a plateau.
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Figure 6.11
Best individual circuit-constructing program tree of generation 0. The program tree is a
composition of component-creating, topology-modifying, and development-controlling functions.

6.5.7 Implementation on Parallel Computer

This problem was run on a home-built Beowulf-style [Sterling, Salmon, Becker, and
Savarese 1999] parallel cluster computer system consisting of 56 processing nodes (each
containing a 533-MHz DEC Alpha microprocessor and 64 megabytes of RAM) arranged
in a two-dimensional 7 × 8 toroidal mesh. The system has a DEC Alpha computer as
host. The processing nodes are connected with a 100 megabit-per-second Ethernet. The
processing nodes and the host use the Linux operating system. The distributed genetic
algorithm with unsynchronized generations and semi-isolated subpopulations [Andre and
Koza 1996] was used. There was a subpopulation size of Q = 20,000 at each of D = 56
demes. On each generation, four boatloads of emigrants, each consisting of B = 2% (the
migration rate) of the node's subpopulation (selected on the basis of fitness) were
dispatched to each of the four adjacent processing nodes.

6.6 Results

A run of genetic programming starts with the random creation of an initial population of
circuit-constructing program trees composed of the functions and terminals identified in
the previous section. The initial random population (generation 0) of a run of genetic
programming is a blind random search of the search space of the problem.
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Figure 6.12
Best circuit of generation 0 containing two inductors (L2 and L11) and two capacitors (C10 and
C19) in addition to all of the nonmodifiable elements of the original test fixture of the initial circuit
of figure 6.2.

Generation 0 provides a baseline for comparing the results of subsequent
generations. About a quarter of the circuits in generation 0 are so pathological that the
SPICE simulator cannot simulate them (compared to 2% to 5% for later generations). We
use the best circuit-constructing program tree (figure 6.11) from generation 0 to illustrate
the developmental process used to convert a tree into a fully developed and fully laid-out
electrical circuit.

This circuit-constructing program tree is shown below in the style of a LISP S-
expression:
( L- LAYOUT
  V1
  ( PARALLEL- LAYOUT- LEFT
    ( FLI P ( FLI P ( NOOP END) ) )
    ( C- LAYOUT
       ( – ( – 0. 656 –0. 507)  ( + - 0. 463 –0. 970) )
       ( FLI P ( FLI P END) ) )
    ( FLI P
       ( SERI ES- LAYOUT
          ( C- LAYOUT –0. 776 END)
          ( VI A- TO- GROUND- NEG- LEFT- LAYOUT END END END) ) )
    ( FLI P
       ( NOOP ( L- LAYOUT 0. 765 END) ) ) ) )

The program begins with a two-argument inductor-creating L- LAYOUT function.
The value of the new inductor is established by the first argument of this L- LAYOUT
function. Since this particular argument is a large arithmetic-performing subtree
composed of addition, subtraction, and floating-point random constants, it is abbreviated
and labeled V1 in figure 6.11 and this program. The second argument (construction-
continuing subtree) of this L- LAYOUT function is a PARALLEL- LAYOUT- LEFT
function.



The first argument of the four-argument PARALLEL- LAYOUT- LEFT function
executes two one-argument polarity-reversing FLI P functions and one one-argument
NOOP (“No Operation” ) function before reaching a development-terminating zero-
argument END function.

The second argument of the PARALLEL- LAYOUT- LEFT function executes a
capacitor-creating two-argument C- LAYOUT function whose value is established by a
seven-point arithmetic-performing subtree (shown in its entirety in the figure) and whose
construction-continuing subtree contains two polarity-reversing FLI P functions and one
NOOP function.

The third argument of the PARALLEL- LAYOUT- LEFT function is a one-
argument FLI P function whose construction-continuing subtree consists of a two-
argument SERI ES- LAYOUT function. The first construction-continuing subtree of the
SERI ES- LAYOUT function executes a second capacitor-creating C- LAYOUT function.
The value of the second capacitor is established (in the manner described earlier) by the
one-point arithmetic-performing subtree consisting of the floating-point random constant
- 0. 7763983. The second construction-continuing subtree of the SERI ES- LAYOUT
function executes a three-argument VI A- TO- GROUND- NEG- LEFT- LAYOUT function.

The fourth argument of the PARALLEL- LAYOUT- LEFT function is a FLI P
function whose construction-continuing subtree executes a one-argument NOOP function
which, in turn, causes execution of a second two-argument inductor-creating L- LAYOUT
function. The value of the second inductor is established by the one-point arithmetic-
performing subtree consisting of the floating-point constant 0. 7648563.

When this circuit-constructing program tree for the best-of-generation circuit of
generation 0 is executed, it yields a fully laid-out circuit (figure 6.12) with two created
inductors (L2 and L11) and two created capacitors (C10 and C19). The four
components, the connecting wires, the ground points, and the source of the incoming
signal are all assigned a precise physical location in this fully laid-out circuit. Notice that
all of the nonmodifiable elements of the original test fixture of the initial circuit of figure
6.2 (including, in particular, the incoming signal V, the source resistor RSRC, the load
resistor RLOAD) survive in this fully developed and fully laid-out circuit (albeit in
different locations). In addition, notice that this fully laid-out circuit complies with the
requirement that wires cannot cross on a particular layer of a silicon chip or on a
particular side of a printed circuit board and with the requirement that there must be a
wire connecting 100% of the leads.

This best-of-generation circuit from generation 0 scores 53 hits and has a fitness
of 57.961037. The incoming signal V first passes through source resistor RSRC located
at position (-7.8, 7.7) at the top left of the figure. The signal passes into inductor L2
located at position (1.2, 7.7) to load resistor RLOAD located at position (11.8, 7.7) and to
ground G (at the top right of the figure). In addition, capacitor C10 located at (-2.7, 4.2)
is connected to the ground G (in the middle left of the figure). Also, the series
composition of inductor L11 and capacitor C19 is also connected to the same ground
point G in the middle left of the figure. The area-based term of the fitness measure is only
0.003710 at this at this early stage of the run.



Figure 6.13 shows the behavior in the frequency domain of the best circuit of
generation 0. The horizontal axis represents five decades of frequency on a logarithmic
scale. The vertical axis represents voltage linearly. As can be seen, the behavior of this
circuit bears very little resemblance to the desired lowpass filter. The circuit delivers a
full volt for all frequencies up to about 50 Hz. The output approximates 0 volts only for a
few frequencies near 100,000 Hz. There is a very large and leisurely transition region.

Both the average fitness of all individuals in the population and the fitness of the
best individual in the population improve over successive generations. The best circuit of
generation 8 (figure 6.16) scores 82 hits and has a fitness of 9.731077 (of which only
0.008138 is contributed by the area-based term of the fitness measure). The result-
producing branch of its circuit-constructing program tree contains 165 points. The circuit
has five inductors and three capacitors. The incoming signal V passes through source
resistor RSRC (at the bottom left of the figure) and is fed into a parallel-series
composition of inductors L13, L2, and L12 (which are together electrically equivalent to
one inductor). In a lowpass filter, the capacitors that are connected to ground are called
shunts and the inductors positioned in series (along the bottom of this figure) between the
source resistor and load resistor are called series inductors [Williams and Taylor 1995].
When all the parallel and series compositions of like components are combined, this
circuit is equivalent to a first series inductor (the L13, L2, and L12 combination), a first
capacitive shunt (C18), a second series inductor (L11), a second capacitive shunt (the
C16 and C19 combination), and a third series inductor (L16). The series inductors and
capacitive shunts of a lowpass filter are typically drawn on paper to resemble a ladder.
The capacitive shunts correspond to the rungs of the ladder. The series inductors
correspond to one side of the ladder. The second side of the ladder is a common ground
wire to which each capacitive shunt is connected. This circuit is a two-rung ladder. The
best-of-run circuit that emerges below in generation 138 is a four-rung ladder.

Figure 6.14 shows the behavior in the frequency domain of the best circuit of
generation 8. This circuit contains five inductors and three capacitors. As can be seen, the
behavior of this circuit bears some resemblance to the desired lowpass filter. It delivers 1
volt for all frequencies up to about 900 Hz and about 0 volts for all frequencies above
10,000 Hz. However, there is a very leisurely transition from the frequencies that are
passed to the frequencies that suppressed.

The first circuit scoring 101 hits (out of 101) appears in generation 25 (figure
6.17). It has a fitness of 0.01775. The result-producing branch of its circuit-constructing
program tree contains 548 points. The circuit has five capacitors and 11 inductors. The
incoming signal V passes through source resistor RSRC (at the bottom left of the figure)
and is fed into a composition of inductors along the straight line connecting the incoming
signal V to the load resistor RLOAD (at the bottom right of the figure). Along the way,
there is a series composition of L2, L12, the L11/L23 parallel combination, L10, L26,
the L9/L33 parallel combination, L32, and L31. There are four shunts to ground G.
Three of these shunts consist of one capacitor each (C19, C29, and C40). The fourth
shunt consists of inductor L16 and the C17/C19 parallel combination. As can be seen,
this figure 6.occupies a considerable area.



Figure 6.13
Frequency domain behavior of best circuit from generation 0.

Figure 6.14
Frequency domain behavior of best circuit from generation 8.

Figure 6.15
Frequency domain behavior of 100%-compliant circuit from generation 25.

Figure 6.15 shows the behavior in the frequency domain of the 100%-compliant
16-component circuit of generation 25. As can be seen, this circuit delivers
approximately a full volt for all frequencies up to about 1,000 Hz and about 0 volts for all
frequencies above 2,000 Hz. The drop-off in the transition region between the passband



and stopband is far sharper than that of the best-of-generation circuits from generations 0
and 8. This circuit occupies an area of 1775.2. This circuit is indeed a lowpass filter.

In generation 30, the best-of-generation circuit (figure 6.18) has a fitness of
0.00950. It also scores 101 hits. This circuit has 10 inductors and five capacitors. This
100%-compliant 15-component circuit (occupying an area of 950.3) occupies only 54%
of the area of the 100%-compliant 16-component circuit from generation 25.

The best-of-run circuit (figure 6.19) appears in generation 138. It has a near-zero
fitness of 0.00359 (more than five orders of magnitude better than the fitness of the best
circuit of generation 0). The result-producing branch of its circuit-constructing program
tree contains 463 points. This circuit has four inductors and four capacitors (half as many
components as the best circuit from generation 25). The circuit has a compact layout.
There are no series or parallel compositions of capacitors or inductors that redundantly
connect the same two points of the circuit. The topology of this best-of-run circuit is a
four-rung ladder.

This best-of-run circuit occupies an area of 359.4 (only 20% of the area of the
100%-compliant best circuit from generation 25 in figure 6.17). Note that, for reasons of
space, figures 6.17, 6.18, and 6.19 are not drawn to scale.

Table 6.1 shows the number of capacitors, the number of inductors, the number of
capacitive or inductive shunts to ground, the area in terms of the number of square units
of the bounding rectangle, the frequency-based term of fitness for the 101 fitness cases,
and the total fitness for the three best-of-generation circuits (each scoring 101 hits) from
generations 25, 30, and 138.

L2
(-11.5,-6)
78800uH

RLOAD
(21,-6)

1K

RSRC
(-18.5,-6)

1K

L10
(14.5,-6)

158000uH

L11
(2.5,-6)
8.91uH

L12
(-5.5,-6)
78800uH

L13
(-11.5,8)
78800uH

C16
(8.5,8)
131nF

C18
(-1.5,-3)
1.18nF

G V G

G

C19
(5.5,2)
131nF

VOUT

Figure 6.16
Best circuit of generation 8 containing five inductors and three capacitors.
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Figure 6.17
100%-compliant best circuit of generation 25 containing five capacitors and 11 inductors (total of
16 components) occupying an area of 1775.2.
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Figure 6.18
100%-compliant best circuit of generation 30 containing 10 inductors and five capacitors (total of
15 components) occupying an area of 950.3.
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Figure 6.19
100%-compliant best-of-run circuit of generation 138 containing four inductors and four capacitors
(total of only eight components) occupying an area of 359.4.



As can be seen in table 6.1, all three of these best-of-generation circuits have the
same number (four) of capacitive or inductive shunts to ground. That is, they solve the
problem with more or less the same approach. However, the best-of-generation circuits
from the two earlier generations (25 and 30) each have a total of 16 inductors and
capacitors, while the best-of-run circuit from generation 138 has only eight. Moreover,
the best-of-run circuit from generation 138 has only one fifth of the area of the best-of-
generation circuit from generation 25. The frequency-based term of the fitness measure
(all of which are near zero) is shown for reference only.

Table 6.1
Compar ison of three best-of-generation circuits scor ing 101 hits.

Generation Number of
Capacitors

Number of
Inductors

Number of
Shunts

Area Frequency-
Based Term

Fitness

25 5 11 4 1775.2 0.264698 0.01775

30 10 5 4 950.3 0.106199 0.00950

138 4 4 4 359.4 0.193066 0.00359

6.7 Computer  Time

This run involving a population of 1,120,000 required 1.55 × 108 fitness evaluations and
took 28.4 hours (1.02 × 105) seconds on the 56-node parallel computer system described
above. The 56 533-MHz processors operate at an aggregate rate of 2.98 × 1010 Hz, so
that the run consumes a total of 3.04 × 1015 computer cycles (about 3 petacycles).

We estimate that about 1 1/2 orders of magnitude more computer time is required
by genetic programming to automatically create the circuit's topology, sizing, placement,
and routing than is required to merely create the circuit's topology and sizing. The basis
for this rough estimate is as follows. In Genetic Programming III [Koza, Bennett, Andre,
and Keane 1999, section 54.2], genetic programming automatically created the topology
and sizing (but not placement and routing) of a lowpass filter circuit with the same
specification as used in this chapter. Based on 64 runs of the simpler version of this
problem with a population size of 30,000, a computational effort of E = 4,683,183
(30,000 × 43 generations × 3.63 runs) was required to yield a solution with 99%
probability. When the population size was other than 30,000 for this problem in Genetic
Programming III, a greater computational effort was found to be necessary to yield a
solution to the simpler form of this problem (based on several groups of about 64 runs
each). Moreover, none of the numerous additional isolated runs of the simpler form of
this problem in Genetic Programming III required as few as 4,683,183 fitness
evaluations. Although we cannot say with certainty that 30,000 is the optimal population



size or that 4,683,183 fitness evaluations is the minimal computation effort required for
the simpler form of this problem, we use 4,683,183 fitness evaluations as the best
available estimate of the computational effort for the simpler form of this problem.

Each fitness evaluation (in both the simpler form of the problem and the run
described in this chapter involving automatic creation of the topology, sizing, placement,
and routing) entails a SPICE simulation consuming an average of 2.3 × 107 cycles. Thus,
it is reasonable to say that the simpler form of this problem can be solved with a total of
1.08 × 1014 cycles with 99% probability.

Although it is not practical to make 64 28.4-hour runs of the more difficult version
of this problem described in this chapter (involving automatic creation of the topology,
sizing, placement, and routing) and although we cannot say that 1,120,000 is the optimal
population size for this version of this problem, we use 3.04 × 1015 cycles as the best
available estimate of the computational effort for the more difficult version of this
problem. With these qualifications, we can say that the automatic creation of the
topology, sizing, placement, and routing of a lowpass filter takes about 28 times more
computer cycles than the automatic creation of merely the circuit’s topology and sizing.

There are 14 instances in Genetic Programming III: Darwinian Invention and
Problem Solving [Koza, Bennett, Andre, and Keane 1999, table 61.1] where genetic
programming produced results that are competitive with human-produced results. Eleven
of these involve the rediscovery by genetic programming of a previously patented
invention. The runs that yielded these 14 instances consumed an average of 1.5 × 1015

computer cycles. Thus, the single run described in this chapter (involving automatic
creation of the topology, sizing, placement, and routing of a circuit) took 2.03 times more
cycles than the average of the 14 results in Genetic Programming III.

6.8 Genetic Programming as an Invention Machine

The best-of-run circuit from generation 138 (figure 6.19) has the recognizable features of
the circuit for which George Campbell of American Telephone and Telegraph received
U. S. patent 1,227,113 in 1917 [Campbell 1917]. Claim 2 of Campbell’ s patent covered,

An electric wave filter consisting of a connecting line of negligible attenuation
composed of a plurality of sections, each section including a capacity element
and an inductance element, one of said elements of each section being in series
with the line and the other in shunt across the line, said capacity and
inductance elements having precomputed values dependent upon the upper
limiting frequency and the lower limiting frequency of a range of frequencies
it is desired to transmit without attenuation, the values of said capacity and
inductance elements being so proportioned that the structure transmits with
practically negligible attenuation sinusoidal currents of all frequencies lying
between said two limiting frequencies, while attenuating and approximately



extinguishing currents of neighboring frequencies lying outside of said
limiting frequencies.

An examination of the evolved circuit of figure 6.19 shows that it indeed consists
of “a plurality of sections”  (specifically, four). Also, as can be seen in the figure, “Each
section include[es] a capacity element and an inductance element.”  Specifically, the first
of the four sections consists of inductor L20 and capacitor C12; the second section
consists of inductor L29 and capacitor C18; and so forth. Moreover, “one of said
elements of each section [is] in series with the line and the other in shunt across the line.”
As can be seen in the figure, inductor L20 of the first section is indeed “ in series with the
line”  and capacitor C12 is “ in shunt across the line.”  This is also the case for the
remaining three sections of the evolved circuit. In addition, the topology of the circuit in
figure 6.19 of this chapter exactly matches the topology of the circuit in figure 7 in
Campbell’ s 1917 patent. Finally, this circuit’s 100%-compliant frequency domain
behavior confirms the fact that the values of the inductors and capacitors are such as to
transmit “with practically negligible attenuation sinusoidal currents”  of the passband
frequencies “while attenuating and approximately extinguishing currents”  of the stopband
frequencies. In short, the circuit created by genetic programming has all the features
contained in claim 2 of Campbell’ s 1917 patent.

Campbell received a patent for his invention of the ladder filter because it satisfied
the legal criteria for obtaining a U. S. patent in that his filter was “new”  and “useful”  and

. . . the differences between the subject matter sought to be patented and the
prior art are such that the subject matter as a whole would [not] have been
obvious at the time the invention was made to a person having ordinary skill in
the art to which said subject matter pertains. [35 United States Code 103a].

The fact that genetic programming rediscovered an electrical circuit that was
unobvious “ to a person having ordinary skill in the art”  establishes that this evolved result
satisfies Arthur Samuel's criterion [Samuel 1983] for artificial intelligence and machine
learning, namely

The aim [is] ... to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.

Interestingly, the remainder of 35 United States Code 103a (quoted in part above)
goes on to state,

Patentability shall not be negatived by the manner in which the invention was
made.

This wording suggests the permissibility of using genetic programming as an
“ invention machine”  to produce patentable inventions. Unencumbered by preconceptions
that may channel human thinking along well-trodden paths, genetic programming starts
each run as a new adventure that is free to innovate in any manner that satisfies the
requirements of the problem. Genetic programming is a search that is guided by the
necessities articulated by the fitness measure of the particular problem at hand. Genetic
programming approaches each new problem in terms of “what needs to be done”  - not
“how to do it.”



6.9 Conclusion

This chapter establishes the principle that genetic programming is capable of
automatically creating the topology, sizing, placement, and routing of an analog electrical
circuit. Specifically, the chapter starts with a high-level statement of the requirements for
an analog lowpass filter and creates the topology, sizing, placement, and routing of a
satisfactory circuit.
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