
xlinkit: A Consistency Checking and Smart
Link Generation Service

CHRISTIAN NENTWICH, LICIA CAPRA, WOLFGANG EMMERICH, and
ANTHONY FINKELSTEIN
University College London

xlinkit is a lightweight application service that provides rule-based link generation and checks
the consistency of distributed Web content. It leverages standard Internet technologies, notably
XML, XPath, and XLink. xlinkit can be used as part of a consistency management scheme or in
applications that require smart link generation, including portal construction and management of
large document repositories. In this article we show how consistency constraints can be expressed
and checked. We describe a novel semantics for first-order logic that produces links instead of truth
values and give an account of our content management strategy. We present the architecture of our
service and the results of two substantial case studies that use xlinkit for checking course syllabus
information and for validating UML models supplied by industrial partners.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environments;
C.2.4 [Computer-Communication Networks]: Distributed Systems; H.5.4 [Information In-
terfaces and Presentation]: Hypertext/Hypermedia; I.7.1 [Document and Text Processing]:
Document and Text Editing; F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages; D.3.4 [Programming Languages]: Processors

General Terms: Languages, Management, Verification

Additional Key Words and Phrases: Consistency management, constraint checking, automatic link
generation, XML

1. OVERVIEW

This article describes xlinkit, a lightweight application service that pro-
vides rule-based link generation and checks the consistency of distributed
Web content. The article is supplemented by the online demonstrations at
http://www.xlinkit.com.

The operation of xlinkit is quite simple. It is given a set of distributed XML
resources and a set of potentially distributed rules that relate the content of
those resources. The rules express consistency constraints across the resource
types. xlinkit returns a set of XLinks, in the form of a linkbase, that supports

Authors’ address: Department of Computer Science, University College London, Gower St., London
WC1E 6BT UK; email: {c.nentwich,l.capra,w.emmerich,a.finkelstein}@cs.ucl.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 1533-5399/02/0500–0151 $5.00

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002, Pages 151–185.

152 • C. Nentwich et al.

navigation between elements of the XML resources. The major contribution of
this article is a new linking semantics for our first-order logic-based language,
which returns hyperlinks between inconsistent elements instead of boolean
values.

xlinkit leverages standard Internet technologies. It supports document dis-
tribution and can support multiple deployment models. It has a formal foun-
dation and evaluation has shown that it scales, both in terms of the size of
documents and in the number of rules.

With this thumbnail description in mind, it is easiest to motivate and to
explain xlinkit by reference to a simple example. This example is given in
Section 3. It is preceded by some essential background on the technologies that
we build on.

2. BACKGROUND

The article assumes some familiarity with XML (Extensible Markup Lan-
guage) [Bray et al. 2000] and XSLT (Extensible Stylesheet Language Trans-
formations) [Clark 1999]. It also makes significant reference to technologies re-
lated to XML, specifically XLink [DeRose et al. 2001], the XML linking scheme
and XPath [Clark and DeRose 1999], which supports addressing of the internal
structures of an XML resource. We make some reference in the article to the
XML DOM (Document Object Model) [Apparao et al. 1998], the API for XML
resources, though this article does not require a detailed understanding of it.
For details of XML and related technologies, good sources are the World Wide
Web Consortium (W3C) and the Organization for the Advancement of Struc-
tured Information Standards (OASIS). We briefly give an overview of the main
XML technologies referred to in this article.

The Document Object Model (DOM) facilitates the manipulation of XML data
through an application program interface. It specifies a set of interfaces that can
be used to manipulate XML content. XML content is represented in the DOM
as an abstract tree structure, consisting of DOM nodes. The interfaces contain
methods for manipulating nodes in the tree, such as listing the children of
nodes and adding and deleting nodes, traversal, and event handling. The DOM
provides a convenient mechanism for representing XML documents in memory
and is implemented by most major XML parsers.

Since the initial specification of XML, several languages have emerged as
“core” languages that provide additional hypertext infrastructure to applica-
tions that have to deal with XML. XPath is one of these core languages. It per-
mits the selection of elements from XML documents by specifying a tree path
in the documents. For example, the path /Catalogue/Product would select all
Product elements contained in any Catalogue elements in an XML file. XPath
also supports the restriction of selected elements by predicates and contains
several functions, including functions for string manipulation. We use XPath
for selecting sets of nodes from DOM trees.

XLink is a another core infrastructure language. It is the standard linking
language for XML and provides additional linking functionality for Web re-
sources. HTML links are highly constrained, notably: they are unidirectional

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 153

<Catalogue>

<Product xlink:type="extended">

<Name>Haro Shredder</Name>

<Code>B001</Code>

<Price currency="GBP">349.95</Price>

<Combines xlink:type="locator"

xlink:href="oldcatalogue.xml#/Catalogue/Product[1]"

xlink:label="component 1"/>

<Combines xlink:type="locator"

xlink:href="oldcatalogue.xml#/Catalogue/Product[2]"

xlink:label="component 2"/>

</Product>

</Catalogue>

Fig. 1. Sample XLink.

and point-to-point; have a limited range of behaviors; link only at the level
of files unless an explicit target is inserted in the destination resource; and,
most significantly, are embedded within the resource, leading to maintenance
difficulties.

XLink addresses these problems, allowing any XML element to act as a link,
enabling the user to specify complex link structures and traversal behaviors
and to add metadata to links. Figure 1 shows some XML markup that uses
XLink to turn an element into a link. The Product element has an xlink:type
attribute attached to it—XLink-aware processors will now recognize this ele-
ment as a link. The element contains two elements of type locator, which will
be recognized as link endpoints. This link now links together the first and sec-
ond Product elements in oldcatalogue.xml. Most importantly, it links together
two elements in a file without inserting any links directly into the file; that is,
it is an external link with respect to those files.

Since such “extended links” can be managed separately from the resources
they link, it is possible to compile “linkbases,” XML files that contain a collec-
tion of XLinks. Linkbases can then be selectively applied to establish hyperlinks
between resources. The XLink language contains further constructs for speci-
fying behavior during link traversal and traversal restriction, which we do not
currently make use of.

3. EXAMPLE

We now introduce an example that is used throughout the article. Wilbur’s Bike
Shop sells bicycles and makes information about their company available on the
Internet and on a corporate intranet. Wilbur’s uses XML for Web publication
and information exchange.

The information collected by Wilbur’s is spread across several Web resources:

—a product catalog containing product name, product code, price and descrip-
tion;

—advertisements containing product name, price, and description;
—customer reports listing the products purchased by particular customers;
—service reports giving problems with products reported by customers.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

154 • C. Nentwich et al.

<Catalogue>

<Product>

<Name>Haro Shredder</Name>

<Code>B001</Code>

<Price currency="GBP">349.95</Price>

</Product>

<Product>

<Name>Dyno NFX</Name>

<Price currency="GBP">119.95</Price>

<Code>B003</Code>

</Product>

</Catalogue>

Fig. 2. Wilbur’s product catalogue extract.

<Advert>

<ProductName>Dyno NFX</ProductName>

<Price currency="GBP">119.95</Price>

<Description>BMX Bike. Dyno expert frame.

Coaster brake or freewheel.

</Description>

</Advert>

Fig. 3. Wilbur’s sample advertisement.

Wilbur’s has only one product catalog, but many advertisements, customer
reports, and service reports. The information is distributed across different Web
servers.

It should be clear that much of this information, though produced indepen-
dently, is closely related. For example: the product names in the advertisements
and those in the catalog; the advertised prices and the product catalog prices;
the products listed as sold to a customer and those in the product catalog; the
goods reported as defective in the service reports and those in the customer
reports; and so on.

Relationships among independently evolving and separately managed re-
sources can give rise to inconsistencies. This is not necessarily a bad thing, but
it is important to be aware of such inconsistencies and deal with them appropri-
ately. In view of this, Wilbur’s would like to check their resources to establish
their position.

For the example which follows we will concentrate on the relationship be-
tween the product catalog and the advertisements. Figure 2 shows an extract
from the product catalog and Figure 3 shows a sample advertisement. Samples
of the other resources can be found in Appendix A.

This relationship requires a check:

—Are all the product names in the advertisements mentioned in the catalog?

Other checks might include:

—Do the advertised prices and the product catalog prices correspond?
—Are the products listed as sold to a customer in the product catalog?
—Did we sell the goods reported as problematic to the customer reporting the

problem?

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 155

We define these checks as rules and assemble them in a rule set. We de-
scribe our rule language and the assembly of rule sets in the following sections.
The document set is the collection of documents we want to check against the
rules. In this example we have a set of adverts, a set of customers, and a set of
service reports. Both the document set and the rule set are identified by URLs.

We define a transparent semantics for generating hyperlinks, depending on
the status of the documents with respect to the rules. Thus:

—Are all the product names in the advertisements mentioned in the catalog?
Result: Links between the product advertised and the corresponding product
entry in the catalog. If there is no corresponding product in the catalog, the
advertisement will not be linked to anything, and a rule reference is included
for diagnostic purposes.

—Do the advertised prices and the product catalog prices correspond?
Result: When the advertised price does not match, link to the offending advert
and include a rule reference for diagnostic purposes.

—Are the products listed as sold to a customer in the product catalog?
Result: Links between the product entry in the customer record and the cor-
responding product entry in the catalog. If there is no corresponding product
in the catalog, link to the customer record and include a rule reference for
diagnostic purposes.

—Did we sell the goods reported as defective to the customer reporting the
problem?
Result: Links between the product with the problem and the product entry
in the customer record. If there is no corresponding product entry in the
customer record, link to the defective product and include a rule reference
for diagnostic purposes.

The checks are made by submitting the document set and the rule set URLs
to the check engine which makes the checks and returns the URL of an XLink
linkbase. Figure 4 shows the submission form that is passed to the check en-
gine. Because the linkbase is itself XML, we can apply a stylesheet to render it
in HTML for review or deliver in source XML. Figure 5 shows an HTML repre-
sentation of a linkbase. Users can click on the consistency links; a servlet will
then retrieve the two XML files that are being linked, convert them to HTML,
and highlight the linked elements.

Most “off-the-shelf” browsers do not yet implement support for extended
links of the sort that xlinkit produces—only limited support is available for
simple links, that is, XLinks embedded in documents from browsers like
Amaya [Consortium 2000] or the latest releases of Mozilla [Mozilla 2000]. One
way to make the linkbase navigable is to first “fold” it into the resources. This
entails applying an XLink processor to fetch the resources referenced in the
linkbase, convert the extended links into simple links, and integrate them into
the resources in the appropriate place. This task cannot be performed by a
stylesheet, as stylesheet languages are typically designed to transform docu-
ments into one output document. Instead, we use our own XLink processor,
XtooX, for this purpose—there are a number of similar processors available.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

156 • C. Nentwich et al.

Fig. 4. Web submission form.

The resulting XML resources can then be handled in the familiar manner,
that is, by applying stylesheets to render into a browsable hyperlinked HTML
presentation. In the case of our example, we deliver a product catalog site that
links to the advertisements.

4. RULE LANGUAGE

This section presents our set-based rule language, which serves to express con-
sistency constraints between distributed documents. We outline a simple formal
basis for the language and formalize our example rule.

Our rule language uses XPath to select sets of elements, which are then
related via constraints. We use a notation for evaluating XPath expressions
and for the formalization of the DOM due to [Wadler 1999]: the function S[[p]]x
creates a set of nodes by evaluating the path expression p with x as the context
node. (For example, S[[Price/@currency]]/Advert in Figure 3 would return a one-
element set containing a text node with the string “GBP”). We later refine this

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 157

Fig. 5. Sample linkbase in HTML.

function to allow for variable context information, so that variables can be
referred to in path expressions.

When specifying a rule, we want to express a relationship of one set of nodes
with one or more other sets of nodes. For example, the set of all Advert elements
in Wilbur’s advertisements has to be consistent with the set of all Products in
their product catalog.

We rephrase the question “Are all the product names in the advertisement the
same as in the catalog?” more formally as an assertion: “For all Advert elements,
there exists a Product element in the Catalog element where the ProductName
subelement of the former equals the Name subelement of the latter.” If this con-
dition holds, a consistent relationship exists between the Advert element and
the Product element being considered. Otherwise, the Advert element is incon-
sistent with respect to our rule.

Figure 6 shows an abstract syntax for our rule language. The language is a
restricted form of first-order logic, where no functions are allowed and all sets in
the model are finite, since they are generated by an XPath processor. We do not
make any restrictions on the path expressions that can be used, so the full range
of string manipulation and namespace functions in XPath is available, as is the
support for externally bound variables—which we use to bind variables from
our quantifiers. We can express our sample rule directly in this language as

∀a ∈ “/Advert” (∃p ∈ “/*/Product”(“$a/ProductName”=“$p/Name”))

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

158 • C. Nentwich et al.

rule ::= ∀var ∈ xpath(formula)
formula ::= ∀var ∈ xpath(formula) |

∃var ∈ xpath(formula) |
formula and formula |
formula or formula |
formula implies formula |
not formula |
xpath = xpath |
xpath 6= xpath |
same var var

Fig. 6. Rule language abstract syntax.

Table I. Sample Sets for
Transitive Closure

Node 1 id=‘1’ child=‘2’
Node 2 id=‘2’ child=‘3’
Node 3 id=‘3’

The language restrictions imply that we cannot express constraints that re-
quire any form of infinity. For example, the constraint for all elements x, the
children of x are prime numbers would require quantification over the inte-
gers to express the latter half of the constraint, and thus cannot be expressed
in this language. Nevertheless, its power is great enough to express a wide
range of static semantic constraints, including those of the Unified Modeling
Language [Object Management Group 2000a].

Some rules require the added power of a transitive closure operator. For ex-
ample, if Wilbur’s bikeshop were to offer composite products such as bikes made
from several components, they might want to check that composite components
are not parts of themselves. It is then not enough to check whether a part of a
component equals the component itself, since the part may itself be made up
from several parts—the transitive closure of the part-whole hierarchy has to
be computed.

We have enriched the XPath language with a transitive closure operator.
The basic form of the operator is closure(base,transition), where base and
transition are both XPath expressions. The operator first evaluates the base
expression to build up a set of nodes. It then evaluates the transition expres-
sion with each node in the previously built set of nodes as the context node.
The resulting node set is added to the base set. This process continues until
the transition expression leads to an empty set or a cycle is found. The current
base set minus the initial base set is then returned as the closure set.

As an example, consider the set of nodes shown with their subelements in
Table I. If we invoke closure(id(‘1’),id(./child)), where id (s) is a standard
XPath function that retrieves a node based on an attribute of type ID, the
operator constructs the base set containing node 1. It then executes id(./child)

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 159

with node 1 as the context node, which leads to node 2. Node 2 is added to the
base set and the transition expression is evaluated again, leading to node 3,
which is added to the base set. Finally, for node 3, evaluating the transition
expression leads to an empty set. Node 1 is now subtracted from the base set
and the set containing node 2, and 3 is returned as the result.

5. LINK GENERATION

Our approach is always to take a tolerant view of inconsistency. Inconsistencies
are not always accidental or undesirable, and we do not force their immediate
resolution; instead we aim to provide diagnostic information that enables doc-
ument owners to decide on further action, be it the resolution or toleration of
inconsistency.

In this scenario, the priority of a consistency management system shifts
from prevention of inconsistency—for example, through disallowing updates,
to strong diagnostics that pinpoint precisely the elements that cause the in-
consistency. We use hyperlinks called consistency links to connect consistent
or inconsistent elements. If a number of elements form a consistent relation-
ship, they will be connected via a consistent link. If they form an undesirable
relationship, with respect to some rule, they are connected via an inconsistent
link.

We have made the process of link generation transparent to the rule writer by
defining a new semantics for our first-order logic. Instead of returning boolean
values, we generate hyperlinks. The remainder of this section will explain this
new semantics in detail and show how links are generated for our example.

A consistency link consists of a set of locators. Each locator points to a exactly
one node in a DOM tree. Links, and hence consistency relationships, are not
restricted to connecting two elements in this case, but can form relationships
between n elements, where n ≥ 1. Let N be the set of nodes contained in the
DOM trees of the documents that are being checked. We define the set of sets
of locators as Locators = ℘(N). The set of states a link can take is defined
as C = {Consistent, Inconsistent}, and finally the set of consistency links is
L = C × Locators.

In order to support variable bindings in quantifiers and XPath expressions,
we need to define a variable environment. Let 6 be our alphabet and S = 6?

be the set of strings over 6. The set of all legal variable names, as defined by
the XPath specification, is then V , where V ⊂ S. A variable environment, or a
collection of “bindings,” is a set of tuples mapping variable names to sets of DOM
nodes. The set of variable environments E is thus defined as E = ℘(V ×℘(N)).

Before defining an evaluation strategy, we also need to introduce some auxil-
iary functions, shown in Figure 7: flip flips the consistency status of a link to its
opposite linkcartesian takes two links, x and y , and produces a new link with
the status of x and a set of locators consisting of the union of the sets of locators
from x and y . The infix operator× takes a link and a set of links and produces a
new set by applying linkcartesian between the single link and every individual
link in the set. Finally, bind is used to introduce a new variable into a variable
environment. In practice, this function will perform a check to make sure that

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

160 • C. Nentwich et al.

first(x, y) = x
second(x, y) = y

flip : L→ L
flip((Consistent, y)) = (Inconsistent, y)

flip((Inconsistent, y)) = (Consistent, y)

linkcartesian : L→ L→ L
linkcartesian(x, y) = (first(x), second(x) ∪ second(y))

× : L→ ℘(L)→ ℘(L)
x × Y = {linkcartesian(x, y) | y ∈ Y }

bind : (V × ℘(N))→ E → E
bind(x, e) = {x} ∪ e

Fig. 7. Auxiliary functions.

no variable is bound twice. There is no function to retrieve variables from an
environment, as this task is implicitly performed by the XPath processor.

Given this new set of functions, we now modify the function S for evaluating
XPath expressions. We formally define the function as S : S → E → ℘(℘(N)).
In words, the function takes a string, which must be an XPath expression or be
rejected at runtime by a parsing mechanism, and a variable environment, and
returns a set of DOM nodes. The function S[[p]]e will thus select a set of nodes
using the path p given the variable environment e.

In practice, the function will evaluate the expression argument on all docu-
ments that are being checked and then compute the union of the set of result
nodes, making it possible to address all documents independent of their loca-
tion. Note that we have removed the context node from the function: instead,
path expressions in xlinkit must either be relative to variables, e.g., “$p/Name”
in our example, in which case the context node is resolved by the processor
via the variable environment, or be absolute, e.g., “/Advert,” in which case the
context node is the root node.

We now define our evaluation function for the rule nonterminal in Figure 6
and then progressively define the semantics of the various formula produc-
tions. Our semantics will be supported by the standard first-order logic truth
evaluation semantics shown for completeness in Figure 8. We do not define a
truth assignment for the top-level rule nonterminal, since we are not really
interested in the overall truth of the formula—we are interested in link gener-
ation. It should be noted though that when the top-level nonterminal evaluates
its subformula, it will pass an initial binding context containing its quantifier
variable and the selected nodes.

Figure 9 shows the complete link generation semantics for our language. The
function R : rule → ℘(L) takes a rule and returns a set of consistency links.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 161

F : formula→ boolean

F[[∀var ∈ xpath(formula)]]ε = F[[formula]]bind ((var,{x1}),ε) ∧ . . . ∧
F[[formula]]bind ((var,{xn}),ε) | xi ∈ S[[xpath]]ε

F[[∃var ∈ xpath(formula)]]ε = F[[formula]]bind ((var,{x1}),ε) ∨ . . . ∨
F[[formula]]bind ((var,{xn}),ε) | xi ∈ S[[xpath]]ε

F[[formula1 and formula2]]ε = F[[formula1]]ε ∧ F[[formula2]]ε
F[[formula1 or formula2]]ε = F[[formula1]]ε ∨ F[[formula2]]ε

F[[formula1 implies formula2]]e = F[[formula1]]ε → F[[formula2]]ε
F[[not formula]]ε = ¬F[[formula]]ε

F[[xpath1 = xpath2]]ε = S[[xpath1]]ε = S[[xpath2]]ε
F[[xpath1 6= xpath2]]ε = S[[xpath1]]ε 6= S[[xpath2]]ε
F[[same var1 var2]]ε = S[[var1]]ε = S[[var2]]ε

Fig. 8. Rule language—truth value semantics.

status : bool→ C
status > = Consistent
status ⊥ = Inonsistent

R : rule→ ℘(L)
R[[∀var ∈ xpath(formula)]] = {(status(F[[formula]]bind ((var,{x}),{})), {x})×

L[[formula]]bind ((var,{x}),{}) | x ∈ S[[xpath]]{}}

L : formula→ ℘(L)
L[[∀var ∈ xpath(formula)]]ε = {(Inconsistent, {x})× L[[formula]]bind ((var,{x}),ε)

| x ∈ S[[xpath]]ε ∧ F[[formula]]bind ((var,{x}),ε) = ⊥}
L[[∃var ∈ xpath(formula)]]ε = {(Consistent, {x})× L[[formula]]bind ((var,{x}),ε)

| x ∈ S[[xpath]]ε ∧ F[[formula]]bind ((var,{x}),ε) = >}
L[[formula1 and formula2]]ε = {x × L[[formula2]]ε | x ∈ L[[formula1]]ε}
L[[formula1 or formula2]]ε = L[[formula1]]ε ∪ L[[formula2]]ε ,

if F[[formula1]]ε = F[[formula2]]ε
L[[formula1]]ε , i f F[[formula1]]ε = >
L[[formula2]]ε , i f F[[formula2]]ε = >

L[[formula1 implies formula2]]ε = L[[formula2]]ε ,
if F[[formula1]]ε = >∧ F[[formula2]]ε = >

{x × L[[formula2]]ε | x ∈ L[[formula1]]ε},
if F[[formula1]]ε = >∧ F[[formula2]]ε = ⊥

{flip(x) | x ∈ L[[formula1]]ε}, otherwise
L[[not formula]]ε = {flip(x) | x ∈ L[[formula]]ε}
L[[xpath1 = xpath2]]ε = {}
L[[xpath1 6= xpath2]]ε = {}
L[[same xpath1 xpath2]]ε = {}

Fig. 9. Rule language—link generation semantics.

Since a rule consists of a universal quantifier, the function will build a set of
nodes using a path expression, assign the nodes in the set to the quantifier
variable in turn, and ask the subformula to return a set of links. Depending
on the truth value of the subformula for the current assignment, the function
generates a consistent or inconsistent link by prepending its current variable
assignment to all links returned by the subformula.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

162 • C. Nentwich et al.

Table II. Sample Sets for Rule Evaluation

Advert Product
ProductName=‘a’ Name=‘c’
ProductName=‘b’ Name=‘a’
ProductName=‘c’ Name=‘f ’

The quantifiers in the formula productions behave similarly. Both the uni-
versal and existential quantifiers will first evaluate their XPath expression,
which may now include references to variables bound to some node in a parent
formula, and then bind each node in the resulting node set to their variable in
turn, calling the subformula evaluation. As far as link generation is concerned,
the existential quantifier generates consistent links if the subformula is true
for the current assignment, prepending its own current node to the links re-
turned by the subformula. The universal quantifier generates an inconsistent
link every time a subformula is false, again prepending its current node to the
links returned by the subformula.

We discuss this semantics using our example rule ∀a ∈ “/Advert” (∃p ∈
“/*/Product” (“$a/ProductName”=“$p/Name”)). Suppose that our documents
contain three Advert elements and three Product elements, each shown with
their subelement names and values in Table II. We use the notation X i, where
X i ∈ N , to address the ith element in set X ; for example, Advert2 will address
the element with value b as its product name.

In the first step, the rule evaluation will bind Advert1 to a and call the ex-
istential quantifier’s evaluation. Stepping through the Product set, the exis-
tential quantifier asks the equality predicate for a boolean result, comparing
the values ‘a’ and ‘c.’ The result is false, so the existential quantifier ignores
it. On the second entry in the Product set, the equality comparison returns
true. In accordance with the semantics, the existential quantifier generates a
new link of the form (Consistent, {Product2}). For the third entry, the subfor-
mula returns false, so the link generated previously represents the whole set
of links returned. The universal quantifier is now notified that the subformula
has come out true for the current assignment. It prepends the current ele-
ment Advert1 to all links returned by the subformula, yielding the set of links
{(Consistent, {Advert1, Product2})}. Here we have our diagnostic that tells us
that the first advert is indeed consistent, and linking it to the information it is
consistent with.

In the case of Advert2, the existential quantifier will not find a product
with the same name ‘b.’ As a consequence, its truth value will be false and
it will return an empty set of links. The universal quantifier will obtain this
truth value, and hence generate a new set of links—prepending its current
assignment to the empty set of links returned by the existential quantifier—
{(Inconsistent, {Advert2})}. Evaluation of the third node will proceed similarly
to that of the first node. The result is the union of all sets of links obtained by
the universal quantifier:

{(Consistent, {Advert1, Product2}),
(Inconsistent, {Advert2}),

(Consistent, {Advert3, Product1})}
ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 163

Intuitively, these links make sense. Advert1 and Product2 form a desirable
relationship with respect to this rule, and thus have been linked using a con-
sistent link. For Advert2, we could not find a matching element, and thus have
created an inconsistent link. Advert2 is inconsistent with the whole of the sys-
tem rather than a particular element, so it stands alone.

Productions that contain only terminals, such as the definition of equals
do not introduce new variables nor contain subformulas. Hence their linking
semantics is to always return an empty set, since they would not be able to
contribute any link locators. We can now also explain why these predicates are
included in the xlinkit language, while also present in XPath. We could easily
rewrite our example rule as:

∀a ∈ “/Advert” (∃p ∈ “/*/Product[Name=$a/ProductName]”)

The semantics of xlinkit’s equals is equivalent to XPath’s equality operator;
that is, it compares two sets of nodes for equality. In the case of this rule, we
would get an equivalent result by doing all the comparison work in XPath.
It is however possible to specify rules that cannot be rewritten in this way.
Take, for example, a rule, abstractly specified, of the form ∀x(x = ‘5’ ∨ ∃ y(σ)),
where σ is any subformula. In this case it is not possible to rewrite the equality
comparison into an XPath predicate, since it is joined in disjunction with an
existential quantifier. If we want any links to be generated, the formula has to
make use of xlinkit’s equals predicate, since only xlinkit’s constructs have link
generation semantics.

Discussing the behavior of all the logical connectives is beyond the scope of
this article. Suffice it to say at this point that the semantics given here has been
tested with over 100 rules, involving all of the logical constructs, and produced
good results in terms of properly highlighting the causes of inconsistency.

Our overall goal is to produce a set of links that will make it easy to spot
problems. So we are eager to obtain the minimal set of links that completely
expresses the consistency status of the documents that have been checked.
Unfortunately it is possible for a set of links to contain redundant information.
Consider the set

{(consistent, {X 1, Y1}), (consistent, {Y1, X 1})}
Since our links are bidirectional it is obvious that one of the links is redundant.
Both links express the same meaning: The two elements contained within them
form a desirable relationship. As an example of how this kind of redundancy
arises in practice, consider a formula of the form ∀x ∈ X (∀ y ∈ X (x = y →
same(x, y))). Suppose we define the set X as X = {‘a’,‘a’,‘b’}. (Note: X seems to
be a multiset according to this notation. This is not the case in practice, since a
set of nodes will contain nodes with unique identifiers. For pedagogic purposes,
we show the values of the nodes rather than their identifiers.) If we evaluate
the rule over X , we get the set

{(inconsistent, {X 1, X 2}), (inconsistent, {X 2, X 1})}
We deal with this problem by running a check over the resulting set of
links, which checks if a link is a permutation of another link. If so, the link

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

164 • C. Nentwich et al.

<consistencyrule id="r1">

<description>

Each advert must refer to a product

defined in the catalogue

</description>

<forall var="a" in="/Adverts">

<exists var="p" in="/Catalogue/Products">

<equal op1="$a/ProductName/text()"

op2="$p/Name/text()"/>

</exists>

</forall>

</consistencyrule>

Fig. 10. Consistency rule in XML.

is removed. The complexity of this process is O(n2), but is fast enough in
practice.

We conclude the section with some observation about the complexity of our
link generation semantics. First of all, we note that the evaluation function
will always terminate, since the quantifiers that introduce looping into the
scheme only execute their loops n times for a node set of size n. Second, the
runtime complexity of the system is mainly influenced by the maximum nesting
of quantifiers, i.e., it is O(nk) where k is the maximum level of quantifier nesting.
Though this exponential behavior sounds problematic, it is not in practice. Most
of the rules of the Unified Modeling Language, for example, which represents
a complex scenario by our standards, require at most three levels of nesting.
In addition, empirical results show that the evaluation is fast enough for the
theoretical complexity to be ineffectual.

6. XML IMPLEMENTATION

To define a concrete syntax for our language, we use an XML encoding. Encoding
the language in XML has the advantage of blending more uniformly into the
environment where it is going to be used. It also allows us to treat the rule files
as targets that can be checked by other rules.

Presenting the encoding of the whole language is beyond the scope of this
article, and the interested reader is referred to Appendix D for the complete
DTD. Instead, we present two example rules expressing constraints for Wilbur’s
bike shop.

Our first example will be the now familiar rule “For all Advert elements,
there exists a Product element in the Catalog element where the ProductName
subelement of the former equals the Name subelement of the latter.” Figure 10
shows a rule file that specifies this rule in XML format.

A rule consists of two main parts: the first entry in a rule is a description
element, which is a natural language description of the rule that can be used
for diagnosis. The following forall elements contains the formula that specifies
the constraint.

We have written a stylesheet that transforms the rules from XML to HTML
to make them more accessible for reading and browsing. The first-order logic

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 165

Fig. 11. Rules in HTML.

<xlinkit:LinkBase

xmlns:xlinkit="http://www.xlinkit.com"

docSet="file://DocumentSet.xml"

ruleSet="file://RuleSet.xml">

<xlinkit:ConsistencyLink

ruleid="rule.xml#/id(‘r1’)">

<xlinkit:State>consistent</xlinkit:State>

<xlinkit:Locator

xlink:href="advert1.xml#/Advert[1]"/>

<xlinkit:Locator

xlink:href="catalogue.xml#/Catalogue/Product[1]"/>

</xlinkit:ConsistencyLink>

</xlinkit:LinkBase>

Fig. 12. Sample linkbase in XML.

formulas are translated from their XML prefix form back into infix. Figure 11
shows the translated rules.

The consistency links that are generated as a result of a check are also pre-
sented in XML, in the form of XLink linkbases. Figure 12 shows a sample
linkbase containing only one XLink. The link indicates that it is connecting
two consistent elements. It contains two locators that reference the elements
using a URL and an XPath expression. Note that the remaining attributes

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

166 • C. Nentwich et al.

<DocumentsSet name="BikeDoc">

<Description>Wilbur’s complete collection</Description>

<DocFile href="catalogue.xml"/>

<Set href="Adverts.xml"/>

<Set href="Customers.xml"/>

<Set href="Services.xml"/>

</DocumentsSet>

Fig. 13. Sample document set.

required in an XLink have been omitted here, as they are defined by default in
the linkbase DTD.

The linkbases can be postprocessed in several ways. Figure 5 shows our
servlet for interactive linkbase browsing. The user can click on a pair of lo-
cators and the servlet juxtaposes the documents and linked elements in two
frames at the bottom. Using our linkbase processor, XtooX, we can also fold
the linkbases back into the files; that is, we can take the externally defined
links and insert them back into the files that they are pointing to. The link in
Figure 12 would cause the insertion of a link in advert1.xml, linking to the
first Product element in catalog.xml—and conversely, a link would be inserted
in catalog.xml, linking to the Advert element in advert.xml. This mechanism
can be used to produce a web of inconsistency information between files. We
also show in the evaluation how the mechanism can be used for the automatic
construction of linked standard Web content in HTML.

7. CONTENT MANAGEMENT

The selection of documents and rules to be checked against each other has to
be managed. It is not feasible to always check every document against every
rule, and it is certainly not necessary to check every document every time. In
our bike shop example, marketing people may be interested in the status of
adverts, whereas a customer relations department may be interested in the
status of customer reports. Some support for partitioning documents and rules
is needed to support flexible consistency management.

We use document sets, which contain a selection of documents taken from
resources, and rule sets which contain several rules. A document set together
with a rule set can then be submitted for checking.

Figure 13 shows a sample document set. Document sets form a hierarchy
in that they consist of documents and possibly further document sets. In the
figure, the DocFile directive is used to add a file directly into the set, while the
Set directive includes further sets. At check time, the hierarchy is flattened and
resolved into a single set. To find out whether a document needs to be checked
against a rule, we check if the XPath expressions in the rule’s set definition can
be applied.

Our method of retrieval of document information is not limited to XML
content stored in files. Instead, we abstract from the underlying data store
by providing fetcher classes. It is the responsibility of a fetcher to liaise with
some data store in order to provide a DOM tree representation of its content.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 167

<DocumentsSet name="BikeDoc">

<Description>Wilbur’s complete collection</Description>

<DocFile href="catalogue.xml"/>

<Set href="Adverts.xml"/>

<Set href="Customers.xml"/>

<DocFile fetcher="JDBCFetcher"

href="jdbc:mysql://www.xlinkit.com/testdb?user=wilbur#

select * from report"/>

</DocumentsSet>

Fig. 14. Document set with SQL resource.

+-------------------------+-------------+--------------------------+

| productname | productcode | description |

+-------------------------+-------------+--------------------------+

| HARO SHREDDER | B001 | Found a problem in ... |

| HARO TR2.1 | B002 | Found a problem while... |

+-------------------------+-------------+--------------------------+

<rows>

<row>

<productname>HARO SHREDDER</productname>

<productcode>B001</productcode>

<description>Found a problem in ...</description>

</row>

<row>

<productname>HARO TR2.1</productname>

<productcode>B002</productcode>

<description>Found a problem while...</description>

</row>

</rows>

Fig. 15. Relational table XML representation.

By default, data are retrieved from XML files using the FileFetcher class; how-
ever, user-defined classes can override this behavior. Using this mechanism, it
is possible to read in the content that follows a legacy format and translate it
into a DOM tree, to read data from network sockets or to construct a DOM tree
from a relational or object-oriented database.

As a proof of concept, we provide a JDBC fetcher, which executes a query
on a database and translates the resulting table into a DOM tree. Figure 14
shows a version of Wilbur’s bikeshop document set where the service reports
have been put into a relational database. The fetcher attribute in the DocFile
directory overrides the default FileFetcher to select the JDBCFetcher class.

The JDBC fetcher class executes the SQL query on the relational database
and transforms the resulting table into a DOM tree. Figure 15 shows a sample
table of service reports fetched from Wilbur’s database by executing the JDBC
query from the document set. Shown below the table is the XML representation,
containing one row element for every row stored in the table and using the col-
umn name data from the data dictionary for the element names inside the rows.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

168 • C. Nentwich et al.

<RuleSet name="BikeRules">

<Description>Rules related to the Bike environment</Description>

<RuleFile href="bike_rule.xml"

xpath="/ConsistencyRuleSet/ConsistencyRule"/>

</RuleSet>

Fig. 16. Sample rule set.

Fig. 17. Architecture overview.

Rule sets are managed in a similar fashion. A rule set contains references
to rules and further rule sets. Figure 16 shows a sample rule set. A RuleFile
element is used to specify a rule file to load and an xpath attribute specifies
which rules from that file to actually include. The path /ConsistencyRuleSet/
ConsistencyRule will match all ConsistencyRule elements included in
the rule file. If that is not desired, a more constrained path such as
/ConsistencyRuleSet/ConsistencyRule[@id=‘r1’] could be used, which only
loads the rule whose id attribute is equal to r1.

8. ARCHITECTURE

We have implemented a publicly accessible, free-to-use Internet service. Our
architecture is very simple and its basic structure is shown in Figure 17.

We have implemented the check engine as a Java servlet, which is hosted
on an Apache Web server running the Apache JServ servlet engine. Users are
presented with the form shown in Figure 4 to enter the URL of the document
set and rule set to be checked.

When the form is submitted, a new servlet instance is created to deal with
the request. The servlet itself uses the Xerces XML parser from the Apache
XML project to parse the documents and rule files. After checking the rules, the

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 169

<syllabus>

<identity>

<title>Concurrency</title>

<code>3C03</code>

<summary>The principles of concurrency

control and specification</summary>

</identity>

<teaching>

<normal_year>3</normal_year>

<term>1</term>

<taught_by>

<name>Wolfgang Emmerich</name>

<pct_proportion>100</pct_proportion>

</taught_by>

</teaching>

<subject>

<prerequisites descr="">

<pre_code>1B11</pre_code>

</prerequisites>

</subject>

</syllabus>

Fig. 18. Sample shortened syllabus file in XML.

servlet writes an XML file containing the generated links to the Web server’s
local storage. The servlet then generates a result page that contains the URL of
the link base and returns it back to the browser client. The input form also gives
the user a choice whether to return the raw XML file containing the links or to
add a processing directive for it to be translated into HTML using a stylesheet.
Please refer back to Figure 5 for an example of the latter.

9. EVALUATION

This section presents two case studies that we used to evaluate the expres-
siveness of our rule language and the scalability of our implementation. Our
major goal was to find out if xlinkit can be applied to a real-world example. In
addition, we also wanted a “stress-test” scenario for performance, scalability,
and expressiveness. Our first study checks the consistency of course syllabus
information and the second study performs a validation of multiple software
engineering documents.

The Department of Computer Science at University College London recently
introduced a new curriculum and associated course syllabi. In order to provide
high-quality information in the wide variety of different representations re-
quired, it decided to adopt XML as a common format. The system has to hold
a curriculum and provide links to the syllabi for students, depending on which
degree program they are pursuing. Figure 18 shows a sample abbreviated syl-
labus file for a course. Each course is held in a separate XML file. The curricula
for degree programs are kept in a single file. For each degree program, the
mandatory and optional courses are listed, grouped by the year in which they
can be selected. Figure 19 shows a fragment from the curricula file.

The process of syllabus development is highly decentralized, with different
people providing additions and corrections to course syllabi. Curriculum files

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

170 • C. Nentwich et al.

<Curricula>

<Curriculum>

<Programme>

<Title>CS</Title>

<Award>BSc</Award>

</Programme>

<Year number="1">

<Constraint>6 compulsory half-units,

2 optional half-units, no more than 1

optional half-unit can be non-programme.

</Constraint>

<Course value="Standard">

<Name>Computer Architecture I</Name>

<Code>1B10</Code>

<Theme>Architecture</Theme>

<Type requirement="C" level="F"/>

<Dept>CS</Dept>

</Course>

...

</Year>

...

</Curriculum>

</Curricula>

Fig. 19. Curriculum fragment.

contain information related to the individual syllabus files. For example, course
codes mentioned in the curriculum files have to be part of a syllabus definition.
Altogether, ten rules were identified as necessary to preserve the consistency
of the system. The complete list of rules can be found in Appendix B.

It is desirable for navigation purposes to provide hyperlinks from the curricu-
lum to individual courses. However, manually adding links from the curriculum
file to all 48 syllabus files would be error-prone, as files get deleted and courses
renamed. It is preferable to use the semantically equivalent information in the
files (e.g., the course codes) to generate the hyperlinks automatically. We used
xlinkit to achieve both goals.

Figure 20 shows the time used for checking each rule against all 52 docu-
ments. The syllabus files were all around 5 kilobytes in size and the curriculum
is 110 kilobytes in size. Checking was performed on a 700 Mhz Intel machine
with 128 Mb of RAM, running Mandrake Linux 8.0 with kernel 2.4.9 and the
IBM JDK 1.3. The total checking time was 11.1 seconds, with the most complex
rule taking 8 seconds to check. In total, 410 consistent and 11 inconsistent links
were generated.

The exceptional checking time on rule 5 was caused by a transitive closure
operation. Our current implementation of this operator, outlined in Section 4,
is still a proof of concept. It uses a rather naive algorithm and has not been
optimized for efficiency.

Our second goal in the case study was to provide a fully linked HTML version
of the department’s curriculum to be browsed by staff and students. One of the
rules for the curriculum is that every course listed in the curriculum must
have a syllabus definition. If the rule is satisfied, a consistent link is generated

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 171

Fig. 20. Syllabus study timings.

from the course entry in the curriculum to the syllabus defining the course.
We used XtooX, as in the example section, to fold all consistent links from this
rule back into the XML file containing the curriculum. We then only had to
provide a simple XSL stylesheet that transforms the XML file and simple links
into an HTML representation. Figure 21 shows the “production version” of the
curriculum Website, as generated by xlinkit.

Our second case study uses our rule language to express some of the
static semantic constraints of the Unified Modeling Language (UML) [Object
Management Group 2000a] and checks them against several models stored
in XMI [Object Management Group 2000b], an XML-based metamodel inter-
change format that supports the UML. The typical scenario for this study is a
distributed development team working on the same model and producing their
own additions and copies of documents. If frequent merging of the documents
is not feasible, due to geographical separation, for exapmple, checks can be
used to ensure consistency.

We have expressed all but three constraints of the UML Foundation.Core
package, the package dealing with static information such as classes; they are
listed in Appendix C. Of the three that were not expressed, two are enforced
by the XMI DTD and do not have to be checked, and one requires information
that is not supplied by XMI. Figure 22 shows one constraint for Associations
as expressed in the xlinkit XML format.

We have applied these constraints to several UML models: a small design
model of a meeting scheduler [Feather et al. 1997], a medium-size model shipped
as an example with Rational Rose and 19 industrial-size models provided by
an investment bank. We use the number of ModelElement objects contained in
each model as a measure of scale, since almost everything in the UML meta-
model derives from ModelElement. Our small model contains 93 elements; the
medium size model has 610 elements. The number of elements contained in

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

172 • C. Nentwich et al.

Fig. 21. Automatically generated links in the curriculum.

the industrial models ranges from 64 to 2834 elements. In terms of file size, the
models range from around 100 kilobytes to 6 megabytes.

All results listed below were obtained on a 600 Mhz Intel machine with
384 Mb of RAM, running Redhat Linux 6.1 with kernel 2.2.19 and the IBM
JDK 1.3. We will discuss the results obtained by checking the UML Core con-
straints against the industrial models. It took a total of 4 minutes to check all
rules against all files, counting only the time taken to check individual rules and
ignoring parsing overhead. While parsing takes more than 2 minutes in total
over all files, the variation in performance between XML parsers means that
including it would introduce unnecessary noise into the evaluation. Figure 23
shows the time taken for each rule over all files.

We can observe several interesting properties from the figure. Most rules
take roughly the same amount of time to check, but three rules stand out as
taking much longer. This is due to two factors: These rules apply to more files
than others; for example, almost every model has classes whereas few have
association classes, i.e., the association class rules do not apply in many cases.
Second, the complexity of the XPath expressions in the rules varies greatly.
Some expressions use straightforward tree paths, whereas others require ex-
pensive functions like id lookup. This is a feature of the rather complex design

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 173

<consistencyrule id="a1">

<description>

The AssociationEnds must have a unique name within the Association

</description>

<linkgeneration>

<consistent status="off"/>

<eliminatesymmetry status="on"/>

</linkgeneration>

<forall var="a" in="$associations">

<forall var="x" in="$a/Foundation.Core.Association.connection/

Foundation.Core.AssociationEnd">

<forall var="y" in="$a/Foundation.Core.Association.connection/

Foundation.Core.AssociationEnd">

<implies>

<equal op1="$x/Foundation.Core.ModelElement.name/text()"

op2="$y/Foundation.Core.ModelElement.name/text()"/>

<same op1="$x" op2="$y"/>

</implies>

</forall>

</forall>

</forall>

</consistencyrule>

Fig. 22. Sample rule from the UML Foundation/Core package.

Fig. 23. Rule totals for UML core rules.

of XMI. XPath selection is the single most expensive process in rule checking,
and hence the complexity of the path has the greatest impact—far greater than
the complexity of the formula in terms of nested quantifiers! The rule that takes
longest to check makes use of features in XPath, the name function and the union
operator, that do not seem to be well implemented in the XPath processor we
use and hence take longest to check.

In total, over all files, more than 8,000 inconsistent links were generated.
Consistent link generation was turned off, since we were only interested in

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

174 • C. Nentwich et al.

<xlinkit:ConsistencyLink ruleid="assoc.xml#//consistencyrule[@id=‘r1’]">

<xlinkit:State>inconsistent</xlinkit:State>

<xlinkit:Locator xlink:href="meeting2.xml#/XMI/XMI.content[1]/

Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/

Foundation.Core.Association[1]"/>

<xlinkit:Locator xlink:href="meeting2.xml#/XMI/XMI.content[1]/

Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/

Foundation.Core.Association[1]/Foundation.Core.Association.connection[1]/

Foundation.Core.AssociationEnd[1]"/>

<xlinkit:Locator xlink:href="meeting2.xml#/XMI/XMI.content[1]/

Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/

Foundation.Core.Association[1]/Foundation.Core.Association.connection[1]/

Foundation.Core.AssociationEnd[2]"/>

</xlinkit:ConsistencyLink>

Fig. 24. Sample consistency link generated from UML model.

finding inconsistencies. Figure 24 shows one of the consistency links generated
by the rule shown previously in Figure 22. It shows clearly how the association
has been linked to the two association-ends with equal names, thus exhaus-
tively specifying the ternary relationship that caused the inconsistency.

Although the number of inconsistencies seems large, given that the models
were exported from a CASE tool, it can be explained. Some of the models in-
cluded in the check were analysis or high-level design models, so they were
incomplete with respect to definition of fundamental data types, had operation
parameter types missing, and similar problems. If this system were to be used
in practice, developers could identify a suitable subset of rules and assemble
them into a “high-level model” ruleset that would be more permissive.

While we believe the timing results in our two case studies were satisfac-
tory for standalone consistency checks, they may not be if frequent checks are
necessary. A downside of our current implementation is that it checks all doc-
uments against all rules every time a check is invoked. In an interactive envi-
ronment, an incremental scheme that performs a smaller check, depending on
the changes made to documents, would be preferable.

Another problem we have encountered is that of memory usage. Our check
engine needs to retain the DOM trees for all documents in memory in order to
be able to execute XPath queries on them. In the case studies, this was not a
problem, however we have checked some software engineering documents that
required a considerable amount of memory. We are investigating a number
of strategies to address this problem: A distributed supervisor-worker archi-
tecture for very large datasets, where individual workers handle a number of
documents and send back results of XPath queries, the use of an XML database
with caching features to avoid retaining the entire DOM tree in memory, and
a scheduling system that loads documents on demand when they need to be
queried.

10. APPLICATIONS

xlinkit is a highly generic technology. It can be applied wherever we want to
establish links between Web resources, broadly construed, where those links

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 175

reflect relationships between resource types. In particular, rather than directly
authoring and maintaining links, xlinkit can provide semantically aware link
generation.

Our principal interest derives from our software engineering background.
Thus we have worked on applications largely in this area, most notably man-
aging the consistency of complex development models produced by distributed
teams.

A large range of other applications primarily focusing on link generation and
content management have been worked on by us or our partners. For example,
information about important customers can be found in many places in sales
files, service agreements, problem reports, logistics, and supply records. xlinkit
can be used to build a Web-based customer relationship management system
that allows us to navigate between all the pieces of information which reflect
the interests of a single customer.

eCRM (Electronic Customer Relationship Management) of this form is an
example of a broad class of lightweight intranet portals. Many organizations
have information in many different databases scattered across different sites.
xlinkit can be used to build portals that can deliver coordinated access to this
information and diagnose consistency problems.

The idea of delivering Web content on multiple channels such as Web-TV,
phones, PDAs is now common. Unfortunately, content has to be adapted for
each channel to make a high-value service. Content adaptation risks inconsis-
tency with its attendant problems. xlinkit can be used to support navigation
between information presented in different channels and identify problems.
Web sites that aggregate content can use xlinkit to add value by providing
content-relevant navigation without directly authoring links.

We are investigating applications of xlinkit in the financial domain, in par-
ticular for checking the consistency of financial trading information. We have
used xlinkit both to validate derivative trading data encoded in FpML [Gurdel
2001] and also to match trading data between counterparties.

Other applications, which have not been fully evaluated but appear promis-
ing, are consistency of information in service-level agreements, security policy,
and network management policy.

11. RELATED WORK

This account of related work is not intended to be a survey of consistency man-
agement, for which we refer to Nuseibeh et al. [2000]. Below, we highlight some
key comparison points and work that has had a particular influence on xlinkit.

Consistency management has been recognized as an important issue by the
programming language and software engineering communities. Early work
in this area can be found in publications on programming environments such
as the Cornell Synthesizer Generator [Reps and Teitelbaum 1984], Gandalf
[Habermann and Notkin 1986], or Centaur [Borras et al. 1988]. These environ-
ments typically provide syntax-directed editors. When the user has finished en-
tering a construct, incremental consistency checks related to the static program-
ming language semantics being used are carried out. These semantic checks are

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

176 • C. Nentwich et al.

typically carried out on a centralized data structure such as an abstract syntax
tree. Later work on software development environments (SDEs) such as IPSEN
[Nagl 1996], Arcadia [Taylor et al. 1988], ESF [Schäfer and Weber 1989],
ATMOSPHERE [Boarder et al. 1989] and GOODSTEP [Emmerich 1996]
raised the complexity by integrating tools for different languages. The latter in
particular allowed the specification of semantic rules [Emmerich 1996]. Checks
for semantic integrity between documents could be triggered by user actions.
Our approach represents a generalization, in that it builds on the open model
of XML rather than specific programming formalisms. In addition, we allow for
the distribution of the documents and provide diagnostics in the form of links.

A viewpoint [Finkelstein et al. 1992] allows developers to express a design
fragment in some specification language, together with additional attributes
describing the viewpoint. Multiple viewpoints can describe the same design
fragment, leading to overlap and hence the possibility of inconsistency. The is-
sues involved in inconsistency handling of multiperspective specifications are
outlined in Finkelstein et al. [1994]. Research in the viewpoints area also intro-
duces the idea of consistency rules [Easterbrook et al. 1994] between distributed
specifications. The work on viewpoints has spun off our continuing interest in
consistency management, and in particular our tolerant view in which consis-
tency is not always enforced. For a detailed discussion, see Finkelstein [2000].
Although a lot of theoretical work on viewpoints and the associated consistency
checking scheme has been done, no generic implementation was ever provided.
Our work realizes these ideas by providing a concrete implementation on top
of which a viewpoint framework can be built.

Traditional database integrity notions have been extended to cope with
semistructured data [Buneman et al. 2000] and XML content in particular [Fan
and Simeon 2000]. The fundamental goal of this work, and hence the approach,
is different. Integrity constraints are present in databases to prevent inconsis-
tency, from occurring. In many application domains, most notably software engi-
neering, inconsistency cannot be prevented and is not necessarily undesirable—
for a discussion of this approach in a database context, see Balzer [1991]. Hence
the focus is not on the language as such, but on producing good diagnostics. The
hyperlinks that we offer as diagnostics establish a clear relationship between
inconsistent elements. We note also that traditional integrity constraints and
the restricted path constraints in the first paper are not sufficient to express
some of the constraints required in software engineering notations such as
the UML.

The problem of verifying constraints on Websites is discussed in Fernandez
et al. [1999] and applied in Fernandez et al. [2000]. It is important to distin-
guish between the goals of these approaches and our own goals: Our constraints
check if a set of data is consistent, whereas the approaches in the paper check if
any instance of a schema graph will satisfy the constraint. If the schema graph
does not satisfy the property, modifications are suggested that will lead to valid
instance graphs. Since we wish to tolerate inconsistency to introduce flexibility
and because it is sometimes not possible to change the schemas of documents,
for example when standardised schemas are used, we cannot adopt this ap-
proach, but instead focus on detecting inconsistencies in instance documents.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 177

Standard query languages can and have been used to specify integrity
constraints [Henrich and Däberitz 1996]. In the context of XML, such an
approach would be feasible by using an XML query language such as XQuery
[Chamberlin et al. 2001]. We regard such an approach as lower-level than
xlinkit, since the user would have to “manually implement” the linking
semantics for each query, rather than achieving the desired goal of specifying a
declarative constraint. The user would, for example, have to write two queries
for each constraint in xlinkit, one that selects the combination of consistent
elements and one that selects the combination of inconsistent elements.

Even if only inconsistent elements are to be selected, xlinkit’s semantics for
logical constructs has been defined very carefully to discard locators in links
that do not add any information, the goal being to maximize the diagnostic
value by discarding noise. For example, in the formula a → b, where a and
b are subformulas, if a is true and b is also true then we include the links
returned by b into our results. Since a change in the truth value of a would not
change the overall result, we discard the links returned by a as irrelevant. This
semantics has been extensively tested and produced good results in all our case
studies. If XQuery were to be used directly, the user would have to handcode
the combination of elements to be included into links for all combinations of
truth values of a and b, leading to huge queries, and that is without removing
permutations of links. We also note that we would have to wait for a framework
based on XQuery that includes proper document management, so as to achieve
the distribution transparency that our service provides.

The hypertext community has worked on the problem of automatic link gen-
eration. For a survey of this topic we refer to Wilkinson and Smeaton [1999].
Much work in the area has focused on textual documents and many approaches
based on information retrieval techniques such as similarity measures can be
found. We exploit the structure afforded by XML, and its widespread use for
storing data rather than textual information in our approach to provide a much
richer and more fine-grained expression of linking semantics.

There is a growing body of work concerned with applications of hypertext
in software engineering. The CHIMERA project [Anderson et al. 1994] demon-
strates multiple document views and the capability of separating linking in-
formation from the underlying documents. It does not support consistency
checking. CHIME [Devanbu et al. 1999] provides a framework for folding links
into legacy software documents using information from software analysis tools.
The work provides a strong case for the sort of browsing that our approach
provides.

Our work has some analogies with Schematron [Jelliffe 2000], an XML
structure validator that employs XSL and XPath to traverse documents and
check constraints. Schematron was built as an alternative to traditional,
grammar-based systems for document validation. The focus of our work is
clearly different, as we are interested in relationships between distributed doc-
uments. Checking constraints between multiple documents can be achieved in
Schematron using the XPath document function, which would, however, hard-
code the names of documents. Our strict distinction between rule sets and docu-
ment sets, and the transparency of our rules with respect to underlying storage,

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

178 • C. Nentwich et al.

allows the same set of rules to be applied to multiple sets of documents. Also,
Schematron does not generate hyperlinks, one of the important components of
our approach.

Finally, xlinkit builds on two previous consistency checking schemes [Ellmer
et al. 1999] which have substantially influenced the ideas on which it is based.
In both cases these were standalone applications and used a rule language
based on a much more restricted form of first-order logic. The language, ar-
chitecture, and content management framework are novel and the genericity,
scaleability, and performance of the xlinkit approach distinguish it from the
earlier prototypes.

12. FUTURE WORK

A “static” application service such as ours does more work than is really nec-
essary because it has to recheck all documents against all rules upon request.
When documents are changed, we would like to recheck only those rules that
are affected by the changes. Such an incremental checking scheme is certainly
a barrier we have to overcome if our approach is to scale to very large datasets
that need regular checking. We have already devised and prototyped an al-
gorithm for determining the set of rules to be checked after changes and are
planning to implement the scheme for testing and benchmarking.

Conflict resolution is a logical back-end of a consistency check and has not
been discussed in this article. It is assumed that the user will refer to our
linkbases as a diagnostic tool and then take action in accordance with some
real-world process. While we believe that conflict resolution can never be fully
automated, it should still be possible to set certain default actions for handling
trivial inconsistencies. Integration with a workflow management system may
prove valuable in this respect, and we will investigate this option. Achieving
this goal without compromising the lightweight characteristics of xlinkit will,
however, be a challenge.

The evaluation section has already mentioned the problem of maintaining
a DOM tree for all documents in memory during a check. We are currently
investigating both architectural styles and implementation mechanisms to ad-
dress this problem. On the architectural side, a distributed architecture can be
used to spread the memory load over several machines, whereas on the imple-
mentation side, a scheduling mechanism for document loading together with
an XML database with XPath support may provide some benefits.

Our rule language has a rather limited range of predicates, basically consist-
ing of equality operations. Even for such a simple operation as equality, a wide
range of requirements can be found, depending on the application domain—for
example inclusion of a particular business date in a cash flow. We are currently
adding mechanisms to our evaluation engine that allow the dynamic definition
of new predicates in Javascript to address this problem.

13. CONCLUSION

This article has described xlinkit, a lightweight application service that pro-
vides rule-based link generation and checks the consistency of distributed Web

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 179

resources. xlinkit leverages standard Internet technologies. It supports docu-
ment distribution and can support multiple deployment models. It has a for-
mal basis, and evaluation has shown that it scales, both in terms of the size
of documents and in the number of rules. We have identified some important
applications and pointed to future directions for our work.

xlinkit is the product of long-standing research looking at consistency man-
agement. It is available as an open source package. Several research groups
and industrial partners have already started to use xlinkit, and we are keen to
see it applied further. The evaluation package and examples can be found at
http://www.xlinkit.com.1

APPENDIX

A. WILBUR’S BIKE SHOP SAMPLE FILES

A.1 Product Catalog Sample

<Catalogue>
<Product>

<Name>HARO SHREDDER</Name>
<Code>B001</Code>
<Price currency="sterling">349.95</Price>
<Description>Freestyle Bike.</Description>

</Product>
<Product>

<Name>HARO TR2.1</Name>
<Code>B002</Code>
<Price currency="sterling">179.95</Price>
<Description>BMX / Trail Bike.</Description>

</Product>
</Catalogue>

A.2 Sample Advert File

<Advert>
<ProductName>HARO SHREDDER</ProductName>
<Price currency="sterling">349.95</Price>
<Description>Freestyle Bike. Super versatile frame

for dirt, street, vert or flat. New full cromoly
frame. Fusion MegaTube axle extenders.

</Description>
</Advert>

A.3 Sample Service Report File

<ServiceReport>
<CustomerIdentity reg_number="3645"/>

1xlinkit is protected by PCT 9914232.5.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

180 • C. Nentwich et al.

<Report>
<ProductName>HARO SHREDDER</ProductName>
<ProductCode>B001</ProductCode>
<ProblemDescr>Found a problem in ...</ProblemDescr>

</Report>
</ServiceReport>

A.4 Sample Customer Report File

<CustomerReport>
<CustomerIdentity>

<FirstName>Licia</FirstName>
<FamilyName>Capra</FamilyName>
<Reg_Number>3645</Reg_Number>

</CustomerIdentity>
<Purchase>

<ProductName>HARO SHREDDER</ProductName>
<ProductCode>B001</ProductCode>

</Purchase>
<Purchase>

<ProductName>Shimano LX Mountain Bike
Crank Set</ProductName>

<ProductCode>A102</ProductCode>
</Purchase>

</CustomerReport>

B. CURRICULUM CASE STUDY RULES

Table III. Curriculum Study Rules

1 Each course (of the CS department) must have a syllabus
2 The year of the course in the curriculum corresponds to the year in the syllabus
3 There must not be two courses with the same code
4 Each course listed as a pre-requisite in a syllabus must have a syllabus definition
5 A course cannot be a pre-requisite of itself
6 Each course in a studyplan is identified in the curricula
7 A student cannot take the same course twice
8 1st year BSc/CS and MSci: 6 compulsory half-units
9 1st year BSc/CS and MSci: 2 optional half-units

10 1st year BSc/CS and MSci: no more than 1 optional half-units can be Non-programme

C. UML FOUNDATION.CORE RULES

C.1 Association

[1] The AssociationEnds must have a unique name within the Association
[2] At most one AssociationEnd may be an aggregation or composition
[3] If an Association has three or more AssociationEnds, then no Association-

End may be an aggregation or composition

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 181

[4] The connected Classifiers of the AssociationEnds should be included in the
Namespace of the Association

C.2 AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not
overlap

[2] An AssociationClass cannot be defined between itself and something else

C.3 AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType
if the association is navigable from that end

[2] An Instance may not belong by composition to more than one composite
Instance

C.4 BehavioralFeature

[1] All parameters should have a unique name
[2] The type of the Parameters should be included in the Namespace of the

Classifier

C.5 Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing
method in the full descriptor

C.6 Classifier

[2] No Attributes may have the same name within a Classifier
[3] No opposite AssociationEnds may have the same name within a Classifier
[4] The name of an Attribute may not be the same as the name of an opposite

AssociationEnd or a ModelElement contained in the Classifier
[5] The name of an opposite AssociationEnd may not be the same as the name

of an Attribute or ModelElement contained in the Classifier
[2] For each Operation in a specification realized by a Classifier, the Classifier

must have a matching Operation

C.7 Component

[1] A Component may only contain other Components

C.8 Constraint

[1] A Constraint cannot be applied to itself

C.9 DataType

[1] A DataType can only contain Operations, which all must be queries
[2] A DataType cannot contain any other model elements

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

182 • C. Nentwich et al.

C.10 GeneralizableElement

[1] A root cannot have any Generalizations
[2] No GeneralizableElement can have a parent Generalization to an element

which is a leaf
[4] The parent must be included in the namespace of the GeneralizableElement

C.11 Interface

[1] An Interface can only contain Operations
[2] An Interface cannot contain any ModelElements
[3] All Features defined in an Interface are public

C.12 Method

[1] If the realized Operation is a query, then so is the method
[2] The signature of the Method should be the same as the signature of the

realized Operation
[3] The visibility of the Method should be the same as for the realized Operation

C.13 Namespace

[1] If a contained element, which is not an Association or Generalization has a
name, then the name must be unique in the Namespace

[2] All Associations must have a unique combination of name and associated
Classifiers in the Namespace

C.14 StructuralFeature

[3] The connected type should be included in the owner’s Namespace

C.15 Type

[1] A Type may not have any methods
[2] The parent of a type must be a type

D. RULE LANGUAGE XML DTD

<!ELEMENT consistencyruleset (globalset*,consistencyrule+)>
<!ELEMENT globalset EMPTY>
<!ATTLIST globalset

id ID #REQUIRED
xpath CDATA #REQUIRED>

<!ELEMENT consistencyrule (description?,linkgeneration?,forall)>
<!ATTLIST consistencyrule

id ID #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT linkgeneration (consistent?,inconsistent?,

eliminatesymmetry?)>
<!ELEMENT consistent EMPTY>
<!ATTLIST consistent

status (on | off) "on">
<!ELEMENT inconsistent EMPTY>

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 183

<!ATTLIST inconsistent
status (on | off) "on">

<!ELEMENT eliminatesymmetry EMPTY>
<!ATTLIST eliminatesymmetry

status (on | off) "off">
<!ELEMENT forall (exists|forall|and|or|implies|not|equal|

notequal|same|subset|intersect)?>
<!ATTLIST forall

var CDATA #REQUIRED
in CDATA #REQUIRED
mode (exhaustive | instance) "exhaustive">

<!ELEMENT exists (exists|forall|and|or|implies|not|equal|
notequal|same|subset|intersect)?>

<!ATTLIST exists
var CDATA #REQUIRED
in CDATA #REQUIRED
mode (exhaustive | instance) "exhaustive">

<!ELEMENT and (exists|forall|and|or|implies|not|equal|
notequal|same|subset|intersect)*>

<!ELEMENT or (exists|forall|and|or|implies|not|equal|
notequal|same|subset|intersect)*>

<!ELEMENT implies (exists|forall|and|or|implies|not|equal|
notequal|same|subset|intersect)*>

<!ELEMENT not (exists|forall|and|or|implies|not|equal|
notequal|same|subset|intersect)>

<!ELEMENT equal EMPTY>
<!ATTLIST equal

op1 CDATA #REQUIRED
op2 CDATA #REQUIRED>

<!ELEMENT notequal EMPTY>
<!ATTLIST notequal

op1 CDATA #REQUIRED
op2 CDATA #REQUIRED>

<!ELEMENT same EMPTY>
<!ATTLIST same

op1 CDATA #REQUIRED
op2 CDATA #REQUIRED>

<!ELEMENT subset EMPTY>
<!ATTLIST subset

op1 CDATA #REQUIRED
op2 CDATA #REQUIRED
size CDATA "0">

<!ELEMENT intersect EMPTY>
<!ATTLIST intersect

op1 CDATA #REQUIRED
op2 CDATA #REQUIRED
size CDATA "0">

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

184 • C. Nentwich et al.

ACKNOWLEDGMENTS

We would like to thank Zeeshawn Durrani, who wrote the linkbase stylesheet,
and our colleagues from earlier incarnations of this project, Danila Smolko,
Ernst Ellmer, Andrea Zisman, and Torbjorn Revheim, for their contributions.
We would also like to thank the Apache Software Foundation and its volun-
teers for its continued and free provision of high-quality tools such as Xerces
and Xalan, which have greatly simplified our work. The XLink working group
also deserves thanks, in particular we are grateful to Eve Maler for technical
feedback. We thank the anonymous reviewers, who have produced detailed re-
views and helped to improve this paper a lot. Finally, we gratefully acknowledge
the financial support from Zuhlke Engineering for Licia Capra and Christian
Nentwich.

REFERENCES

ANDERSON, K. M., TAYLOR, R. N., AND WHITEHEAD, E. J. 1994. Chimera: Hypertext for heterogeneous
software environments. In Proceedings of the European Conference on Hypermedia (Edinburgh,
UK, Sept. 1994).

APPARAO, V., BYRNE, S., CHAMPION, M., ISAACS, S., JACOBS, I., HORS, A. L., NICOL, G., ROBIE, J., SUTOR,
R., WILSON, C., AND WOOD, L. 1998. Document Object Model (DOM) level 1 specification. W3C
Recommendation http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001 (Oct.), World Wide
Web Consortium.

BALZER, R. 1991. Tolerating inconsistency. In Proceedings of the 13th International Confer-
ence on Software Engineering (Austin, TX, May 1991), 158–165. IEEE Computer Society
Press.

BOARDER, J., OBBINK, H., SCHMIDT, M., AND VÖLKER, A. 1989. Advanced techniques and methods
of system production in a heterogeneous, extensible, and rigorous environment. In Proceedings
of the 1st International Conference on System Development Environments and Factories (Berlin,
1989), N. Madhavji, W. Schäfer, and H. Weber, Eds. 199–206. Pitman Publishing.

BORRAS, P., CLÉMENT, D., DESPEYROUX, T., INCERPI, J., KAHN, G., LANG, B., AND PASCUAL, V. 1988.
CENTAUR: The system. ACM SIGSOFT Soft. Eng. Notes 13, 5, 14–24.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., AND MALER, E. 2000. Extensible markup language.
Recommendation http://www.w3.org/TR/2000/REC-xml-20001006 (Oct.), World Wide Web
Consortium.

BUNEMAN, P., FAN, W., AND WEINSTEIN, S. 2000. Path constraints in semistructured databases.
J. Comput. Syst. Sci. 61, 2, 146–193.

CHAMBERLIN, D., FLORESCU, D., ROBIE, J., SIMEON, J., AND STEFANESCU, M. 2001. XQuery:
A query language for XML. Working draft (Feb.), World Wide Web Consortium (W3C).
http://www.w3.org/TR/xquery/.

CLARK, J. 1999. XSL transformations (XSLT). Tech. Rep. http://www.w3.org/TR/xslt (Nov.), World
Wide Web Consortium.

CLARK, J. AND DEROSE, S. 1999. XML path language (XPath) version 1.0. Recommendation
http://www.w3.org/TR/1999/REC-xpath-19991116 (Nov.), World Wide Web Consortium.

CONSORTIUM, W. W. W. 2000. Amaya. http://www.w3.org/Amaya/.
DEROSE, S., MALER, E., AND ORCHARD, D. 2001. XML linking language (XLink) version 1.0. W3C

recommendation http://www.w3.org/TR/xlink/ (June), World Wide Web Consortium.
DEVANBU, P., CHEN, Y.-F., GANSNER, E., MULLER, H., AND MARGIN, J. 1999. CHIME—Customizable

hyperlink insertion and maintenance engine for software engineering environments. In Proceed-
ings of the 21st International Conference on Software Engineering (Los Angeles, CA, May 1999),
473–482. ACM Press.

EASTERBROOK, S., FINKELSTEIN, A., KRAMER, J., AND NUSEIBEH, B. 1994. Coordinating distributed
ViewPoints: The anatomy of a consistency check. Int. J. Concurrent Eng. Res. Appl. 2, 3, 209–
222.

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

xlinkit • 185

ELLMER, E., EMMERICH, W., FINKELSTEIN, A., SMOLKO, D., AND ZISMAN, A. 1999. Consistency man-
agement of distributed documents using XML and related technologies. Res. Note 99–94, Dept.
of Computer Science, University College London.

EMMERICH, W. 1996. GTSL—An object-oriented language for specification of syntax directed tools.
In Proceedings of the 8th International Workshop on Software Specification and Design (1996),
26–35. IEEE Computer Society Press.

FAN, W. AND SIMEON, J. 2000. Integrity constraints for XML. In Proceedings of the Symposium on
Principles of Database Systems (2000), 23–34.

FEATHER, M., FICKAS, S., FINKELSTEIN, A., AND VAN LANSWEERDE, A. 1997. Requirements and speci-
fication exemplars. Automated Soft. Eng. 4, 4.

FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1999. Verifying integrity constraints on Web
sites. In Proceedings of the 16th International Joint Conference on Articial Intelligence (1999),
614–619.

FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 2000. Declarative specification of Web sites
with strudel. VLDB J. 9, 1, 38–55.

FINKELSTEIN, A. 2000. A foolish consistency: Technical challenges in consistency management. In
Proceedings of the 11th International Conference on Database and Expert Systems Applications
(DEXA). (London, Sept. 2000), 1–5. Springer Verlag.

FINKELSTEIN, A., GABBAY, D., HUNTER, H., KRAMER, J., AND NUSEIBEH, B. 1994. Inconsistency handling
in multiperspective specifications. IEEE Trans. Soft. Eng. 20, 8, 569–578.

FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B., FINKELSTEIN, L., AND GOEDICKE, M. 1992. Viewpoints: A
framework for integrating multiple perspectives in system development. Int. J. Soft. Eng. Knowl.
Eng. 2, 1, 21–58.

GURDEL, G. 2001. FpML version 1.0. http://www.fpml.org.
HABERMANN, A. N. AND NOTKIN, D. 1986. Gandalf: Software development environments. IEEE

Trans. Soft. Eng. 12, 12, 1117–1127.
HENRICH, A. AND DÄBERITZ, D. 1996. Using a query language to state consistency constraints for

repositories. In Database and Expert Systems Applications (1996), 59–68.
JELLIFFE, R. 2000. The Schematron assertion language 1.5. Tech. Rep. (Oct.), GeoTempo Inc.
Mozilla. 2000. Mozilla. http://www.mozilla.org.
NAGL, M., Ed. 1996. Building Tightly Integrated Software Development Environments: The

IPSEN Approach. LNCS vol. 1170, Springer Verlag.
NUSEIBEH, B., EASTERBROOK, S., AND RUSSO, A. 2000. Leveraging inconsistency in software devel-

opment. IEEE Computer 33, 4 (April), 24–29.
Object Management Group. 2000a. Unified Modeling Language Specification. Object Manage-

ment Group.
Object Management Group 2000b. XML Metadata Interchange (XMI) Specification 1.1. Object

Management Group, Framingham, MA.
REPS, T. W. AND TEITELBAUM, T. 1984. The synthesizer generator. ACM SIGSOFT Soft. Eng.

Notes 9, 3, 42–48.
SCHÄFER, W. AND WEBER, H. 1989. European software factory plan—The ESF-profile. In Modern

Software Engineering—Foundations and Current Perspectives, P. A. Ng and R. T. Yeh, Eds.,
Ch. 22, Van Nostrand Reinhold, 613–637.

TAYLOR, R. N., SELBY, R. W., YOUNG, M., BELZ, F. C., CLARCE, L. A., WILEDEN, J. C., OSTERWEIL, L., AND

WOLF, A. L. 1988. Foundations of the Arcadia Environment Architecture. ACM SIGSOFT Soft.
Eng. Notes 13, 5, 1–13.

WADLER, P. 1999. A formal semantics of patterns in XSLT. Markup Technologies.
WILKINSON, R. AND SMEATON, A. 1999. Automatic link generation. ACM Comput. Surv. 31, 4es

(Dec.). Article 27.

Received January 2001; revised October 2001; accepted October 2001

ACM Transactions on Internet Technology, Vol. 2, No. 2, May 2002.

