
Dedicated Object Management System Benchmarks for

Software Engineering Applications �

Wolfgang Emmerich and Wilhelm Sch�afer

University of Dortmund, Dept. of Computer Science

D-44221 Dortmund, Germany

femmerich|wilhelmg@ls10.informatik.uni-dortmund.de

Abstract

Non-standard database systems become available
now, even as commercial products. They overcome
a lot of de�ciencies of relational systems w.r.t. their
use in engineering applications like computer-aided de-
sign or software engineering. Their rather sophisti-
cated functionality especially concerning the manipu-
lation of complex objects makes them highly attractive
for engineering applications. If being used as the cen-
tral database of a rather complex application they could
however still become a bottleneck w.r.t. performance.
This paper presents a new way how to de�ne a special
purpose benchmark which enables to select the fastest
database system for a particular software engineering
application. It is argued that existing benchmarks are
not appropriate to support such a selection, because
they neglect important application speci�c character-
istics which signi�cantly in
uence the database perfor-
mance.

1 Introduction

Integrated Software Development Environments
(SDEs) include a number of tools which support most
of the life-cycle phases, i.e the development of the re-
spective documents, and inform, analyse, and check
document interdependencies and sometimes even prop-
agate changes across document boundaries. The rela-
tion between di�erent documents is either based on
a transformational approach, e.g. information from a
requirements speci�cation is automatically extracted
and used as a skeleton for the design document, (cf.
ProMod [20]) or an SDE enables the incremental inter-
twined development and maintenance of all documents.
In the latter case, the environment can easily trace
back errors through di�erent documents and propagate

�This work has been partly funded by the CEC under con-
tract No. 6115 (ESPRIT-III project GOODSTEP)

necessary changes to correct the errors. Examples for
such environments are Gandalf [18] and IPSEN [13].
Many more can be found in [19] and [25].

In any case a large number of objects and rela-
tionships on very di�erent levels of granularity have
to be stored and maintained [24]. With more �ne-
grained objects being stored, sophisticated function-
ality in terms of an incremental intertwined develop-
ment of documents can be achieved [13]. For instance,
an appropriate �ne-grained data model for any type
of document is an abstract syntax graph [14]. Such a
�ne-grained model, if being used as the basis for the
conceptual schema of an SDE's central data store, sup-
ports the construction of syntax-directed tools and es-
pecially allows the expression of document interdepen-
dencies on the �ne-grained level of syntactical units
like identi�ers, functions, operations, interfaces, sec-
tions, etc. which in turn enables analysis, error detec-
tion and change propagation on that �ne-grained level
even across document boundaries. Because of those ad-
vantages, the support of a �ne-grained data model is a
major requirement for our performance investigations1.

It is then very obvious that the use of a speci�c
database system could very quickly become the per-
formance bottleneck of an SDE. In most cases the re-
quired response timemust be below one second in order
to provide a user friendly system. It has also become
clear that the relational database technology does not
address the requirements of database systems for SDEs
appropriately. Rationales for the statement in the last
sentence can be found in [23, 22] and [21]. Therefore,
a number of development e�orts have been started to
build dedicated so-called non-standard database sys-
tems for software engineering applications or related
areas.
It is worthwhile to note here that the same arguments
not only hold for fully
edged SDEs, but also for sin-
gle syntax-directed tools. (That is the reason why the

1For an elaborated discussion of the functionality of an OMS
we refer the interested reader to [12]

1

title of this paper mentions software engineering appli-
cations in general.) As the amount of data produced
by single tools is signi�cantly smaller than in the case
of an SDE, performance may not become a very critical
factor, but in principal, the required functionality and
the requirements for the granularity of the data model
are the same.

A number of non-standard database management
systems (OMSs)2, are now available either as academic
prototypes like GRAS [21], P Graphite [27] or already
as commercial products like PCTE/OMS [16], Gem-
Stone [6], O2 [3], and many others. They still di�er
signi�cantly particularly with respect to the provided
functionality and the data model which is the basis for
de�ning the documents' internal representation within
the OMS.

The simple question which this paper wants to an-
swer, is: how to �nd the right OMS? In more detail,
this paper provides a strategy for selecting the most
appropriate OMS for a particular application, i.e. a
special set of tools integrated within an SDE. The most
dominant selection criterion is, of course, database per-
formance, as it is �nally a major acceptance criterion
for the SDE built on top of the OMS.

The problem in selecting the most appropriate OMS
is that the usual procedure of running a standardised
benchmark does not work for OMSs. The above men-
tioned heterogeneity of the provided data model, and
the provided programming interface prevents the def-
inition of a uniform benchmark as a piece of source
code like the Dhrystone benchmark for compiler- and
operating system-performance [26] or the Wisconsin
benchmark for relational database systems [8]. OMSs
do not have a standardised programming interface like
the POSIX standard for operating systems nor do they
provide a standardised query language like SQL.

The benchmark therefore has to be de�ned on a
more abstract level than source code. It will basically
be a conceptual schema plus a number of operations
based on the entities de�ned in the schema (e.g. in-
sert and delete operations). In addition, the particular
values of the operations' parameters have to be de�ned
and furthermore one or more initial database states. It
then has to be implemented on top of the OMSs under
investigation.

2Most of these newly developed systems fall into a category
which is often also called Object Management Systems (OMS) is
used synonymously for object-oriented database systems. Con-
cerning the notions we refer to [9]). We think that the devel-
opment of OMSs as the basis for SDEs is the most promising
direction to go and we have therefore concentrated our investi-
gations on these systems so far [11]. The approach described in
this paper is however independent from any particular system
functionality.

This paper is further structured as follows. The next
section brie
y introduces two existing OMS bench-
marks which have not been de�ned for software en-
gineering applications. Their appropriateness for soft-
ware engineering applications is discussed in Section 3.
Section 4 presents our approach of application speci�c
benchmarks and illustrates the approach by describing
a dedicated benchmark to support the selection of an
OMS as the basis for the development of a particular
SDE. Section 5 describes major aspects of the imple-
mentation of benchmarks. Section 6 concludes the pa-
per by sketching some general lessons learned about
using OMSs from the implementations of a number of
benchmarks on top of di�erent OMSs.

2 Related Work

Based on the above sketched arguments that bench-
marks cannot be de�ned always in terms of source
code, two so-called "abstract OMS benchmarks" have
been de�ned so far. The �rst one is the so called "sim-
ple Benchmark" described in [7]. The second one is the
"Hypermodel Benchmark" de�ned in [1].

2.1 The simple Benchmark

The simple benchmark was de�ned in order to mea-
sure the performance of elementary OMS operations.
The conceptual schema for this benchmark (as well as
for the others in this paper) is shown as an extended
Entity-Relationship diagram (EER-diagram) following
the notation given in [4] in Fig. 1.

longfield

BIG

SMALL

str10
str80
str160

DIR

DIRREL

MNREL

str10
str80
str160

Figure 1: EER-Diagram for the simple benchmark

In these diagrams, a rectangle models an entity3. A
solid arrow between entities represents an aggregation

3In the sequel, entity is used synonymously to type, whereas
object denotes an instance of an entity or type resp.

2

relationship. Its semantics is that no object can exist
without being related in an aggregation to an already
existing object, i.e. the aggregation relationship mod-
els the part-of/belongs-to relationship. Dotted arrows
model reference relationships. At the end of arrows,
black circles represent a many-end of a relationship,
and white circles represent an one-end. A circle placed
on a line declares the relationship to be ordered. At-
tributes of entities are described within the rectangle
whereas attributes of relationships are shown in a circle
connected to the resp. arrow. A triangle on a line be-
tween entities de�nes an inheritance relation meaning
that a sub-entity inherits all attributes its super-entity
holds and all relationships it participates in. Multiple
inheritance is not allowed.

The above schema de�nes entities DIR, SMALL,
and BIG and relationships DIRREL andMNREL. Ob-
jects of type DIR are used to connect objects of types
SMALL and BIG to the database using a DIRREL re-
lationship of cardinality 1:n. Entities SMALL and BIG
as well as the m:n relationshipMNREL have attributes
which allow the storage of strings of the lengths 10, 80,
and 160 bytes. The entity BIG has an additional at-
tribute long�eld which is dedicated to the storage of
byte streams of the lengths 10 and 128 kbytes.

The operations de�ned by the simple benchmark in-
clude creation and deletion of small and big entities, as
well as creation and deletion of relationships between
them. Furthermore operations on attributes of entities
and relationships such as storing and retrieving strings
of lengths 10, 80, and 160 bytes or long�elds of the
lengths 10 and 128 kbytes are de�ned.

It is part of the benchmark that the operations ac-
cess and modify a non-empty database. This avoids
that objects accessed by the operations reside only in
OMS caches (i.e. in main memory). A realistic size
of an initial database de�ned before performance mea-
surements start, guarantees that operations have to ac-
cess secondary storage (as it usually happens in real
applications). The simple benchmark de�nes the size
of the initial database to contain 3,000 objects of type
SMALL and 400 objects of type BIG.

2.2 The Hypermodel Benchmark

The Hypermodel benchmark di�ers from the sim-
ple benchmark in using more complex data structures
and operations. The benchmark is a development ded-
icated to hypertext applications.

The conceptual schema of the Hypermodel bench-
mark is shown in Fig. 2. It de�nes three di�erent enti-
ties, namely Node, TextNode, and FormNode. TextN-
ode and FormNode are subtypes of Node. Nodes rep-

uniqueId
ten
hundred
thousand
million

text
TextNode

bitmap
width
height

FormNode

parent/children

refTo/refFrom partOf/parts

Node

offsetFrom

offsetTo

Figure 2: Conceptual schema of the Hypermodel
benchmark

resent sections of a hypertext which are further struc-
tured. TextNodes represent an unstructured text and
FormNodes represent a bitmap. Three relationships
are de�ned, namely the parent/children relationship,
the partOf/parts relationship, and the refTo/refFrom
relationship. The parent/children relationship is of car-
dinality 1:n, it is ordered, and it de�nes the aggregation
structure between nodes. The m:n partOf/parts re-
lationship models the section/subsection structure of
a hypertext and the m:n relationship refTo/refFrom
models arbitrary hypertext links. Each Node has �ve
attributes called uniqueId, ten, hundred, thousand, and
million. Additionally, an TextNode contains a text at-
tribute text and a FormNode has three attributes width
and height to store the dimensions of a picture and a
long�eld attribute bitmap to store the picture itself.
Furthermore, the refTo/refFrom relationship contains
two attributes o�setFrom and o�setTo which does not
only allow a description of the source- and target-node
of a hypertextlink but also enables to de�ne its exact
positions within the related text attributes.

The initial database contains a completely balanced
tree of varying depth built of nodes and father/children
relationships. Each inner node is of type Node and
has exactly �ve children. Each leaf node is either of
type FormNode or TextNode. The partOf/parts rela-
tionship is created for each node by selecting one inner
node of level k and relating it to �ve random nodes
from level k+1. The refTo/refFrom relationship is cre-
ated for each node to another random node. Nodes are
numbered and the number of a node is stored in the
uniqueIds attribute. Ten, hundred, thousand, and mil-

3

lion are initialised by random numbers selected from
the corresponding interval. Each attribute of objects
of type TextNode is initialised with a text containing
a number of up to 100 words each having up to 10
characters. A formnode consists of a random square
bitmap with an edge length of up to 400 pixels.

The operations of the Hypermodel benchmark in-
clude mainly retrieval operations such as lookups for
attributes with particular names or values in particular
ranges, lookups for node sets connected by the above
mentioned relationship in normal or reverse order, and
�nally groups for operations performing a sequential
scan and a transitive closure traversal following dif-
ferent relationships. The only update operations sub-
stitute words in the text attribute of a text-node and
inverts a subrectangle within the bitmap attribute of a
randomly selected formnode. The detailed description
of the operations is of no concern for the scope of this
paper. The interested reader is referred to [1].

3 Why Application speci�c Bench-
marks

This section argues why the formerly presented
benchmarks are not appropriate in software engineer-
ing applications and indicates how this de�ciency is
remedied.

The main problem of the simple and Hypermodel
benchmark is that their conceptual schemas are too
simple to meet an SDE application. Consider, for ex-
ample, an SDE that includes syntax-directed tools sup-
porting the development of structured analysis (SA)
diagrams, modular designs and programs written in a
usual programming language. Concerning the SA tool,
the structure of data-
ow diagrams, a data-dictionary,
and the mini-speci�cations should be re
ected in the
conceptual schema of the benchmark. Concerning the
design tool, entities re
ecting the structure of modules
have to be de�ned. Concerning the programming en-
vironment, the schema has to contain a large number
of entities re
ecting the very �ne-grained structure of
syntactic increments of the underlying programming
language. Those entities mentioned would di�er sig-
ni�cantly w.r.t. the number, type, and size of their
attributes. Some entities, for instance, would have to
carry just small attributes for de�ning graphical co-
ordinates, others like mini-speci�cations or comments
would carry only long-�eld attributes to store text, and
�nally other entities' attributes would be a combina-
tion of the two previous ones.
Those examples should just indicate the heterogene-
ity of possible entities in an SDE as opposed to the ho-

mogeneous de�nition of entities in the two mentioned
benchmarks. Both, the simple benchmark and the Hy-
permodel benchmark de�ne just three di�erent enti-
ties.
Unfortunately, the number and size of attributes of a
type signi�cantly in
uence the time necessary to re-
trieve and create objects of that type. Hence, the
sketched heterogeneity of types would have to be re-

ected in a benchmark addressing performance require-
ments of an SDE.

Besides the large number of possible entities, di�er-
ent relationships have to be re
ected in the conceptual
schema as well. One to many composition relationships
de�ne how complex entities are aggregated from sim-
pler ones. In SDEs it happens frequently that di�erent
entities are aggregated to one complex entitiy. We call
that a heterogeneous aggregation. As examples for
this kind of aggregations, consider the import section
of a module which may be composed of imported types,
procedures, and functions or a data-
ow diagram that
consists of nodes, terminators, stores, and data-
ows.
Some of these heterogeneous aggregations are ordered
(e.g. imports), whereas others are not (e.g. data-
ow
diagrams). Moreover these composition relationships
sometimes form nested aggregations. As examples
consider nodes of a data-
ow diagram that are re�ned
and hence consist of other data-
ow diagrams or proce-
dure declarations that may contain further procedure
declarations.
The simple benchmark schema contains neither het-
erogeneous nor nested aggregations. In the Hyper-
model benchmark only the parent/children relation-
ship is nested but heterogeneous aggregations also do
not exist.
However, access to an object in a homogeneous aggre-
gation turns out to be much faster than to an object in
a heterogeneous aggregation. Moreover, nested aggre-
gations, of course, require signi�cantly more time for
navigation than searching a particular object in a
at
structure.

In addition to the mentioned de�ciencies of the ag-
gregation relationships, both benchmarks do not ad-
equately address the software engineering application
requirements w.r.t. additional so-called reference re-
lationships. Both de�ne reference relationships which
however do not map situations frequently occurring in
SDEs.
In case of the simple benchmark, the reference rela-
tionshipMNREL is instantiated by the initial database
and by benchmark operations as if it were a 1:1 rela-
tionship, i.e. the benchmark connects one object of
type BIG with one of type SMALL. In case of the
Hypermodel benchmark, the partOf/parts relationship

4

links a node with exactly �ve other nodes and the
refTo/refFrom relationship relates a node with exactly
one other node. In an SDE, however, a reference rela-
tionship is usually of cardinality 1:n where n tends to
become rather large, namely up to a few hundred. As
an example, consider a basic type identi�er in a large
software system. It will be used in a large number of
modules by a large number of operations as parameter
or result type. All objects representing the use of this
identi�er must be linked by a 1:n relationship to the
object representing the declaration.

Operations of the benchmark should be de�ned
based on the type de�nitions in the conceptual schema.
This includes insert and delete operations for each en-
tity and each de�ned attribute. This requirement is
ful�lled by the simple benchmark whereas the set of
operations of the Hypermodel benchmark only includes
two update operations which just change attribute val-
ues.

Furthermore, simple benchmark operations just as
the conceptual schema itself su�er from their simplic-
ity. The functions o�ered by a tool of an SDE are
usually composed of a number of database operations
which could correspond to operations as de�ned in the
simple benchmark. Unfortunately just summingup the
execution time of these simple operations gives wrong
results. As a matter of fact, complex tool operations
can sometimes be implemented much more e�ciently
by exploiting a particular feature of the OMS under
investigation than by just taking a particular order of
prede�ned simple benchmark operations.
Some OMSs, for example, provide a special type
called dictionary and a corresponding member function
(which of course can be assumed to be implemented
in a very e�cient way by the OMS developers). If
this type and especially the member function had been
implemented by a number of simple benchmark oper-
ations, this would result in a much higher execution
time than if using the member function.

Finally, none of the benchmarks has considered
the consequences of concurrent execution of database
operations yet. That includes the de�nition of one
or more transaction concepts (like optimistic or pes-
simistic models) and its corresponding realisation by
the operations de�ned by a benchmark.

The initial database state in a benchmark de�ni-
tion should re
ect realistic situations of the applica-
tion. Neither the simple nor the Hypermodel bench-
mark meet this requirement in the case of an SDE.
The static and simple de�nition of the simple bench-
mark does not at all re
ect situations which appear in
SDEs. The same is true for the Hypermodel bench-
mark. Even though it de�nes more than one initial

state, all of them de�ne a completely balanced tree
which is a very unusual situation in SDEs.

Besides clarifying the de�ciencies of the existing
benchmarks the above examples are supposed to in-
dicate that even di�erent SDEs could have very di�er-
ent performance requirements, i.e. it is impossible to
de�ne a general benchmark for evaluating OMSs for
SDEs. In more detail, the tools and types of docu-
ments in an SDE determine the entities and their re-
lationships which vary signi�cantly depending on the
particular tools included in the environment. As men-
tioned, storage requirements for a structured analy-
sis diagram are very di�erent from the requirements
for the storage of programs. In addition, the consis-
tency constraints and dependencies between di�erent
documents are very important for the de�nition of a
benchmark. In an SDE following a transformational
approach a much less �ne-grained data model is needed
than in an SDE enabling intertwined document devel-
opment. This in turn results in a much lower number
of relationships for the transformational case. Further-
more, the initial database state depends on a particular
application, i.e. tools, document types, and even the
scale of projects being performed with the SDE.

Our approach therefore is not to extend the bench-
marks mentioned to additionally meet (some) require-
ments from SDEs nor to develop another general
benchmark for the area of SDEs. We rather propose
to develop application speci�c benchmarks for a spe-
cial SDE, i.e. for a particular set of document types,
and a corresponding particular set of tools. Of course
such an approach should still enable a systematic de-
velopment of an application speci�c benchmark based
on reusing as much information as possible from pre-
vious experiments. We do not want to build a special
benchmark for any new set of tools and documents
from scratch again. We propose an organised, carefully
designed process to de�ne an appropriate benchmark
which includes the steps (1) to de�ne an appropriate
benchmark based on the requirements of a particular
application, (2) to implement it on top of the OMS
under investigation, and (3) to reuse as much informa-
tion and code as possible from previously developed
benchmarks. This approach is described in the next
two sections.

4 De�nition of an Application Speci�c
Benchmark

The overall objective of the de�nition of the bench-
mark is to derive a conceptual database schema and the
corresponding update and retrieval operations. This

5

section describes this derivation process by identifying
the di�erent steps and their respective input and out-
put. In addition each step is illustrated based on a
particular example, namely the selection of a suitable
OMS for the Opus SDE [15]. This example is called
the Opus benchmark.

The Opus SDE consists of two highly integrated
syntax-directed design and speci�cation tools. Those
tools support the development of a modular-like ar-
chitecture in terms of modules, module interfaces, and
di�erent types of use-relations between modules.

4.1 The conceptual Schema

The derivation of the database schema starts from
taking the syntactic de�nition of each document whose
development is supported by a particular SDE. (Re-
member that our goal is to identify the most suitable
OMS for a particular SDE.) The syntactic de�nitions
are usually given or at least can be transformed into
a tree grammar representation, de�ning the abstract
syntax of each document [5]. This is what we need as
the basis for our benchmark de�nition.

Taking our Opus example, the abstract syntax of
two document types is de�ned. As exampli�ed by the
excerpt of the corresponding tree grammar de�nitions
shown in Fig. 3. The �rst document type allows to
de�ne modules and their import-relationship. The sec-
ond type is dedicated to the detailed de�nition of the
export- and import-interfaces of modules. In particu-
lar, it allows the declaration of types, procedure heads,
and function heads exported by a module and re�nes
the import-relationships from other modules by allow-
ing the de�nition of imported objects for each relation-
ship.

Based on the transformation rules given in Tab. 1
it is a straight-forward exercise to derive a conceptual
schema given as an EER diagram from a tree grammar.
Applying the transformation rules of Tab. 1 to the tree
grammar excerpt in Fig. 3 results in the EER diagram
in Fig. 4.

The next step is to extend the schema by additional
relationships. Those relationships are the basis for pro-
viding consistency constraints between objects when
modifying the database. Those constraints include,
for example, uniqueness of identi�ers, dependencies be-
tween declaration of identi�ers and their usage, etc. i.e.
the constraints concern the static semantics of a lan-
guage de�nition as well as interdocument consistency.
Not including such relationships into a schema would
result in signi�cant run-time increase of all update op-
erations based on the schema de�nition.
The additional relationships to be introduced are all

For tree grammar component
of type

Substitute a with

Fixed arity operator
a -> B C .. D

...
b

c

d

a

List operator
a -> B ...

a b

Atomic operator
a::=B

a b

Phyla
a::B C ... D

...

b

c

d

a

Table 1: Transformation of tree grammar into EER
diagrams

of cardinality one to many. They serve three di�er-
ent purposes, namely (1) they support associative set
valued queries which, for example enable to quickly
determine whether a particular identi�er has been in-
troduced, (2) they support sharing of objects, e.g. the
name of an identi�er is only stored once and accessed
from di�erent places where it is being used, (This
avoids redundant information in the database and thus
it avoids complex update procedures.) and (3) they
de�ne change propagation paths between di�erent ob-
jects which are especially helpful when interdocument
consistencies have to be updated.

As an example, the constraints de�ned by the Opus
benchmark are that

1. the interfaces of modules which occur in an archi-
tecture diagram, are speci�ed in the speci�cation
document and vice versa,

2. each import interface relationship in the architec-
ture is speci�ed in detail in the speci�cation lan-
guage and vice versa,

3. names of modules, types, functions and proce-
dures are unique within an architecture diagram
and all related speci�cation documents,

4. modules which participate in an
import-relationships, have to exist,

5. objects which are imported by an import-
relationship, are exported elsewhere,

6. cyclic import relationships are forbidden,

6

Fixed arity operators:

arch −> ARCH_ID MOD_LIST
module −> MOD_ID COMMENT IMP_LIST

Atomic operators:

arch_id −> IDENT
mod_id −> IDENT
comment −> STRING

List operators:

module_list −> MODULE ...
import_list −> IMPORT ...

Phyla:

ARCH_ID :: arch_id
MOD_LIST :: module_list
MODULE :: module
MOD_ID :: mod_id
IMP_LIST :: import_list
IMPORT :: mod_id
COMMENT :: comment

Fixed arity operators:

module −> MOD_ID COMMENT EXPORT_PART IMPORT_PART
export −> TYP_ID OP_LIST
func −> OP_ID PAR_LIST TYP_ID COMMENT
proc −> OP_ID PAR_LIST COMMENT
cbv_par −> PAR_ID TYP_ID
cbr_par −> PAR_ID TYP_ID
import_part −> IMP_LIST
import −> MOD_ID IMP_OBJ_LIST

Atomic operators:

mod_id −> IDENT
typ_id −> IDENT
op_id −> IDENT
par_id −> IDENT
comment −> STRING

List operators:

op_list −> OP ...
import_list −> IMPORT ...
par_list −> PAR ...
imp_obj_list−> IMP_ID ...

Phyla:

MOD_ID :: mod_id
COMMENT :: comment
EXPORT_PART :: export
IMPORT_PART :: import_part
OP_ID :: op_id
TYP_ID :: typ_id
PAR_ID :: par_id
OP :: func proc
PAR :: cbv_par cbr_par
IMP_LIST :: import_list
IMPORT :: import
IMP_OBJ_LIST:: imp_obj_list
IMP_ID :: typ_id op_id

Figure 3: Abstract Syntax for Opus Benchmark

7. types used in parameters of operations and result
types of functions are declared, i.e. they are either
exported by the module in which they are used,
or imported from elsewhere.

The result of adding relationships according to those
constraints to the EER diagram of Fig. 4 is given in
Fig. 5. The �rst additional relationship, which we call
dictionary, is drawn using dashed lines, whereas the
second relationship, which we call reference is drawn
using dotted lines.
One dictionary relationship de�nes all identi�ers which
are declared in an architecture. Another dictionary re-
lationship de�nes all the identi�ers which are exported
by a module, i.e. that may be used as imported ob-
jects. The last dictionary relationship de�nes all type
identi�ers that may be used in a module.
To avoid change propagations reference relationships
which substitute aggregation relationships, allow ob-
ject sharing. In particular, the types used in parame-
ters of operations, or result types of functions are no
longer viewed as copies of types de�ned in export in-
terfaces, but as references to them. Furthermore, the
copies of identi�ers of imported modules and objects
in import lists are transformed into references to the
resp. identi�ers. This not only allows omitting of time
consuming change propagations, but also enables quick
checks whether an exported type or operation is actu-
ally used.

The next and a major step is a simpli�cation of the
schema de�ned so far. This simpli�cation results in a
schema which has to be understood as a schema for

a "real" benchmark, because the schema derived in
the previous steps was basically the documents' syntax
representation including static semantics information.

The simpli�cation is de�ned by a number of rules.
The application of those rules removes all entities and
relationships which do not in
uence the performance of
benchmark operations because the entities remaining
in the schema represent the worst case situation. The
rules for schema simpli�cation are that

1. relationships which start from or end in all sub-
entities of an inheritance relationship, are replaced
by one relationship which starts from or ends in
the super-entity,

2. entities which do not participate in any relation-
ship except if they are the target of an aggregation
relationship, are transformed into attributes of the
entities, where the aggregation relationship starts,

3. sub-entities of an inheritance relation, which par-
ticipate in the same relationships and carry the
same attributes as another entity of that inheri-
tance relation are removed. The remaining entity
is then viewed as a placeholder for the removed
entities. As a consequence, execution times of
benchmark operations that access this entity must
rather be interpreted as upper bounds than as ex-
act values of operations that would have accessed
objects of the removed entity,

4. an inheritance relationship with only one sub-
entity is removed together with its sub-entity. The

7

module_
 list

par_
id

ident

arch

module

op_id

typ_
id

mod_
id

export_
 part

op_
list

op

func

proc

par_
list

par

cbv_
par

cbr_
par

imp_
obj

import_
 list

import_
 part

comment

import

arch_
id

value

value

Figure 4: EER diagram deduced from Grammar

super-entity subsumes all relationships, the sub-
entity participated in, as well as all the subentity's
attributes,

5. an entity that neither participates in a context-
sensitive or inheritance relationship nor carries at-
tributes and which is the source of only one ag-
gregation relationship, is removed. The aggrega-
tion relationship that started from the entity now
starts from each entity that had an aggregation
relationship to the removed entity.

The ordering in which the simpli�cation rules may
be applied to the EER diagram is as follows: Rules 1{4
may be applied repeatedly in mutual exclusion, Rule 5
is applied repeatedly only after the application of Rules
1{4 is �nished.

Using these simpli�cations we are able to simplify
the EER diagram shown in Fig. 5. The result of this
process is depicted in Fig. 6. We applied Rule 1, 3, and
4 to cbv par and cbr par with the e�ect of removing
these entities and transferring their objectives to par.
Then we were able to apply Rule 2 to par id trans-
forming it into an attribute of entity par. After that,
we applied Rule 3 to func and proc with the e�ect of
removing the entity proc. That enabled us to apply
Rule 4 to func, with the e�ect of replacing entity func
by its super-entity op. As comment is only the target
of aggregation relationships, we could apply Rule 2,
thus transforming comment into attributes of module
and op. The same rule was applied to entity value

connected to ident transforming this entity into an
attribute of ident. Finally the entities module list,
import part, import list, op list, par list have

been removed according to Rule 5.

4.2 The initial Database

The next step in de�ning a benchmark is the def-
inition of an initial database (cf. Section 2). In or-
der to determine a realistic structure and a realistic
number of objects, we perform an analysis of existing
documents. We assume that those documents exist.
Usually SDE developers have gained preliminary expe-
rience with the document types while they were pro-
ducing documents during case studies performed with
text editors or syntax-directed editors which could be
easily generated using a generator like e.g. Centaur [5].
Based on the benchmark schema, we must obtain av-
erage values for the number of objects for each 1:n re-
lationship. Moreover, we have to obtain average sizes
for the attributes de�ned in the schema.

It is usually possible to acquire the existing docu-
ments into a text-�le. Then the analysis can be per-
formed by a parser generated by e.g. lex and yacc.
In contrast to the Hypermodel benchmark, this ap-
proach leads to initial databases that have a structure
similar to that of real documents.

The structure of the initial database for the Opus
benchmark is based on the analysis results of some
5,000 lines of speci�cation produced when specifying
the Opus SDE itself. Table 2 de�nes the number
of components of a module contained in the initial
database according to the schema de�ned in Fig. 6.
To vary the size of the initial database we increase the
number of modules by increasing the number of lev-
els in the architecture as follows: The import-relation

8

arch

module_
 list module

ident

op_id

typ_
id

mod_
id

export_
 part

op_
list op

func

proc

par_
list

par

cbv_
par

cbr_
par

imp_
obj

import_
 list

import_
 part

par_
id

comment

import

arch_
id

value

value

Figure 5: EER Model enhanced with context sensitive Relationships

arch

module

ident

op_id

typ_
id

mod_
id

export_
 part

imp_
obj

import

par

par_
id

op

comment
comment

arch_
id

value

Figure 6: EER Diagram of simpli�ed Database Base Schema

Metric component Value
Number of exported types 1
Number of exported operations 17
Number of imported modules 4
Number of identi�ers 132
Number of comments 18
Number of imported objects/import relationship 6
Number of parameters per operation 3
Length of identi�ers [bytes] 12
Length of comments [bytes] 256

Table 2: Metric for a module in the initial database

between modules leads to an acyclic graph of modules.
We divide the modules into n levels (n � 3). Each level
Li contains 2

i modules (i 2 f0; : : : ; n�1g). Except the
top-most level where a module imports from both mod-
ules at level 1, a module in level Lj imports from four

random modules of level Lj+1 (j 2 f1; : : : ; n� 2g).

4.3 The Operations

The �nal step in de�ning a benchmark is the def-
inition of the operations and especially the values of
their parameters. It follows the guidelines given for
the operation de�nition in Section 3. The main point
in de�ning parameter values is to keep the structure
of the initial database. Thus, the de�nition of those
values is also based on the above mentioned analysis
results.

The Opus benchmark operations are clustered into
four groups. The �rst, third and last group con-
tains operations which create, change or delete incre-
ments. They are called increment operations. Note,
that during execution of these operations the static
semantics and inter-document consistency constraints
de�ned previously must be preserved. Hence these op-

9

erations not only perform insertion and deletion of ob-
jects, but also traversals and set-valued queries in or-
der to preserve the constraints de�ned. The second
group contains operations which massively traverse the
database. These operations are called traversal opera-
tions in the sequel. The operations are executed in the
order presented here.
Operations of the �rst group create objects of
types de�ned in the benchmark schema like modules
(CreModul), types (CrModTyp), operations (CrExpOpe),
parameters (CrOpePar), import lists (CrModImp), im-
ported objects (CrImpObj) and comments (CrOpeCom,
CrModCom).
The second group contains four operations which
massively traverse the previously created graphs.
UnparMod and UnparArc create a textual representa-
tion of a module interface subgraph and the architec-
ture subgraph respectively. ClosTrav and AnaUsage

compute the names of those modules which transitively
import from the root module or use a module of the
bottom most level respectively.
The third group of operations is dedicated to measure
the impact of changes on the previously created ob-
jects (ChModNam, ChModTyp, ChOpeNam and ChParNam).
When executing these operations possible inconsisten-
cies have to be removed by propagating changed val-
ues the depending objects (e.g. the name of a module
should always be the same its design, technical docu-
mentation and implementation).
Finally, the last group contains operations that
delete the previously created increments (DlOpeCom,
DlOpePar, DlOperat, DlImpObj, DlImpRel and
DlModule).

5 Implementation of an abstract
Benchmark

The implementation of a benchmark has to be done
in such a way that the benchmark performs as fast
as possible, i.e. the implementation must exploit the
functionality of an OMS as much as possible in or-
der to decrease runtime. This leads to a dilemma,
because we have to know about the performance of
an OMS, before we actually �nished the implementa-
tion of a benchmark [7]. To solve this dilemma, we
assess the performance of the elementary functionality
of an OMS using the simple benchmark. The results of
this activity enable to decide later on which elementary
functions should be used when implementing the more
complex functionality of an application speci�c bench-
mark. During implementation of the Opus benchmark,
for instance, we had to choose for the implementation

of associative queries in sets between external hashing
and indexing with a B-tree. It turned out that the
function implemented by external hashing has a better
performance than the one implemented by B-trees.

Finally, a benchmark implementation as described
above is in itself a rather complex software develop-
ment activity. If it is done following good software
engineering practice, a modular design of the bench-
mark implementation should precede the implementa-
tion phase. Such a design later on enables to reuse
major parts of the code for investigating other OMSs.

Benchmark control

Increment operations

Benchmark operations

Time measurement Internal data

OMS programming interface

OMS independent

OMS dependent

Figure 7: Architecture for OMS Benchmark Implemen-
tations

The overall design of a benchmark implementation
is given in Fig. 7. Each box depicts a subsystem com-
posed of modules and the arrows indicate the usage-
relationship between them. The top-level module co-
ordinates the execution sequence of the benchmark
operations and therefore calls the operations in the
Benchmark operations subsystem. That subsystem co-
ordinates the execution of the de�ned benchmark op-
erations and records the time used for their execu-
tion. It therefore uses the Time measurement subsys-
tem to measure execution-times and log them into a
�le. It uses the Internal data subsystem which main-
tains internal data structures for object addressing pur-
poses by maintaining references to objects stored in the
OMS. Finally, it uses the Increment operations subsys-
tem which consists of the implementation of any single
benchmark operation based on the OMS programming
interface.
Following this suggestion during the implementations
of the Opus benchmark on top of a number of OMSs,
we were able to reuse about 40% of the code.

10

6 Concluding Remarks

The work described in this paper arose from the im-
plementation of a number of stand-alone CASE tools
and complete SDEs. These developments were re-
search prototypes. Some of them have been turned
into commercially sold tools based on a collaboration
contract with STZ GmbH, a medium-sized Dortmund-
based software house. When the development of those
tools started, OMSs were not available in the market.
Thus the development started on a self-made OMS
called GRAS [21] which is a dedicated storage system
for storing and retrieving arbitrary large graphs, i.e.
GRAS especially supports a �ne-grained data model.

For several reasons, in particular portability across
operating systems, safety and multi-user support, most
of the tools are being ported or have to be ported on
a new platform, namely one of the now available mod-
ern OMSs. The benchmark described here helped us
and will help us to select between a number of dif-
ferent o�ers. Systems investigated so far, include the
�rst platform GRAS, but also GemStone [6], O2 [3],
PCTE/OMS [16], VBASE [2] CadLab/OMS [17] and
Damokles [10].

The implementationof benchmarks on top of several
OMSs not only supported our above mentioned selec-
tion process, but it also gave us a number of useful in-
sights on how to exploit an OMS in general as an SDE
platform. The experience in building SDE database
platforms on top of OMSs will be brie
y summarised
here. A more detailed description will be subject of a
forthcoming paper.

In order to support particularly the construction of
syntax-directed tools, an OMS must provide the ac-
cess to any object via a unique identi�er or surrogate,
usually called object identi�er (OID). Other existing
possibilities to access objects, namely via pathnames
which de�ne a path from a common root via a number
of objects to a particular one or relational queries do
not perform fast enough to support especially syntax-
directed editing

Other tools than editors like, for example, browsers
or analysers require the possibility of an associative
database query. Typical questions in that respect are:
"Is an identi�er's name unique" or "Show all places
where a particular identi�er is used". A number of
OMSs o�er the possibilities of either implementing
such queries based on B-trees or an external hashing.
(For example, GemStone distinguishes between Sets
and HashDictionaries). Our experience strongly sug-
gests that the implementation of such an associative
query must be based on external hashing in order to
achieve acceptable performance.

An OMS must further provide an object caching
mechanism such that the relevant parts of the usually
large abstract syntax trees (or graphs resp.) are paged.
OMSs not providing such a mechanism like e.g the
only commercially available PCTE/OMS implementa-
tion do not o�er adequate response time especially for
implementing editing operations. The caching must be
supported by an adjustable clustering mechanism, i.e.
the SDE developer must be able to de�ne which objects
reside on a page. This allows to locate objects on one
page which are frequently accessed together (which is
an application speci�c issue) and thus the page trans-
fer rate between cache and secondary storage is signif-
icantly decreased.

Finally, di�erent OMSs o�er di�erent transaction
management strategies in order to support safety and
multi-user access. We observed optimistic as well as
pessimistic concurrency control strategies. In the opti-
mistic strategy (e.g o�ered in GemStone), the OMS's
transaction manager checks at commit-time of a trans-
action for concurrency control con
icts with other con-
current transactions. If no con
icts are found, the
transaction can commit, otherwise it must be aborted
and redone. In the pessimistic case (e.g. O2), lock-
ing of objects is performed by the transaction manager
transparently. A transactions may be requested to wait
for a lock if a concurrent transaction already holds an
incompatible lock. This aproach, however guarantees
that a transaction can commit if all locks were granted.
After implementing the Opus benchmark with these
two strategies in single-user case, we observed that in
both cases no signi�cant performance problems arose,
i.e. a single increment operation with a successive com-
mit was performed in less than 800 milliseconds. How-
ever, the optimistic approach in GemStone was inferior
compared to the pessimistic approach in O2 since the
additional time needed during a commit in GemStone
was signi�cantly longer due to con
ict detection than
the overhead required by locking in O2.

Further work not only focussing on benchmark de-
velopment but on building a special SDE platform
will be carried out as part of a new ESPRIT-III
project called GOODSTEP (General Object-Oriented
Database for Software Engineering Processes). Its goal
is to build an SDE platformbased on a particular OMS,
namely the O2 system.

Acknowledgements

We are grateful to our colleges Dr. D. Schmed-
ding, P. Lago, G. Junkermann, Dr. S. Dewal and Dr.
R. Fehling for the intensive discussions about OMS
benchmarks and for their comments on earlier versions

11

of this paper. Moreover, we appreciated the discussion
with A. J. Berre about OMS benchmarks in general.
Finally, we are indebted to S. Sachweh, F. Buddrus
and M. Kampmann for their patient support in imple-
menting the benchmarks.

References

[1] T. L. Anderson, A. J. Berre, M. Mallison, H. H.
Porter, and B. Schneider. The hypermodel
benchmark. In F. Bancilhon, C. Thanos, and
D. Tsichritzis, editors, Proceedings of the Inter-
national Conference on Extending Database Tech-
nology, volume 416 of Lecture Notes in Computer
Science, pages 317{331. Springer, Mar. 1990.

[2] T. Andrews and C. Harris. Combining Language
and Database Advances in an Object-Oriented
Development Environment. In Proc. of Object-
oriented programming systems languages and ap-
plications, Orlando, Florida, pages 430{440, 1987.

[3] F. Bancilhon, C. Delobel, and P. Kanellakis.
Building an Object-Oriented Database System: the
Story of O2. Morgan Kaufmann, 1992.

[4] M. R. Blaha, W. J. Premerlani, and J. E. Rum-
baugh. Relational database design using an
object-oriented methodology. Communications of
the ACM, 31(4):414{427, 1988.

[5] P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi,
G. Kahn, B. Lang, and V. Pascual. CENTAUR:
the system. ACM SIGSOFT Software Engineer-
ing Notes, 13(5):14{24, 1988. Proc. of the ACM
SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Envi-
ronments, Boston, Mass.

[6] R. Bretl, D. Maier, A. Otis, J. Penney,
B. Schuchardt, J. Stein, E. H. Williams, and
M. Williams. The GemStone data management
system. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Appli-
cations, pages 283{308. Addison-Wesley, 1989.

[7] S. Dewal, H. Hormann, L. Sch�ope, U. Kel-
ter, D. Platz, and M. Roschewski. Bewertung
von Objektmanagementsystemen f�ur Software-
Entwicklungsumgebungen (in German). In Proc.
of the GI Fachtagung Datenbanksysteme in B�uro,
Technik und Wissenschaft, 1991.

[8] D. DeWitt. The Wisconsin Benchmark: Past,
Present, & Future. In J. Gray, editor, The Bench-
mark Handbook for Database and Transaction pro-
cessing Systems, chapter 3, pages 119{166. Mor-
gan Kaufman, 1991.

[9] K. R. Dittrich. Object-oriented database systems:
the notion and the issues. In K. Dittrich and
U. Dayal, editors, Proc. of the 1986 Int. Work-
shop on Object-Oriented Database Systems. IEEE
Computer Society Press, 1986.

[10] K. R. Dittrich, W. Gotthard, and P. C. Locke-
mann. Damokles { a database system for software
engineering environments. In R. Conradi, T. M.
Didriksen, and D. H. Wanvik, editors, Proc. of an
Int. Workshop on Advanced Programming Envi-
ronments, volume 244 of Lecture Notes in Com-
puter Science, pages 353{371. Springer, 1986.

[11] W. Emmerich, P. Kroha, and W. Sch�afer. Object-
oriented Database Management Systems for Con-
struction of CASE Environments. In V. Marik,
editor, Proc. of the 4th Int. Conf. on Database
and Expert Systems Application, Prague, Czech
Republic, Lecture Notes in Computer Science.
Springer, 1993. To appear.

[12] W. Emmerich, W. Sch�afer, and J. Welsh.
Databases for Software Engineering Environ-
ments | The Goal has not yet been attained.
In I. Sommerville, editor, Proc. of the 4th Euro-
pean Software Engineering Conference, Garmisch-
Partenkirchen, Germany, Lecture Notes in Com-
puter Science. Springer, 1993. To appear.

[13] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer,
and A. Sch�urr. Building Integrated Software De-
velopment Environments | Part 1: Tool Speci�-
cation. ACM Transactions on Software Engineer-
ing and Methodology, 1(2):135{167, 1992.

[14] G. Engels, M. Nagl, and W. Sch�afer. On the
Structure of Structure oriented Editors for Dif-
ferent Applications. ACM SIGPLAN Notices,
22(1):190{198, 1987. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environ-
ments, Palo Alto, Cal.

[15] R. Fehling and W. Sch�afer. OPUS: Konzept und
Werkzeug f�ur die verteilte, modulare Softwareen-
twicklung. Technical Report 68, University of
Dortmund, Dept. of Computer Science, Chair for
Software Technology, 1993. To appear.

12

[16] F. Gallo, R. Minot, and I. Thomas. The object
management system of PCTE as a software engi-
neering database management system. ACM SIG-
PLAN NOTICES, 22(1):12{15, 1987.

[17] K. Gottheil, G. Kachel, T. Kath�ofer, H. J. Kauf-
mann, B. Kleinjohann, E. Kupitz, J. Miller,
B. Nelke, F. J. Rammig, B. Steinm�uller, and
C. White. The Cadlab workstation CWS { an
open, generic system for tool integration. In F. J.
Rammig, editor, Proceedings of the IFIP WG 10.2
Workshop on Tool Integration and Design Envi-
ronments, Paderborn, FRG, Nov. 1987. Elsevier
Science Publishers B.V. (North-Holland).

[18] A. N. Habermann and D. Notkin. Gandalf: Soft-
ware Development Environments. IEEE Transac-
tions on Software Engineering, 12(12):1117{1127,
1986.

[19] P. Henderson, editor. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environ-
ments. ACM Press, November 1988. In: ACM
Software Engineering Notes 13(5) and ACM Sig-
plan Notices 25(2).

[20] P. Hruschka. ProMod { in the age 5. In Proc.
of the 1st European Software Engineering Confer-
ence, Strasbourg, Sept. 1987.

[21] C. Lewerentz and A. Sch�urr. GRAS, a manage-
ment system for graph-like documents. In Proc. of
the 3rd Int. Conf. on Data and Knowledge Bases.
Morgan Kaufmann, 1988.

[22] M. A. Linton. Implementing Relational Views of
Programs. ACM SIGSOFT Software Engineer-
ing Notes, 9(3):132{140, 1984. Proc. of the ACM
SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Envi-
ronments, Pittsburgh, Penn.

[23] D. Maier. Making database systems fast
enough for CAD applications. In W. Kim and
F. H. Lochovsky, editors, Object-Oriented Con-
cepts, Databases and Applications, pages 573{582.
Addison-Wesley, 1989.

[24] M. H. Penedo. Prototyping a Project Master
Database for Software Engineering Environments.
ACM SIGPLAN Notices, 22(1):1{11, 1987. Proc.
of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Devel-
opment Environments, Palo Alto, Cal.

[25] R. N. Taylor, editor. Proc. of the 4th ACM SIG-
SOFT Symposium on Software Development En-
vironments, Irvine, California. ACM Press, 1990.
In: ACM Software Engineering Notes 15(6).

[26] R. P. Weicker. Dhrystone: A synthetic systems
programming benchmark. Communications of the
ACM, 27(10):1013{1030, Oct. 1984.

[27] A. L. Wolf, J. C. Wileden, C. D. Fisher, and
P. L. Tarr. P Graphite: An Experiment in Persis-
tent Typed Object Management. ACM SIGSOFT
Software Engineering Notes, 13(5):130{142, 1988.
Proc. of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Soft-
ware Development Environments, Boston, Mass.

13

