
Model Checking Distributed Objects

Wolfgang Emmerich and Nima Kaveh
Dept. of Computer Science, University College London

London WC1E 6BT, UK
fw.emmerich|n.kaveh g@cs.ucl.ac.uk

Abstract

We demonstrate how the use of synchronization primitives and threading policies in object mid-
dleware can lead to deadlocks. We identify that object middleware only has a few built-in syn-
chronization and threading primitives and suggest to express them as stereotypes in UML models.
We define the semantics of these stereotypes by a mapping to a process algebra. Finally, we apply
model checkers to this process algebra notation and show that we are able to detect the possibility
of deadlocks that can then be related back to the UML models.

1 Introduction

The increasing demand for distributed applications in a wide variety of fields has increased the com-
mercial attention to middleware. Like so many other technologies, middleware has grown from being a
research topic into a maturing commercial technology. A large number of distributed systems are built
usingmiddleware, which shields the use of networking protocols from the application programmer.
There are different categories of middleware, which include transactional, message-oriented and ob-
ject middleware. Of these categories we are particularly interested in object middleware, as it provides
the highest level of abstraction by allowing a client object to request the execution of an operation
from a server object. We refer to this primitive as anobject request. Object requests are supported by
different object middleware, which include OMG/CORBA [13], COM [7] and Java/RMI [9].

Objects that are distributed across different machines have the potential to be executed concur-
rently. A client object that resides on one machine executes concurrently with the server object that
resides on a different machine. Moreover, there may be several different client objects that may request
operation executions from a server concurrently. This concurrent execution poses interesting questions
about how the synchronization between client and server objects is achieved. Distributed systems can
exhibit true parallel behaviour, due to network nodes physically operating in parallel over a range of
geographical locations. Concurrent and parallel execution, however, lead to a number of potential
problems, such as deadlocks, livelocks, safety property violations.

The main contributions of this paper are firstly an identification of an important class of liveness
problems in distributed object systems. We demonstrate how the use of synchronization primitives and
threading policies in CORBA can lead to deadlocks. Secondly, we exploit the fact that object middle-
ware only has a few built-in synchronization and threading primitives and express these as stereotypes
in dynamic UML models. Thirdly, we define the semantics of these stereotypes by mapping stereo-
typed UML models to a process algebra. Finally, we apply model checkers to these process algebra
notation and show that we are able to detect the possibility of deadlocks that can then be related back
to the dynamic UML model.

In the next section, we discuss the synchronization and threading primitives that are supported
by current object middleware and demonstrate how they can lead to deadlocks. In Section 3, we
define UML stereotypes for all CORBA synchronization primitives and threading policies and define

1

the semantics by explaining how stereotyped UML models can be mapped to Finite State Processes
(FSP) [10], the process algebra notation we use. In Section 4, we show how process algebras can be
used to detect these liveness problems. We discuss related work in 5. The final section includes the
summary and an outline of our future plans for extending this idea further.

2 Liveness Problems in Object Middleware

Object middleware support different synchronization primitives. They determine how client and server
objects synchronize during requests.Synchronousrequests block the client object until the server
object processes the request and returns the results of the requested operation. This is the default syn-
chronization primitive not only in CORBA, but also in RMI and COM.Deferred synchronousrequests
unblock the client as soon as it has made the request. The client achieves completion of the invoca-
tion as well as the collection of any return values by polling the server object. With aonewayrequest
there is no value returned by the server object. The client regains control as soon as the middleware
received the request and does not know whether the server executed the requested operation or not.
Asynchronous requestsreturn control to the client as soon an invocation is made. After the invocation
the client object is free to do other tasks or request further operations. The result of the method invo-
cation is returned in a call back from the server to the client. We note that CORBA supports all these
primitives directly. In [5], we show how the CORBA primitives can be implemented using multiple
client threads in Java/RMI and Microsoft’s COM.

Threading policies determine the way in which an object adapter deals with object requests.
A single-threadedpolicy will queue concurrent requests and execute them in a sequential manner,
whereas amulti-threadedpolicy can deal with multiple requests concurrently. A common method of
implementing multi-threaded policies is to define a thread pool, from which free threads are picked to
process incoming requests and requests are queued if the pool is exhausted.

Unlike in centralized systems, where recursion does not cause any liveness problems (provided
that it terminates), particular combinations of synchronization primitives and threading policies in
recursive object requests may lead to deadlocks. As an example, consider two distributed objectsA

andB. If bothA andB use a single-threaded object adapter andA requests a synchronous operation
execution fromB during whichB requests a synchronous operation fromA then the two objects are
in a deadlock. The deadlock, however, will not occur, if either of the two objects use a multi-threaded
policy or if either of the object requests are asynchronous.

3 Modelling Distributed Object Communication

Deadlocks that involve more than a few objects are difficult to detect manually and therefore developers
need automated tool support. We aim to provide this support at an early stage in the development
process and also want to enrich notations and tools that designers use in industrial practice rather than
propose the use of new or complicated notations and tools. We therefore discuss UML stereotypes that
can be used to express synchronization primitives of object requests and the use of threading policies
in object adapters.

We define two stereotypeshhmultiThreaded ii and hhsingleThreaded ii. As the threading pol-
icy is common to all instances of a distributed object type, we use these stereotypes in conjunction
with classes in class diagrams. Moreover, we definehhsynchronous ii, hhdeferredSynchronous ii,
hhoneway ii andhhasynchronous ii as stereotypes for synchronization primitives that are used for an ob-
ject request. As these are defined for individual object requests, we attach them to messages in sequence
or collaboration diagrams. In accordance with established UML practice, we draw thehhsynchronous ii

stereotype as an arrow with a cross and thehhasynchronous ii stereotype with only a half arrow head.

2

An example of the use of these stereotypes is shown in Figure 1. The figure shows the commu-
nication of a client with a server object through two event channels. The first channel is used to push
some data from the client to the server and the second channel is used to push data from the server to
the client. The left-hand side of the figure shows a class diagram where stereotypes are used to define
that distributed client, server and channel objects are to be executed in a single-threaded manner. The
right-hand side shows messages with stereotypehhsynchronus ii that determines that the client object
that executes an object request is blocked while the server executes the requested operation.

Client

+ push()

<<singleThreaded>>

Server

+ push()
+ execute()

<<singleThreaded>>

Channel

+ push()

<<singleThreaded>>

a:Channel b:Channel s:Serverc:Client

push()
push() execute()

push()

push()

Figure 1: Use of Threading and Synchronization Stereotypes

We note that the above sequence diagram depicts an interaction that leads to deadlock. This
deadlock is not easily spotted, because the distributed object threading behaviour is determined at a
type level of abstraction, i.e. in a class diagram, and the synchronization behaviour is modelled at
an instance-level of abstraction, that is in an interaction diagram. Only the combined knowledge of
threading policies of classes and synchronization primitives that are used for object requests allows
designers to consider the liveness. Also the interactions in industrial distributed object applications are
much more complex than this simple example and thus it is usually impossible to determine deadlock
freedom manually. We thus aim to support designers with automated model checks.

4 Model Checking

The stereotyped class and interaction diagrams provide sufficient information to automatically derive a
formal specification of the synchronization and threading behaviour. We use the FSP process algebra
notation [10] for this purpose, mainly because it is supported by an easily accessible model checker. In
this position paper we only show the result of this generation for the above example.

Figure 2 shows the FSP definition for the synchronization behaviour of the distributed object
interactions that we showed in Figure 1. The first three statements define the threading behaviour
of Client , Channel andServer objects. In particular they determine that requests are processed
in the order they arrive in and that no concurrent threads are spawned upon request arrivals. The
synchronization behaviour is then determined for each request by binding the sending of the request to
the receiving of the request and by binding the sending of the reply to the receiving of the reply.

Once we have derived this process algebra specification, we can use a model checker to do an
exhaustive search for deadlocks. The Labelled Transition System Analysis tool that is available for
FSP performs a compositional reachability analysis [2] in order to compute the complete state space
of the model. In our example, the labelled transition system analysis reveals the following result:

3

Client=(push_SendRequest->push_ReceiveReply->Client
|push_ReceiveRequest->compute->push_SendReply->Client).

Channel=(push_ReceiveRequest->push_SendRequest->push_ReceiveReply->
push_SendReply->Channel).

Server=(push_ReceiveRequest->execute_call->push_SendRequest->
push_ReceiveReply->execute_return->push_SendReply->Server).

||Test=(c:Client || a:Channel || b:Channel || s:Server)
/{c.push_SendRequest/a.push_ReceiveRequest,

c.push_ReceiveReply/a.push_SendReply,
a.push_SendRequest/s.push_ReceiveRequest,
a.push_ReceiveReply/s.push_SendReply,
s.push_SendRequest/b.push_ReceiveRequest,
s.push_ReceiveReply/b.push_SendReply,
b.push_SendRequest/c.push_ReceiveRequest,
b.push_ReceiveReply/c.push_SendReply}.

Figure 2: Process Algebra Defining Synchronization Behaviour

State Space:
4 * 4 * 4 * 6 = 384

States Composed: 5 Transitions: 4 in 5ms
Trace to DEADLOCK:
c.push_SendRequest
a.push_SendRequest
s.execute_call
s.push_SendRequest

We have thus found a deadlock, which originates in the use of synchronous object requests and
single threaded server objects throughout the example. The deadlock can be resolved, for example
by executing the push operations in the client as a one-way operation, or by making the client multi-
threaded.

5 Related Work

Process algebra representations, such as CSP [8], CCS [11], the�-calculus [12] or FSP [10] can be
used to model the concurrent behaviour of a distributed system. Tools, such as the Concurrency work-
bench [3] or the Labelled Transition System Analyzer can be used to check these models for violations
of liveness or safety properties. The problem with both these formalisms and tools is, however, that
they are difficult to use for the practitioner and that they are general purpose tools that do not pro-
vide built-in support for the synchronization and activation primitives that current object middleware
supports.

Many architecture description languages support the explicit modelling of the synchronization
behaviour of connectors by means of which components communicate [15]. Wright [1], for example
uses CSP for this purpose. A main contribution of [4] is the observation that connectors are most often
implemented using middleware primitives. In our work, we exploit the fact that every middleware only
supports a very limited set of connectors, which can be provided to to practitioners as stereotypes that
are very easy to use.

In [6] CCS is used to define the semantics of CORBA’s asynchronous messaging. The paper
however, fails to realize that the synchronization behaviour alone is insufficient for model checking as
deadlocks can be introduced and resolved by the different threading policies that the object adapters
support.

4

6 Summary and Further Work

We have demonstrated how the use of synchronization primitives and threading policies in object
middleware can lead to deadlocks. We have identified that object middleware only has a few built-
in synchronization and threading primitives and defined UML stereotypes for expressing them. We
sketched how the semantics of these stereotypes can be defined by mapping them to a process algebra.
Finally, we have shown how model checkers can be to detect deadlocks.

There are several directions for how we want to pursue these initial ideas. Firstly, we want to
precisely define the mappings between the stereotypes and the process algebra in such a way that they
can be automated by a tool. Secondly, we want to build such tool by building a compiler that translates
UML models represented in XMI [14] into FSP. Finally, we want to find ways to express other safety
and liveness properties in UML in order to then check them in their process algebra notation.

References

[1] R. Allen and D. Garlan. A Formal Basis for Architectural Connection.ACM Transactions on Software
Engineering and Methodology, 6(3):213–249, June 1997.

[2] S.-C. Cheung and J. Kramer. Checking Safety Properties Using Compositional Reachability Analysis.
ACM Transactions on Software Engineering and Methodology, 8(1):49–78, 1999.

[3] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics Based Tool for
the Verification of Concurrent Systems.ACM Transactions on Programming Languages and Systems,
15(1):36–72, 1993.

[4] E. di Nitto and D. Rosenblum. Exploiting ADLs to Specify Architectural Styles Induced by Middleware
Infrastructures. InProc. of the21st Int. Conf. on Software Engineering, Los Angeles, California, pages
13–22. ACM Press, 1999.

[5] W. Emmerich.Engineering Distributed Objects. John Wiley & Sons, Apr. 2000.

[6] M. Gaspari and G. Zavattaro. A Process Algebraic Specification of the New Asynchronous CORBA
Messaging Service. InProceedings of the13th European Conference on Object-Oriented Programming,
ECOOP’99, volume 1628 ofLecture Notes in Computer Science, pages 495–518. Springer, 1999.

[7] R. Grimes.DCOM Programming. Wrox, 1997.

[8] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[9] JavaSoft.Java Remote Method Invocation Specification, revision 1.50, jdk 1.2 edition, Oct. 1998.

[10] J. Magee and J. Kramer.Concurrency: Models and Programs – From Finite State Models to Java Pro-
grams. John Wiley, 1999.

[11] R. Milner. Communication and Concurrency. Prentice-Hall, 1995.

[12] R. Milner. Communicating and Mobile Systems: the�-calculus. Cambridge University Press, 1999.

[13] Object Management Group.The Common Object Request Broker: Architecture and Specification Revision
2.2. 492 Old Connecticut Path, Framingham, MA 01701, USA, February 1998.

[14] Object Management Group.XML Meta Data Interchange (XMI) – Proposal to the OMG OA&DTF RFP
3: Stream-based Model Interchange Format (SMIF). 492 Old Connecticut Path, Framingham, MA 01701,
USA, Oct. 1998.

[15] M. Shaw and D. Garlan.Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall,
1996.

5

