
A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 1 –

Answer the first question andtwo further questions.

1. a. Define the meaning of the following constructs of the Finite State Process (FSP)

notation.

i. action prefix (”-> ”)
[3 marks]

If x is an action and P a process then (x->P) describes a process that initially en-
gages in the action x and then behaves exactly as described by P.

ii. choice (”| ”)
[3 marks]

If x and y are actions then (x->P|y->Q) describes a process which initially engages
in either of the actions x or y. After the first action has occurred, the subsequent
behavior is described by P if the first action was x and Q if the first action was y.

[Subtotal 6 marks]

b. For each of the following Labelled Transition Systems (LTS), give an equivalent

FSP specification.

i.

LOCK
a.lock

b
�
.lock

a.unlock

b.unlock

0 1 2

[4 marks]

LOCK = (a.lock -> a.unlock -> LOCK
|b.lock -> b.unlock -> LOCK
).

ii.

HOBSON
choose

choose

-1 0 1

[3 marks]

HOBSON = (choose->STOP | choose->ERROR).

iii.

RACE
start fall

finish

0 1 2

[3 marks]

RACE = (start -> (fall->STOP | finish->RACE)).

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 2 –

iv.

close

open

close

open
0 1

[4 marks]

DOOR = CLOSED,
CLOSED = (close->CLOSED|open->OPENED),
OPENED = (open ->OPENED|close->CLOSED).

[Subtotal 14 marks]

c. For each of the following FSP specifications, give an equivalent LTS.

i. SQUARE = (in[i:1..2]->out[i*i]->SQUARE).
[3 marks]

SQUARE

in.1

in.2

out.1

out.4

0 1 2

ii. CLOCK = CLOCK[0],

CLOCK[i:0..4] = (when(i<4) tick->CLOCK[i+1]).
[4 marks]

CLOCK
tick tick tick tick

0 1 2 3 4

iii. DICE = (throw[i:1..6]->(when (i==6)again->DICE)).
[3 marks]

DICE

throw.1
throw.2
throw.3
throw.4
throw.5

throw.6

again

0 1 2

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 3 –

iv. ALICE = (start->alice.finish->ALICE).

BOB = (start->bob.finish->BOB).

||AB = (ALICE||BOB). //draw LTS for AB only
[4 marks]

AB

start

alice.finish

bob.finish

alice.finish

bob.finish

0 1 2 3

[Subtotal 14 marks]

[Total 34 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 4 –

2. a. Briefly explain how a guarded action in an FSP specification is translated into part

of a Java program that implements that specification.

[10 marks]

The basic format for modeling a guarded action for some condition cond and action act
using FSP is shown below:

FSP: when cond act -> NEWSTAT

The corresponding format for implementing the guarded action for condition cond and action
act using Java is as follows:

Java: public synchronized void act()
throws InterruptedException {

while (!cond) wait();
// modify monitor data
notifyAll()

}

b. In an automatic cable car system, each cable car has its own controller. The function

of this controller is to ensure that a cable car only leaves the terminus when it is full

of passengers. A cable car can hold a maximum of N passengers. After departure,

the cable car arrives at the other end, all the passengers leave the cable car and new

passengers may then board for another trip. The alphabet of the cable car is depicted

below, together with a definition of the meaning of each action.

board a passenger boards the cable car.

cardepart the cable car departs. This action is delayed until the cable car is full.

cararrive the cable car arrives at the other end. This action is delayed until

after departure.

Specify the behaviour of CABLECAR in FSP.

[12 marks]

CABLECAR(N=6) = PASSENGERS[0],
PASSENGERS[i:0..N]

= (when(i<N) board -> PASSENGERS[i+1]
|when(i==N)cardepart->TRIP

),
TRIP = (cararrive -> disembark -> PASSENGERS[0]).

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 5 –

c. Implement the CABLECAR specification from part b with the above three actions

as monitor methods programmed in Java.

[11 marks]

class CableCar {
final int N = 6;
int passengers = 0;
bool departed = false;

public synchronized void board()
throws InterruptedException{

while(passengers==N) wait();
++passengers;
notifyAll();

}

public synchronized void cardepart()
throws InterruptedException{

while (passengers!=N || departed) wait();
departed = true;

}

public synchronized void cararrive()
throws InterruptedException{

while (passengers!=N || !departed) wait();
passengers=0;
departed = false;

notifyAll();
}

}

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 6 –

3. a. Explain briefly how a resource, shared by a set of processes, can be modelled in

FSP.

[8 marks]

{a1,..,ax}::P replaces every label n in the alphabet of P with the labels a1.n,...,ax.n.
Further, every transition (n->X) in the definition of P is replaced with the transitions
({a1.n,...,ax.n}->X). Use this in:

||RESOURCE_SHARE=(a:USER || b:USER || {a,b}::RESOURCE).

b. The cheese counter in a supermarket is continuously mobbed by hungry customers.

To restore order, the management installs a ticket machine which issues tickets to

customers. Tickets are numbered in the range 1..MT. When ticket MT has been

issued, the next ticket to be issued will be ticket numbered 1, i.e. the management

install a new ticket roll. The cheese counter has a display which indicates the ticket

number of the customer currently being served. The customer with the ticket with

the same number as the counter display then goes to the counter and is served. When

the service is finished, the number is incremented (modulo MT). Given the structure

diagram depicted below for the cheese counter system, specify the behaviour of each

of the processes (CUSTOMER, TICKET, COUNTER) and the composite process

CHEESECOUNTER in FSP.

[12 marks]

const MT = 4 //maximum ticket number
const MC = 2 //number of customers
range T = 1..MT
range C = 1..MC

CUSTOMER = (ticket[t:T]->getcheese[t]->CUSTOMER).

TICKET = TICKET[1],
TICKET[t:T] = (ticket[t]->TICKET[t%MT+1]).

COUNTER = COUNTER[1],
COUNTER[t:T] = (getcheese[t]->COUNTER[t%MT+1]).

||CHEESE_COUNTER =
(c[C]:CUSTOMER || {c[C]}::TICKET || {c[C]}::COUNTER).

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 7 –

c. Implement the specifications for COUNTER and TICKET in Java.

[13 marks]

class Ticket {
const MT = 1000;
private int next = 0;

public synchronized int ticket() {
next = next%MT + 1;
return next;
}
}

class Counter {
const MT = 1000;
private int serve = 1;

public synchronized getcheese(int ticket)
throws Interruptedexception {
while (ticket!=serve) wait();
serve = serve%MT + 1;
notifyAll();
}
}

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 8 –

4. a. i. Explain the terms safety property and liveness property with respect to concur-

rent programs.
[4 marks]

Safety Properties specify that nothing bad will happen. Liveness Properties determine
that something good will eventually happen.

ii. Draw the Labelled Transition System for the following safety property:

property POLITE = (knock->enter->POLITE).
[4 marks]

knock

enter

knock

enter

-1 0 1

[Subtotal 8 marks]

b. A lift has a maximum capacity of ten people. In the model of the lift control system,

passengers entering a lift are signalled by an enter action and passengers leaving

the lift are signalled by an exit action. Specify a safety property in FSP which when

composed with the lift will check that the system never allows the lift that it controls

to have more than ten occupants.

[8 marks]

property LIFT_TEN = LIFT[0],
LIFT[i:0..10] = (when(i<10) enter -> LIFT[i+1]

|when(i>0) exit -> LIFT[i-1]
|when(i==0)exit -> LIFT[0]
).

c. Explain what is meant by the term deadlock in the context of concurrent programs

and explain how LTS models can be used to check for deadlock.

[8 marks]

Deadlock occurs in a system when all its constituent processes are blocked. Another way
of saying this is that the system is deadlocked because there are no eligible actions that it
can perform.

In the finite state model of a process, a deadlocked state is simply a state with no outgoing
transitions. A process in such a state can engage in no further actions. Analysis involves
performing a complete search of the state space looking for such states.

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 9 –

d. It is possible for the following system to deadlock. Explain why this deadlock oc-

curs.

Alice = (call.bob -> wait.chris -> Alice).

Bob = (call.chris -> wait.alice -> Bob).

Chris = (call.alice -> wait.bob -> Chris).

||S = (Alice || Bob || Chris) /{call/wait}.

The following model attempts to fix the problem by allowing Alice, Bob and Chris

to timeout from a call attempt. Is a deadlock still possible? If so describe how the

deadlock can occur and give an execution trace leading to the deadlock.

Alice = (call.bob -> wait.chris -> Alice

| timeout.alice -> wait.chris ->Alice).

Bob = (call.chris -> wait.alice -> Bob

| timeout.bob -> wait.alice ->Bob).

Chris = (call.alice -> wait.bob -> Chris

| timeout.chris -> wait.bob ->Chris).

||S = (Alice || Bob || Chris) /{call/wait}.

[9 marks]

The first model deadlocks because each participant is trying to call someone who is trying
to call someone else. Alice is trying to call Bob who is trying to call Chris who is trying to
call Alice. A wait-for cycle exist.

In the model with timeouts, exactly the same situation occurs after three consecutive time-
outs since waits are renamed to be calls.

Trace to DEADLOCK:
timeout.alice
timeout.bob
timeout.chris

[Total 33 marks]

TURN OVER

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 10 –

5. a. Briefly outline the two different ways of creating a new thread in Java.

[10 marks]

class MyThread extends Thread {...}
Thread x = new MyThread();

class MyRun implements Runnable {...}
Thread x = new Thread(new MyRun());

b. A Special Savings Building Society Account is permitted to have a maximum bal-

ance of M hundred pounds. Savers may deposit one hundred pounds at a time into

the account up to the maximum. They may withdraw money in multiple units of a

hundred pounds so long as the account is not overdrawn. The alphabet of the pro-

cess that models the savings account is depicted below, together with a definition of

the meaning of each action.

range T = 1..M

deposit deposit one hundred pounds. This action is blocked if the

balance would exceed M.

withdraw[T] withdraw an amount in the range T hundred pounds. This

action is blocked if sufficient funds are not available.

Specify the behaviour of ACCOUNT in FSP.

[12 marks]

const M = 6
range B = 0..M
range T = 1..M

ACCOUNT = BALANCE[0],
BALANCE[b:B] = (when (b<M) deposit -> BALANCE[b+1]

|when (b>0) withdraw[a:1..b] -> BALANCE[b-a]
).

CONTINUED

A
ns

w
er

s
N

O
T

TO
 B

E
PR

IN
TE

D

– 11 –

c. Implement the ACCOUNT specification from part b with the two actions as monitor

methods programmed in Java.

[11 marks]

class Account {
int balance =0;
int M;

Account(int maximum) {M = maximum}

synchronized void deposit() throws InterruptedException {
while (balance==M) wait();
++balance;
notifyAll();

}

synchronized void withdraw(int amount) {
throws InterruptedException {

while (balance-amount<0) wait();
balance -= amount;
notifyAll();

}
}

[Total 33 marks]

END OF PAPER

