
1

1© Wolfgang Emmerich, 1997

Persistence

2© Wolfgang Emmerich, 1997

What is persistence?

n Persistence is the ability of an object to
survive the lifetime of the OS process in
which it resides.

n Persistence is relevant for objects with an
internal state.

n The state needs to be retained between
object deactivation and object activation



2

3© Wolfgang Emmerich, 1997

How to achieve persistence?

n Should be transparent to application
developer

n Storing object state on persistent storage
before de-activation

n Upon activation, load object state from
persistent storage

n Persistent storage can be
• File system
• Relational Database
• Object-Database
• Flash-RAM

4© Wolfgang Emmerich, 1997

Externalization

n Technique to
• write composite objects into a byte stream
• load composite objects from a byte stream

n Byte stream can then be written to/read
from the file system

n Supported by several CORBA products
n Also used to store Java objects



3

5© Wolfgang Emmerich, 1997

LifeCycleObject

StreamFactory

Streamable

IdentifiableObject
StreamableFactory

StreamIO

Stream

Node
Relationship

Role

Design of Externalization Interfaces

6© Wolfgang Emmerich, 1997

write_string(t->name())

t:
Team

c: Team
Mgmnt

create()

sf:Stream
Factory

sio:
StreamIO

s:Stream

externalize(t)
externalize_
to_stream(sio)

write_object(player1)

write_object(player2)

Externalization Scenario

n Externalize Team object (with its players):



4

7© Wolfgang Emmerich, 1997

t:
Team

c: Team
Mgmnt s:Stream

sio:
StreamIO

sf:Stream
ableFactory

internalize(ff)

create_
uninitialized()

internalize_from_
stream(sio,ff) name=read_string()

player1=read_object()

player2=read_object()

ff:Factory
Finder

find_factories("Team")

Internalization Scenario

n Internalize Team object from a stream:

8© Wolfgang Emmerich, 1997

Mapping to DBMSs

n Need for mapping middleware object
model to DBMS data model
• Straight-forward for object-oriented DBMSs
• Clumsy for relational DBMSs

n A schema needs to be established in the
DBMS

n For each object type:
• implement attributes in schema
• implement operations in schema (if possible)



5

9© Wolfgang Emmerich, 1997

Mapping to RDBMSs

n Relational database schemas consist of
sets of tables

n Define a table for each object type
n In each table create

• primary key for object identifier
• a column for each attribute of the object

– mapping of middleware atomic types to primitive
types supported by RDMBS

– secondary keys for object references

n Resolve inheritance statically

10© Wolfgang Emmerich, 1997

RDBMS Mapping Example

Key first surname age role
8987 Jürgen Klinsman 34 4
8184 Alan Shearer 31 4

Key first surname age role
8987 Jürgen Klinsman 34 4
8184 Alan Shearer 31 4

8987:Player
first = “Jürgen”
surname = “Klinsmann”
age = 34
role = Forward

8184:Player
first = “Alan”
surname = “Shearer”
age = 31
role = Forward

8184:Team
...

Key Player
1 8987
2 8184

Key Player
1 8987
2 8184



6

11© Wolfgang Emmerich, 1997

ODBMS

n ODBMSs have been standardized by the
Object Database Management Group
• Schema definition language (ODL)
• Programming language bindings to

– C++
– Java
– Smalltalk

• Object Query Language (OQL)

n Support persistence of OO programming
language objects

12© Wolfgang Emmerich, 1997

Mapping to ODBMSs

n ODL is a superset of OMG/IDL
n Programming language bindings of

ODBMSs are also supported by CORBA
n CORBA portable object adapter supports

ODBMSs
n ODBMS objects can be

• clients of CORBA objects
• servers for CORBA objects



7

13© Wolfgang Emmerich, 1997

Assessment

n Externalization is not transparent for
implementors of server objects

n Persistence in RDBMSs is
• complicated by impedence mismatch
• simplified by wide availability of RDBMSs

n Persistence in ODBMSs is
• simplified by conceptual similarities of

– object models
– programming language bindings


