
1

1© Wolfgang Emmerich, 1997

Distributed Object Lifecycle

2© Wolfgang Emmerich, 1997

The Lifecycle



2

3© Wolfgang Emmerich, 1997

Motivation

n Distributed object life cycle different from
local object life cycle

n Creation:
• Where to create an object

nMigration:
• Where to copy/move an object to
• How to resolve heterogeneity in data and

object code representation

n Deletion:
• Garbage collection does not work

4© Wolfgang Emmerich, 1997

Object Creation

n Clients might wish to create objects on
remote machines

n Achieved by factories.
n Remote machines have to be identified in

a location transparent way
n Achieved by factory finders.



3

5© Wolfgang Emmerich, 1997

Factories

n In distrib. systems: factories hide location

6© Wolfgang Emmerich, 1997

Factory Finders

n Location should not be transparent to
everybody

n Administrators should be able to decide
where to create new objects

n Policies are implemented using
FactoryFinder objects.

n FactoryFinders export an operation
find_factories that returns a suitable
factory and thus implements the location
policy.



4

7© Wolfgang Emmerich, 1997

Creating Distributed Objects

n New team object will be created on
machine that hosts TeamFactory f.

8© Wolfgang Emmerich, 1997

Implementing Factories

n Encapsulation of generic factories in type
specific factories.



5

9© Wolfgang Emmerich, 1997

Migrating Objects - Client’s View

10© Wolfgang Emmerich, 1997

Migrating Objects - Server’s View



6

11© Wolfgang Emmerich, 1997

Deleting Objects

12© Wolfgang Emmerich, 1997

What´s Missing: Replication

n Copies made by life cycle service are
separate and do not evolve together.

n Life cycle service cannot be used for
replication.

n Replicated objects reflect each other´s
state changes and hence evolve together.

n Replication used for
• load balancing
• fault-tolerance.



7

13© Wolfgang Emmerich, 1997

Composite Objects

n Consist of atomic objects
n Control life cycle of atomic objects
nModelling of composite objects:

14© Wolfgang Emmerich, 1997

Base Relationships

n Defined by a set of roles two or more
objects play (ownership, containment,
reference, employment, ...).

n Objects can play different roles.
n Cardinality defines maximum number of

relationships in which a role is involved.
n Degree defines number of roles of a

relationship (e.g. binary or ternary).
n Relationship may have attributes.
n Related objects form a graph of nodes

(objects) and edges (relationships).



8

15© Wolfgang Emmerich, 1997

CORBA Relationship Service

16© Wolfgang Emmerich, 1997

Relationship and Role Examples



9

17© Wolfgang Emmerich, 1997

Graph of Related Objects

18© Wolfgang Emmerich, 1997

Composite Object Lifecycle

n Apply lifecycle operations to root nodes
n All nodes that are in transitive closure of

containment relationship will be
copied/moved/deleted.

n All relationships internal to that closure
will be copied/moved/deleted.

n All objects that are connected to these
nodes will be copied/moved/deleted.



10

19© Wolfgang Emmerich, 1997

Example: Copying composite object

:Node Spurs:Club :Role :Rel.
copy

:Client :Role :Node

copy

copy copy copy copy

20© Wolfgang Emmerich, 1997

Copied Composite Object


