
1

1© Wolfgang Emmerich, 1997

Resolving Hardware and
Operating System

Heterogeneity

2© Wolfgang Emmerich, 1997

The Problem

n Hosts of client and server might use different
data representation formats. E.g. UBS:
• Unisys Mainframe is big-endian
• Unix servers & NT workstations are little-endians

little-endians

big-endians

memory
sign

n+3 n+2 n+1 n

memory
sign

n n+1 n+2 n+3

2

3© Wolfgang Emmerich, 1997

The Problem (cont’d)

n Different programming languages use
different data representations, e.g.
Character string “abc” in Pascal or C++:

Pascal

C++

3memory a b c

amemory b c \0

4© Wolfgang Emmerich, 1997

Motivation

n Data representations have to be
converted between client and server

n Conversion should be transparent to
application developer

n Generally achieved by middleware within
presentation layer implementation

3

5© Wolfgang Emmerich, 1997

Approaches

nMappings between native representations
• Standardized data representation, e.g.

– Sun’s external data representation (XDR)
– OMG’s common data representation (CDR)

No transmission of the type definition
• Transmission of values and their types using

an abstract syntax notation e.g
– ASN.1

6© Wolfgang Emmerich, 1997

OMG’s Common Data Representation

n CDR defines how ORBs of different
vendors exchange data

n Defines how types defined in IDL are
mapped to octet streams and vice-versa.

n Concerns mapping of
• atomic types
• constructed types
• pseudo-types (e.g. exceptions)
• object-references

4

7© Wolfgang Emmerich, 1997

CDR Mapping of Atomic Types

n Includes both big and little endian
encodings.
• Messages explicitly say which encoding was

chosen.
• The receiver is responsible for converting if

necessary.
• Reduces overhead for transfer between

machines with the same representation.

nMapping determines size for all atomic
types (e.g 1 byte for char, 4 byte for long)

8© Wolfgang Emmerich, 1997

Example of Atomic Type Mapping

n Floating point
numbers with
double
precision

Big endian Little endian

5

9© Wolfgang Emmerich, 1997

CDR Mapping of Constructed Types

n Number of elements (in a given encoding)
n Elements as the result of mapping atomic

and/or nested constructed types
n Example:
sequence<unsigned short>:[2,3]:

3
0
2
0

Big endian Little endian

3

0
0
0

0
2
0
3
0

0
0
3

10© Wolfgang Emmerich, 1997

CDR Mapping of Object References

n Information needed for object references:
• Is it NULL (will never be used for a request)
• What is the referenced object’s type
• Which protocols are supported
• What ORB services are involved with the

reference

n Above information provided in
Interoperable Object References (IORs)

6

11© Wolfgang Emmerich, 1997

Abstract Syntax Notation 1 (ASN.1)

n In previous approach it was assumed
• Client and server agree on message format

(because stubs were created from the same
interface definition)

• Message format is not transmitted.
• Lightweight but unreliable.

n ASN.1 facilitates transmission of message
formats

n Originated in CCITT X.409. Now ISO-8824

12© Wolfgang Emmerich, 1997

ASN.1 Motivation

n Provides ability to describe information
independent of way of representation

n Serves as a data definition language
n ASN.1 data definitions are converted into

the ones used locally in client or server
n Syntax of ASN.1 similar to declaration in

programming languages.

7

13© Wolfgang Emmerich, 1997

ASN.1

n Triple of <TYPE,LENGTH,VALUE>
• TYPE can be

– universally defined,
– context specific,
– application specific

• LENGTH
– Allows for transparent carrying
– Undetermined lengths

• VALUE
– primitive (no internal structure)
– constructed (with internal structure)

14© Wolfgang Emmerich, 1997

ASN.1 Type Definition

TEAM ::= SEQUENCE {
 players SEQUENCE {
 name IA80String,
 club IA80String,
licenseNo NumericString

}

8

15© Wolfgang Emmerich, 1997

ASN.1 Values

{
 {
 name = “Juergen Klinsman”,
 license_no = “293784”
 },
 {
 name = “Alan Shearer”
 license_no = “001184”
 }
 …
}

