
1

1© Wolf gang Emmerich, 1998/99

D50: Advances in Software Engineering
Design Patterns

Wolfgang Emmerich

2© Wolf gang Emmerich, 1998/99

Outline

■ Motivation
■ What are Design Patterns?
■ Observer: An Example Design Pattern
■ Design Pattern Templates
■ Suggested Design Pattern
■ Summary

2

3© Wolf gang Emmerich, 1998/99

Design Patterns

■ Good OO systems exploit recurring
design structures.

■ Design patterns capture, communicate
and apply this structure.

■ Must read: ‘Design Patterns - Elements of
Reusable Software’ by Gamma, Helm,
Johnson & Vlissides, Addison Wesley,
1995

4© Wolf gang Emmerich, 1998/99

What is a Design Pattern?

“A pattern describes a problem which
occurs over and over again in our
environment, and then describes the core
of the solution to that problem, in such a
way that you can use this solution a
million times over, without ever doing it
the same way twice.”

 Christopher Alexander

3

5© Wolf gang Emmerich, 1998/99

Role of Design Patterns

■ To capture descriptions of good solutions
to recurring design problems.

■ To show how collections of classes and
objects can be customised to solve a
general design problem in a particular
context.
(Patterns are not components.)

6© Wolf gang Emmerich, 1998/99

Philosophy of Design Patterns

■ Very deep!
■ The “Quality Without a Name”
■ Aliveness
■ Familiarity
■ Timelessness
■ Self similarity

4

7© Wolf gang Emmerich, 1998/99

Design Patterns and Software

■ Compression (abstraction/classification)
■ About habitability and piecemeal growth.
■ Adaptable software
■ Repair, rather than replace

8© Wolf gang Emmerich, 1998/99

Abstraction

“The process of identifying common
patterns that have systematic variations;
an abstraction represents the common
pattern and provides a means for
specifying which variation to use.”
Balzar et al

5

9© Wolf gang Emmerich, 1998/99

Abstraction cont...

“Abstraction facilitates separation of
concerns: The implementation of an
abstraction can ignore the exact uses or
instances of the abstraction, and the user
of the abstraction can forget the details of
the implementation of the abstraction, so
long as the implementation fulfills its
intention or specification.”

10© Wolf gang Emmerich, 1998/99

Balance

■ Too little abstraction exposes too much
detail to be understood.

■ Too much abstraction creates highly
interwoven and fragile “perfect”
structures.

■ To allow systems to adapt the
abstractions must be malleable.

6

11© Wolf gang Emmerich, 1998/99

Compression

■ Meaning of abstraction determined by the
context it is in (cf poetry).

■ Meaning of a part larger than the part by
itself.

■ Another way of describing abstraction
and inheritance.

12© Wolf gang Emmerich, 1998/99

Master Plans Don’t Work

■ “It is simply not possible to fix today what
the environment should be like in the
future, and then to steer the piecemeal
process of development toward that fixed,
imaginary world.” Christopher Alexander

■ It is impossible to predict what will
happen during the lifetime of a long-lived
program.

■ Use prototyping and patterns to promote
adaptability.

7

13© Wolf gang Emmerich, 1998/99

Design Pattern Structure

■ Name
■ Abstract description of collaborations
■ Issue(s) addressed
■ Consequences of application

■ Language and implementation
independent - a “micro architecture”

14© Wolf gang Emmerich, 1998/99

Design Pattern Properties

■ abstracts a recurring design structure
■ comprises class and/or object

• dependencies
• structures
• interactions
• conventions

■ names & specifies the design structure
■ distils design experience

8

15© Wolf gang Emmerich, 1998/99

Model

request, modifications

change notification

Example - Observer

16© Wolf gang Emmerich, 1998/99

Observer Pattern

■ Intent:
• define a one-to-many dependency between

objects so that when one object changes
state, all its dependants are notified and
update automatically.

■ Applicability:
• when an abstraction has two aspects, one

dependent on the other.
• when a change to one object requires

changes to others, and you don’t know how
many objects need to change.

• when an object should notify other objects
without making assumptions about who
those objects are.

9

17© Wolf gang Emmerich, 1998/99

Observer Pattern

observerState=subject->GetState()

ConcreteSubject
- subjectState

+ GetState()

ConcreteObserver
- observerState

+ Update()

Subject

+ Attach (o : Observer)

+ Detach (o : Observer)
+ Notify ()

Observer

Update()

1..*1..*

forall o in observers
 o->Update

observers

return(subjectState)

subject

18© Wolf gang Emmerich, 1998/99

Observer Pattern

■ Consequences:
+ modularity: subject and observers may vary

independently
+ extensibility: can define and add any number

of observers
+ customisability: different observers provide

different views of a subject.
- unexpected updates: observers don’t know

about each other.
- update overhead: might need hints

10

19© Wolf gang Emmerich, 1998/99

Observer Pattern

■ Implementation
• subject-observer mapping
• dangling references
• avoiding observer-specific update protocols
• registering modifications of interest explicitly

■ Known Uses
• Smalltalk Model-View-Controller (MVC)
• InterViews (Subjects and Views)
• Andrew (Data Objects and Views)

20© Wolf gang Emmerich, 1998/99

Design Pattern Goals

■ Codify good design
• Distill and disseminate experience
• Aid to both novices and experts
• Abstract how to think about design
• Provide a Design Language

11

21© Wolf gang Emmerich, 1998/99

Design Language

■ Provide a common vocabulary
■ Greater expressiveness
■ More appropriate level of abstraction
■ Design decisions can be articulated

succinctly
■ Documentation can be improved

22© Wolf gang Emmerich, 1998/99

Design Pattern Template

■ Intent: short description of pattern and its
purpose

■ Also Known As: other names for pattern
■ Motivation: motivating scenario showing

pattern’s use
■ Applicability: circumstances in which

pattern applies
■ Structure: graphical representation of the

pattern
■ Participants: participating classes and/or

objects and their responsibilities

12

23© Wolf gang Emmerich, 1998/99

Template cont.

■ Collaborations: how participants co-
operate to carry out responsibilities

■ Consequences: the results of application,
benefits and liabilities

■ Implementation: pitfalls, hints or
techniques, plus language dependency

■ Sample Code: example implementations
in OO language

■ Know Uses: examples drawn from
existing systems

■ Related Patterns: discussion of other
patterns that relate to this one.

24© Wolf gang Emmerich, 1998/99

Suggested Patterns:

■ Abstract Factory (87): Provide an interface
for creating families of related or
dependent objects without specifying
their concrete classes.

■ Adapter (139): Convert the interface of a
class into another interface clients expect.
Adapter lets classes work together that
couldn’t otherwise because of
incompatible interfaces.

■ Bridge (151): De-couple an abstraction
from its implementation so that the two
can vary independently

13

25© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Builder (97): Separate construction of
complex object from its representation so
that same construction process can
create different representations.

■ Chain of Responsibility (223): Avoid
coupling request sender to receiver by
giving more than one object chance to
handle request. Chain receiving objects
and pass request along chain until an
object handles it.

26© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Command (233): Encapsulate request as
an object, thereby letting you
parameterize clients with different
requests, queue or log requests, and
support undoable operations.

■ Composite (163): Compose objects into
tree structures to represent part-whole
hierarchies. Composite lets clients treat
individual objects and compositions of
objects uniformly

14

27© Wolf gang Emmerich, 1998/99

Suggested Pattners (cont’d)

■ Decorator (175): Attach additional
responsibilities to object dynamically.
Provide flexible alternative to subclassing
for extending functionality

■ Facade (185): Provide unified interface to
a set of interfaces in a subsystem. Facade
defines higher-level interface that makes
subsystem easier to use.

■ Factory Method (107): Define interface for
creating object, but let subclasses decide
which class to instantiate. Lets a class
defer instantiation to subclasses.

28© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Flyweight (195): Use sharing to support
large numbers of fine-grained objects
efficiently.

■ Interpreter (243): Given a language, define
representation for its grammar along with
interpreter that uses the representation to
interpret sentences in the language.

■ Iterator (257): Provide a way to access
elements of an aggregate object
sequentially without exposing its
underlying representation.

15

29© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Mediator (273): Define an object that
encapsulates how a set of objects
interact. Mediator promotes loose
coupling by keeping objects from
referring to each other explicitly and it lets
you vary their interaction independently

■ Memento (283): Without violating
encapsulation, capture and externalize an
object’s internal state so that the object
can be restored to this state later.

30© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Observer (293) Define a one-to-many
dependency between objects so that
when one object changes state, all its
dependents are notified and updated
automatically

■ Prototype (117) Specify the kinds of
objects to create using a prototypical
instance, and create new objects by
copying this prototype.

■ Proxy (207) Provide a surrogate or
placeholder for another object to control
access to it.

16

31© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Singleton (127): Ensure a class only has
one instance, and provide a global point
of access to it.

■ State (305): Allow an object to alter its
behaviour when its internal state changes.
The object will appear to change its class.

■ Strategy (315): Define family of
algorithms, encapsulate each one, and
make them interchangeable. Let algorithm
vary independently from its clients.

32© Wolf gang Emmerich, 1998/99

Suggested Patterns (cont’d)

■ Template Method (325): Define skeleton of
algorithm in operation, deferring some
steps to subclasses. Lets lets subclasses
redefine steps of algorithm without
changing algorithm’s structure.

■ Visitor (331) Represent operation to be
performed on the elements of an object
structure. Define a new operation without
changing the classes of the elements on
which it operates.

17

33© Wolf gang Emmerich, 1998/99

Summary

■ Motivation
■ What are Design Patterns?
■ Observer: An Example Design Pattern
■ Design Pattern Templates
■ Suggested Design Pattern
■ Next Session: Look at some Design

Patterns in detail

