
1

1© Wolf gang Emmerich, 1998/99

D50: Advances in Software Engineering
Designing Distributed Objects

Wolfgang Emmerich

2© Wolf gang Emmerich, 1998/99

Motivation

■ Many will have experience with designing
local objects that reside in the run-time
environment of an OO programming lang.

■ Designing distributed objects is different!
■ Explain the differences.
■ Avoid some serious pitfalls

2

3© Wolf gang Emmerich, 1998/99

Local vs. distributed Objects

■ References
■ Activation/Deactivation
■ Migration
■ Persistence
■ Latency of Requests
■ Concurrency
■ Communication
■ Security
➨ Several Pitfalls are lurking here

4© Wolf gang Emmerich, 1998/99

Object References

■ References to objects in OOPL are usually
pointers to memory addresses
• sometimes pointers can be turned into

references (C++)
• sometimes they cannot (Smalltalk,Java)

■ References to distributed objects are
more complex
• Location information
• Security information
• References to object types

➨ References to distributed objects are
bigger (e.g 350 bytes with Orbix).

3

5© Wolf gang Emmerich, 1998/99

Activation/Deactivation

■ Objects in OOPL are in virtual memory
between creation and destruction.

■ This might be inappropriate for
distributed objects
• sheer number of objects
• objects might not be used for a long time
• some hosts might have to be shut down

without stopping all applications
■ Distributed object implementations are

• brought into main memory (activation)
• discarded from main memory (deactivation)

6© Wolf gang Emmerich, 1998/99

Activation/Deactivation (cont’d)

BvB:Team

bookGoalies

Tony:Trainer

object
activated
object
deactivation

4

7© Wolf gang Emmerich, 1998/99

Activation/Deactivation (cont’d)

■ Several questions arise
• Repository for implementations
• Association between objects and processes
• Explicit vs. implicit activation
• When to deactivate objects
• How to treat concurrent requests

■ Who decides answers to these questions?
• Designer
• Programmer
• Administrator

■ How to document decisions?

8© Wolf gang Emmerich, 1998/99

Persistence

■ Stateless vs. statefull objects
■ Statefull objects have to save their state

between
• object deactivation and
• object activation

onto persistent storage
■ Can be achieved by

• externalization into file system
• mapping to relational database
• object database

■ To be considered during object design

5

9© Wolf gang Emmerich, 1998/99

Object Lifecycle

■ OOPL objects reside in one virtual
machine.

■ Distributed objects might be created on a
different machine.

■ Distributed objects might be copied or
moved (migrated) from one machine to
another.

■ Deletion by garbage collection does not
work in a distributed setting.

■ Lifecycle needs attention during the
design of distributed objects.

10© Wolf gang Emmerich, 1998/99

Latency of Requests

■ Performing a local method call requires a
couple of hundred nanoseconds.

■ An object request requires between 0.1
and 10 milliseconds.

➨ Interfaces of distributed objects need to
be designed in a way that
• operations perform coarse-grained tasks
• do not have to be requested frequently

6

11© Wolf gang Emmerich, 1998/99

Example: Iteration over a Sequence

■ Java

Vector

+size():int
+elementAt(i:int):Object
...

■ Distributed Objects

List

+long list (in how_many:long,
 out l:sequence<object>,
 out bi:Iterator i)

Iterator

+next_one(out o:Object): boolean
+next_n(in how_many:long,
 out l:sequence<object>):boolean

12© Wolf gang Emmerich, 1998/99

Concurrency

■ Execution of OOPL objects is often
sequential

■ Execution of distributed objects is always
concurrent

■ Concurrency between
• processes
• within objects

■ How to model concurrency
• Hoare’s CSP
• Milner’s CCS
• Magee & Kramer’s FSP

7

13© Wolf gang Emmerich, 1998/99

Concurrency Specification in FSP

1 2 3 4 50

think talk scratch

talk think

scratch scratch

1 20

think talk

10
scratch

ITCH=(scratch->STOP).

CONVERSE =(think->talk->STOP).

||CONVERSE_ITCH =(ITCH || CONVERSE).

14© Wolf gang Emmerich, 1998/99

Communication

■ Method invocations of OOPL objects are
synchronous

■ Alternatives for distributed objects:
• synchronous requests
• oneway requests
• deferred synchronous requests
• asynchronous requests

■ Who decides on request
• Designer of server?
• Designer of client?

■ How documented?

8

15© Wolf gang Emmerich, 1998/99

Security

■ Security in OO applications can be dealt
with at session level.

■ OOPL Objects do not have to be written in
a particular way.

■ For distributed objects:
• Who is requesting an operation execution?
• How can we know that subject is who it

claims to be?
• How do we decide whether or not to grant

that subject the right to execute the service?
• How can we prove that we have delivered a

service so as to make the requester pay

16© Wolf gang Emmerich, 1998/99

Summary

■ Designing Distributed Objects is different
■ Differences arise in

• Object references
• Activation/Deactivation
• Persistence
• Object life cycle
• Request Latency
• Concurrency
• Communication
• Security

