
1© Wolfgang Emmerich, 1999

Communications Software Engineering
Design Model

Wolfgang Emmerich

2© Wolfgang Emmerich, 1999

Lecture Overview

■ Relationship between analysis and design
■ Stages of design
■ Impact of implementation environment
■ Definition of sequence diagrams
■ Sequence diagrams for use cases
■ Creation of class interfaces
■ State diagrams

3© Wolfgang Emmerich, 1999

User
Reqs

System
Reqs

Detailed
Design

Coding

Archit.
Design

System
Integr.

Pre-Prod.
Test

Stages of Development Process

Project and Risk Management
System Management

Version and Configuration Management
Quality Management

4© Wolfgang Emmerich, 1999

Producing a Design Model

■ Inputs
■ Actions

16 Identify implementation environment
17 Model initial design class diagram
18 Design control flow
19 Define class interfaces
20 Model classes state diagram
21 Finalise design class diagram

■ Outputs
■ Notations

5© Wolfgang Emmerich, 1999

Design Model Contents

■ Inputs:
• Requirements specifications relating to

implementation environment
• Analysis model class diagram
• Use case descriptions

■ Notations introduced:
• sequence diagram
• state diagram

■ Outputs:
• sequence diagrams [diagram x use case]
• state charts [diagram x class]
• complete design model class diagram

6© Wolfgang Emmerich, 1999

Impl. Env.

Analysis

Design

Implementation Environment Factors

■ Target operating system
■ Programming language
■ Deployed UIMS
■ Available system integration mechanisms
■ Underlying DBMS
■ Available reuse libraries
■ Non-functional requirements
■ Development process

7© Wolfgang Emmerich, 1999

Changes for Environment

■ Add, delete, or change classes (OOSE blocks)
■ Change associations , e.g.

• extensions to stimuli
• inheritance to delegation

Impl. Env.

Analysis

Design

8© Wolfgang Emmerich, 1999

Analysis
Model:

logical,
conceptual,

frozen

Design
Model:

a practical
abstraction

Analysis & Design Models in UML

9© Wolfgang Emmerich, 1999

Objectives of Class Diagram Design

■ Encapsulation
• at architectural level
• to provide cohesive packages

■ Normalisation
• of class structure
• to provide implementable interfaces with low

coupling

10© Wolfgang Emmerich, 1999

?
?

?

?

Translate from
analysis model

Adapt to environment
and revise

Design
of control flow

Initial Stages of Design

11© Wolfgang Emmerich, 1999

<< interface >>

Customer Panel

<< interface >>

Crate slot

<< interface >>

Bottle slot

<< interface >>

Can slot

<< interface >>

Receipt button

<< entity >>
Receipt basis

<< control >>
Deposit Item

Receiver

<< entity >>
Crate

<< entity >>
Can

<< entity >>
Bottle

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

Create ()
setValue (integer)
Increment ()

Deposit

<< interface>>
Receipt printer::Printer

<< control >>
Alarm::Alarmist

‘Deposit’ Package in Design Model

12© Wolfgang Emmerich, 1999

Sequence Diagrams in UML

■ Shows interactions among a set of objects in
temporal order

■ Objects appear as vertical lines
■ Events marked by labelled horizontal (or

slopped) lines

13© Wolfgang Emmerich, 1999

Sequence Diagram Notation

:DepositItem
Receiver :ReceiptBasis can: DepositItem

item()
exists()

insert()

printReceipt()

:CustomerPanel

asynchronous
message

(remote)
procedure

call

lifelineobject
activation

synchronous
Message

ObjectName
Type

object
deletion

14© Wolfgang Emmerich, 1999

Time

System
border

Returning Item (Skeleton)

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

15© Wolfgang Emmerich, 1999

Customer presses start button
Sensors activated

DO
 New deposit item is inserted
 Measure/check if this kind of
 item is acceptable

 NoReceived:=NoReceived+1
 IF found THEN create a
 new daily Amount:=

daily Amount+1

WHILE items are deposited

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

Returning Item (Skeleton + Operations)

16© Wolfgang Emmerich, 1999

start()

activate() create()

new
item() item() exists ()

insertItem
(Item)

incr()

Returning Item (+ Stimuli)

Customer presses start button
Sensors activated

DO
 New deposit item is inserted
 Measure/check if this kind of
 item is acceptable

 NoReceived:=NoReceived+1
 IF not found THEN create a
 new daily Amount:=

daily Amount+1

WHILE items are deposited

rcv:Deposit
item receiver

di:Deposit
item

rcpt:Receipt
basis

cp:Customer
panel

17© Wolfgang Emmerich, 1999

Defining Stimuli

■ Issues to consider :
• name plus minimum number of parameters
• same name for similar behaviour
• creation also by stimuli
• basic case designed first
• two types :

– messages inside one process
– signals between processes

18© Wolfgang Emmerich, 1999

"Stair" decentralised

for well-structured sequence
of operations

"Fork " centralised

for variable sequence
of operations

Sequence Diagram Structures

19© Wolfgang Emmerich, 1999

[x>0]foo(x)

0p() ob1:C1

ob3:C3 ob2:C2

[x<0]bar(x)

Sequence Diagrams & Conditions

■ Shows general
interaction pattern

■ Conditional shown
by splitting message
arrow (and return)

■ Pre-existing objects
as broken lines

20© Wolfgang Emmerich, 1999

Receipt Basis
insertItem(item)
printOn(oStream)
delete

ReceiptBasis

create;
insertItem(DepositItem);
printOn(oStream);
delete;

itemList: list (ReturnedItem)
sum: ECU

Detailing the Design

21© Wolfgang Emmerich, 1999

Design elements already considered

■ Design outputs so far :
• set of sequence diagrams [diagram x use case]
• elaborated class diagram

■ Next steps change perspective
• from class outside to inside
• from instance to type-level of abstraction

■ Need for further understanding of each class
■ Development of state diagrams to define

class behaviour
■ But this can be quite complex

22© Wolfgang Emmerich, 1999

Tackling Complexity - Example

■ A system containing four buttons (B1 - B4) and two
lights (L1 - L2)
• Since the last powering on, if B2 has been pushed more

often than B3, then L1 shall be lit.
• Since the last powering on, if B2 has not been pushed

more often than B3, then L2 shall be lit.
• At no time shall more than one light be lit.
• If either light bulb burns out, the other bulb shall flash on

and off in 2-second increments regardless of the number
of B2 and B3 presses. This flashing shall cease when B4
is pressed and restart when B1 is pressed. When the
malfunctioning bulb is replaced, the bulb shall cease to
flash, and the system shall return to its normal operation.

■ What is normal operation, if we don’t know whether
the system records B2 and B3 presses while a bulb
is broken ?

23© Wolfgang Emmerich, 1999

Specifying Complex Behaviours

■ Need to formally specify behaviour of:
• system in use
• objects in system

■ OOSE offers techniques
• use case diagrams, interaction diagram,
• state transition diagram

■ UML provides notations
• use case model, sequence diagram,
• collaboration diagram, state diagram

■ State diagrams provide essential means of
showing how a class of objects evolves in
response to external stimuli

24© Wolfgang Emmerich, 1999

LECTURE

stimulus
(input)

stimulus
(output)

Modelling of States and Transitions

State of
CLASS

action

25© Wolfgang Emmerich, 1999

Finite State Machines

■ A formal model for states and transitions
■ A finite state machine FSM is a five-tuple

FSM=(S,A,σ, s, F) where
• i) S, is a finite set of states
• ii) A is a finite alphabet of events
• iii) σ: S´A -> S, a partial function of transitions
• iv) s ∈ S, a start state
• v) F ⊆ S, a set of ending states

26© Wolfgang Emmerich, 1999

FSM Execution Semantics

■ An FSM configuration is an element of SxA*
■ If FSM=(S,A,σ,s,F) is finite state machine then

i) A binary relation Γ is defined on configurations
by (q,w) Γ (q',w') ⇔∃α∈ A : (w=aw') ∧ (s(q,a)=q')

ii) Γ* defines the transitive closure of Γ.
iii)A sequence of events is acceptable by the finite

state machine if there is an ending state f ∈ F
such that (s,w) Γ* (f,e).

27© Wolfgang Emmerich, 1999

■ Graphical Notation for FSMs
• circle = state
• double circle = finishing state
• directed arc = transition two connected states
• label = input/output events
• hook = starting state

■ Example:
STD for
Making a
Phone Call

busy

dial
tone ringing

conn-
ected

idle off hook/
dial tone

dial idle number/
ringing tone

dial busy number/
busy tone

called party
off hook/
connected

on hook/
quiet

on hook/
quiet

State Transition Diagrams

28© Wolfgang Emmerich, 1999

Motivation of State Diagrams

■ Real STD system models get very complex.
■ Reasons of complexity:

• STD system model by can only be in one state
• State is influenced by many factors
• All factors need to be considered leading to

exponential proliferation of states and transitions
■ State Diagrams manage complexity by

• Composition of states
• Concurrent substates
• Conditional transitions
• History states

29© Wolfgang Emmerich, 1999

State Diagrams

■ A state diagram is
• a directed graph of states connected by

transitions
• a formal specification of the behaviour of a class

■ UML incorporates extensions to basic STDs
made by Harel in his State Charts:
• decomposition of states
• default entry states
• concurrent states
• conditions on transitions

30© Wolfgang Emmerich, 1999

state A state B
event

causing
transition

STATE DIAGRAM CONCEPTS

■ Three fundamental ideas :
• event: an atomic occurrence at a point in time
• state: a period in time during which an

object is waiting for an event to occur
• transition: a response to an external event

received by an object in a certain state

31© Wolfgang Emmerich, 1999

Typing Password

password:
String = “”

entry/ set echo
invisible
exit/ set echo
normal

NAME

state variables
{optional}
triggered
operations
{optional}

NAME
eventName
(arguments)
[condition]
^target.sendEvent
(arguments)
/ operations
(arguments)
{all optional}

type string
[valid]
/ logged on

Logged on

directory: home

entry/ display
message

Basic UML State Diagram Notations

32© Wolfgang Emmerich, 1999

Busy

Dialling

Connecting

Active

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up
/disconnect

Composite States

■ A composite state is composed of substates.

33© Wolfgang Emmerich, 1999

Busy

Dialling

Connecting

DialTone

Ringing
Talking

Idle

lift receiver/
get dial tone

caller hangs up/disconnect

caller hangs up
/disconnect

caller hangs up

/disconnect

caller hangs up
/disconnect

caller hangs up
/disconnect

Equivalent STD

34© Wolfgang Emmerich, 1999

■ Depiction of substates can be omitted

■ Default starting state begins at a circle
■ Termination appears as a bullseye
■ An event can be generated in another class

using send event notation ^target.sendEvent

DiallingDial tone Connected
dialednumber(num)Dial digit(n)

^dialednumber(number)

Dialling

PartialDial

Dial digit(n)

Composite States

35© Wolfgang Emmerich, 1999

Taking D50

COMPLETE

Course
Work

Doing
tutorials

Attending
lectures

IN PROGRESS

on time

done

finished

Concurrent Substates

■ When a state has multiple threads of control,
each concurrent substate appears as a
separate region separated by swim lanes

36© Wolfgang Emmerich, 1999

■ An optional guard [condition] may be
attached to transitions after the event name

Busy

Dialling

Connecting

Active

DialTone

RingingTalking

Idle

lift receiver/
get dial tone

caller hangs up
/disconnect

Conditions on Transitions

dial digit(n)
[incomplete]

dial digit(n)
[valid] /connect

dial
digit(n)

37© Wolfgang Emmerich, 1999

Dialling

Connecting

Timeout
do/playmessage

Active
phone #

DialTone
do/play dial tone

Invalid
do/play message

Busy
do/play busy

tone

Ringing
do/play ringing

tone

Pinned

Talking

Idle

15 secs

15 secs

dial digit(n)
[incomplete]

dial digit(n)

dial digit(n)
[invalid]

dial digit(n)
[valid]
/connect

connectedbusy

lift receiver/
get dial tone

caller
hangs up

/disconnect
caller

answers
caller
hangs up

State Diagram for Telephone

38© Wolfgang Emmerich, 1999

■ One state diagram for each class
■ Example for Deposit Item Receiver:

Accepting Items

Receiptprinted

putItem ^rcpt.insertItem

^rcpt.printOn

delete

DepositItemReceiverActive

Ostream
Computing

printReceipt

Logo
Printing

ReceiptPrinting

Preparing

Ostream
Printing

^prn.print

^prn.print

Recycling Machine State Diagram

39© Wolfgang Emmerich, 1999

■ Activity: an ongoing operation within a state
■ Elapsed time event: an event occuring
■ a given time after entry into state
■ History state: a state resumed upon reentry

A

A2

A1 C

do/activity C

H

X secs

Y
secs

Advanced Concepts

40© Wolfgang Emmerich, 1999

Role of state transitions in OOSE

■ To increase understanding of design blocks
(classes)

■ To model the ‘state-controlled’ objects, rather
than the ‘stimulus-controlled’

■ To help in the abstraction of the actual code
■ To describe stimuli received and what

happens consequently

41© Wolfgang Emmerich, 1999

Summary

■ Design outputs:
• set of sequence diagrams [diagram x use case]
• elaborated class diagram
• state diagrams for classes that maintain internal

states

■ Next lecture: Study how analysis and design
can be supported by tools - Computer Aided
Software Engineering

42© Wolfgang Emmerich, 1999

Design Model Stages

