
1

1© Wolf gang Emmerich, 1998/99

Wolfgang Emmerich

C340 Concurrency:
 Databases Concurrency Control

2© Wolf gang Emmerich, 1998/99

Outline

■ Motivation
■ Locking and Lock Compatibility
■ Two-Phase Locking
■ Hierarchical Locking
■ Implicit vs. Explicit Locking
■ CORBA Concurrency Control Service

2

3© Wolf gang Emmerich, 1998/99

Motivation

■ Components of distributed systems use
shared resources concurrently:
• Hardware Components
• Operating system resources
• Databases
• Objects

■ Resources may have to be accessed in
mutual exclusion.

4© Wolf gang Emmerich, 1998/99

Motivation

■ Concurrent access and updates of resources
may lead to:
• lost updates
• inconsistent analysis.

■ Example for lost updates:
• Cash withdrawal from ATM and concurrent
• Credit of cheque.

■ Example for inconsistent analysis:
• Funds transfer between accounts of a customer
• Sum of account balances (Report for Inland

Revenue).

3

5© Wolf gang Emmerich, 1998/99

Motivating Examples

class Account {
 protected:
 float balance;
 public:
 float get_balance() {return balance;};
 void debit(float amount){
 float new=balance-amount;
 balance=new;
 };
 void credit(float amount) {
 float new=balance+amount;
 balance=new;
 };
};

6© Wolf gang Emmerich, 1998/99

Time

Customer@ATM: Clerk@Counter:

Balance of account anAcc at t0 is 75

t0
anAcc->debit(50):

 anAcc.new=25;

 anAcc.balance=25;

anAcc->credit(50);

 anAcc.new=125;

 anAcc.balance=125;

t1
t2
t3
t4
t5
t6

Lost Updates

4

7© Wolf gang Emmerich, 1998/99

Funds transfer: Inland Revenue Report:
t0
t1
t2
t3
t4

Time

Balances at t0 Acc1: 7500, Acc2: 0

t5
t6
t7

Acc1->debit(7500);

// Acc2.balance=0

// Acc1.balance=0

Acc2->credit(7500);

// Acc2.balance=7500

// Acc0.balance=0;

float sum=0;

sum+=Acc2->get_bal();

 // sum=0;

sum+=Acc1->get_bal();

 // sum=0;

Inconsistent Analysis

8© Wolf gang Emmerich, 1998/99

Two Phase Locking (2PL)

■ The most popular concurrency control
technique. Used in:
• RDBMSs (Oracle, Ingres, Sybase, DB/2, etc.)
• ODBMSs (O2, ObjectStore, Versant, etc.)
• Transaction Monitors (CICS, etc)

■ Concurrent processes acquire locks on
shared resources from lock manager.

■ Lock manager grants lock if request does
not conflict with already granted locks.

■ Guarantees serialisability.

5

9© Wolf gang Emmerich, 1998/99

Locks

■ A lock is a token that indicates that a
process accesses a resource in a
particular mode.

■ Minimal lock modes: read and write.
■ Locks are used to indicate to concurrent

processes the current use of that
resource.

10© Wolf gang Emmerich, 1998/99

Number of
locks held

Time

Locking

■ Processes acquire locks before they
access shared resources and release
locks afterwards.

■ 2PL: Processes do not acquire locks once
they have released a lock.

■ Typical 2PL locking profile of a process:

6

11© Wolf gang Emmerich, 1998/99

Read Write
Read + -
Write - -

Lock Compatibility

■ Lock manager grants locks.
■ Grant depends on compatibility of

acquisition request with modes of already
granted locks.

■ Compatibility defined in lock compatibility
matrix.

■ Minimal lock compatibility matrix:

12© Wolf gang Emmerich, 1998/99

Locking Conflicts

■ Lock requests cannot be granted if
incompatible locks are held by concurrent
processes.

■ This is referred to as a locking conflict.
■ Approaches to handle conflicts:

• Force requesting process to wait until
conflicting locks are released.

• Tell process or thread that lock cannot be
granted.

7

13© Wolf gang Emmerich, 1998/99

Time

Customer@ATM: Clerk@Counter:

Balance of account anAcc at t0 is 75

t0 anAcc->debit(50):

 anAcc->lock(write);

 anAcc.new=25;

 anAcc.balance=25;

 anAcc->unlock(write);

anAcc->credit(50);

 anAcc->lock(write);

 anAcc.new=25;

 anAcc.balance=75;

 anAcc->unlock(write);

t1
t2
t3
t4
t5
t6

Example (Avoiding Lost Updates)

14© Wolf gang Emmerich, 1998/99

Deadlocks

■ 2PL may lead to processes waiting for
each other to release locks.

■ These situations are called deadlocks.
■ Deadlocks have to be detected by the lock

manager.
■ Deadlocks have to be resolved by

aborting one or several of the processes
involved.

■ This requires to undo all the actions that
these processes have done.

8

15© Wolf gang Emmerich, 1998/99

Locking Granularity

■ 2PL applicable to resources of any
granularity.

■ High degree of concurrency with small
locking granularity.

■ For small granules large number of locks
required.

■ May involve significant locking overhead.
■ Trade-off between degree of concurrency

and locking overhead.
■ Hierarchical locking as a compromise.

16© Wolf gang Emmerich, 1998/99

IR R IW W
IR + + + -
R + + - -

IW + - + -
W - - - -

Hierarchical Locking

■ Used with container resources, e.g.
• file (containing records)
• set or sequence (containing objects)

■ Lock modes intention read (IR) and
intention write (IW).

■ Lock compatibility:

9

17© Wolf gang Emmerich, 1998/99

Transparency of Locking

■ Who is acquiring locks?
• Concurrency control infrastructure
• Implementation of components
• Clients of components

■ First option desireable but not always
possible:
• Infrastructure must manage all resources
• Infrastructure must know all resource

accesses.

■ Last option is undesirable and avoidable!

18© Wolf gang Emmerich, 1998/99

CORBA Concurrency Control Service

Application
 Objects

CORBA
facilities

CORBAservices

Domain
Interfaces

Object Request Broker

Concurrency
Control

10

19© Wolf gang Emmerich, 1998/99

IR R U IW W
IR + + + + -
R + + + - -
U + + - - -

IW + - - + -
W - - - - -

Lock Compatibility Matrix

■ CORBA concurrency control service
supports hierarchical locking.

■ Upgrade locks for decreasing probability
of deadlocks.

■ Compatibility matrix:

20© Wolf gang Emmerich, 1998/99

Locksets

■ A lockset is associated to a resource
(usually in the implementation of that
resource).

■ Each shared resource has a lockset.
■ Operations of that resource acquire locks

before they access or modify the
resource.

11

21© Wolf gang Emmerich, 1998/99

The IDL Interfaces

interface LocksetFactory {

 LockSet create();

};

interface Lockset {

 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode);

 void change_mode(in lock_mode held,

 in lock_mode new);

};

22© Wolf gang Emmerich, 1998/99

Summary

■ Lost Updates and Inconsistent Analysis
■ Locking and Lock Compatibility
■ Two-Phase Locking
■ Hierarchical Locking
■ Implicit vs. Explicit Locking
■ CORBA Concurrency Control Service

