
1

1© Wolf gang Emmerich, 1998/99

Wolfgang Emmerich

C340 Concurrency:
Concurrency in Java

2© Wolf gang Emmerich, 1998/99

Heap Code Context/
Attributes

Process

Context/
Attributes

Context/
Attributes

Context/
Attributes

Thread1 Thread2 Threadn

Stack Stack Stack

■ OS process provides protected address space.
■ Many threads may execute within space.
■ Each thread: stack & context (saved registers).

Threads and OS Processes

2

3© Wolf gang Emmerich, 1998/99

Threads using Inheritance

Thread

MyThread
run()

run()
class MyThread extends Thread {
 public void run() {
 ...
}

Creation of thread:
MyThread t=new MyThread();

4© Wolf gang Emmerich, 1998/99

Threads implementing Interfaces

Runnable

MyRun
run()

run()
Thread

class MyRun implements Runnable {
 public void run() {
 ...
}

Creation of thread:
Thread t=new Thread(new MyRun);

3

5© Wolf gang Emmerich, 1998/99

Thread Lifecycle

■ Started by start() which invokes run()
■ Terminated when

• run() returns or
• explicitly terminated by stop().

■ A started thread may be
• running or
• runnable (waiting to be scheduled)

■ Thread gives up processor using yield().
■ A thread may be suspended by suspend()
■ If Suspended gets runnable by resume().
■ sleep() suspends for a given time and

then resumes

6© Wolf gang Emmerich, 1998/99

FSP Model of Java Thread Lifecycle

THREAD = CREATED,
CREATED = (start -> RUNNING
 | stop -> TERMINATED),
RUNNING = ({suspend,sleep}-> NON_RUNNABLE
 | yield -> RUNNABLE
 |{stop, end} ->TERMINATED
 | run -> RUNNING),
RUNNABLE= (suspend -> NON_RUNNABLE
 | dispatch -> RUNNING
 | stop -> TERMINATED),
NON_RUNNABLE = (resume ->RUNNABLE
 | stop -> TERMINATED),
TERMINATED = STOP.

4

7© Wolf gang Emmerich, 1998/99

LTS of Java Thread Lifecycle

end
stop

yield

stop

run
1 2 30 4

stop

suspend
sleep

resume

suspend

dispatch
Key:
0: CREATED
1: TERMINATED
2: RUNNING
3: NON_RUNNABLE
4: RUNNABLE

stop

start

8© Wolf gang Emmerich, 1998/99

Example: CountDown Timer

■

■ FSP of CountDown:
COUNTDOWN (N=3) = COUNTDOWN[N],

COUNTDOWN[i:0..N] =

 (when(i>0) tick->COUNTDOWN[i-1]

 | when(i==0) beep->STOP

).

Demo: CountDown

5

9© Wolf gang Emmerich, 1998/99

Applet
init()
start()
stop()

CountDown
start()
stop()
run()
paint()

Runnable
run()

Runnable is
an interface

CountDown Timer - Class diagram

10© Wolf gang Emmerich, 1998/99

 public void paint(Graphics g) {
 if (counter>0)
 g.drawString(String.valueOf(counter),25,75);
 else g.drawstring(“Bang”, 10, 50);
 }

import java.awt.*; //windows toolkit
import java.applet.*; //applet support
public class CountDown extends Applet implements Runnable{

}

 int counter; Thread cd;
 public void start() { // create thread
 counter = 60; cd = new Thread(this); cd.start();
 }
 public void stop() { cd = null;}

CountDown Timer - Java class

 public void run() { // executed by Thread
 while (counter>0 && cd!=null) {
 try{Thread.sleep(1000);}
 catch (InterruptedException e){}
 --counter; repaint(); //update screen
 }
 }

6

11© Wolf gang Emmerich, 1998/99

Concurrent Threads

■ Parallel composition operator ||
■ Implemented by creation of several new

thread objects
■

■ Creates two thread objects that execute
concurrently

Example: ThreadDemo

12© Wolf gang Emmerich, 1998/99

FSP Spec of Thread Demo

DISPLAY_THREAD = SUSPENDED,

SUSPENDED = (resume->RUNNING),

RUNNING = (rotate->RUNNING

 | suspend->SUSPENDED

).

||THREAD_DEMO =

 (a:DISPLAY_THREAD||b:DISPLAY_THREAD).

7

13© Wolf gang Emmerich, 1998/99

Class Diagram of ThreadDemo

Applet

ThreadDemo
init()
start()
stop()
destroy()
action()

Thread

DisplayThread
suspendDisplay()
resumeDisplay()
rotate()
run()

GraphicCanvas

2

2

14© Wolf gang Emmerich, 1998/99

Summary

■ Threads vs. operating system processes
■ Threads through class inheritance /

interface implementation
■ Thread lifecycle
■ Concurrent threads by creating new

thread objects
■ Class diagrams
■ Next: Java Thread Programming Lab

