
1

1© Wolf gang Emmerich, 1998/99

Wolfgang Emmerich

C340 Concurrency:
Concurrent Architectures -

Announcer/Listener

2© Wolf gang Emmerich, 1998/99

Outline

■ Motivation
■ Announcer-Listener
■ Announcer-Listener Model
■ Announcer-Listener Safety and Progress
■ Announcer-Listener Implementation
■ Summary

2

3© Wolf gang Emmerich, 1998/99

Motivation

■ Notification of events
■ Originate in one location (announcer)
■ Communicated to multiple interested

parties (listeners)
■ Announcer does not know listeners
■ Listeners do not know announcer
■ Communication managed by connector

called event manager

4© Wolf gang Emmerich, 1998/99

Announcer-Listener Architecture

EVENTMANAGER

LISTENER

LISTENER

LISTENER

ANNOUNCER

3

5© Wolf gang Emmerich, 1998/99

Filtering & Recursive Events

■ Listeners may only be interested in a
subset of events

■ They register with Event Manager using a
“pattern” of events they wish to receive

■ Listeners may themselves be announcers
and forward events into subsequent Event
Managers

■ Listeners do not have to be active
processes

6© Wolf gang Emmerich, 1998/99

Application Examples

■ User Interface Frameworks:
• AWT Listeners are ordinary objects
• Events are mouse clicks, button presses
• Events cause operations to be invoked in

Listeners

■ CORBA Event Service
• Event Producers are Announcers
• Event Channels are Event Managers
• Event Consumers are Listeners
• Used, for example in distributed stock tickers

4

7© Wolf gang Emmerich, 1998/99

Event Manager Model

set Listeners={a,b,c,d}
set Pattern = {pat1,pat2}
REGISTER = IDLE,
IDLE=(register[p:Pattern]->MATCH[p]
 |announce[Pattern]->IDLE),
MATCH[p:Pattern]=
 (announce[a:Pattern]->
 if (a==p) then (event[a]->MATCH[p]
 |deregister->IDLE)
 else MATCH[p]
 |deregister->IDLE).
||EVENTMGR=(Listeners:REGISTER)
 /{announce/Listeners.announce}.

LTSA

8© Wolf gang Emmerich, 1998/99

Announcer-Listener Model

ANNOUNCER = (announce[Pattern]->ANNOUNCER).

LISTENER(P=‘pattern)=(register[P]0>LISTENING),

LISTENING=(compute->LISTENING

 |event[P]->LISTENING

 |event[P]->deregister->STOP

)+{register[Pattern]}.

||ANNOUNCER_LISTENER=(a:LISTENER(‘pat1)

 ||b:LISTENER(‘pat1)

 ||c:LISTENER(‘pat2)

 ||d:LISTENER(‘pat2)

 ||EVENTMANAGER

 ||ANNOUNCER).

5

9© Wolf gang Emmerich, 1998/99

Announcer-Listener Analysis

■ Safety-Properties:
• Listeners receive events then and only then

when they are registered for them
• Listeners only receive events that match the

patterns they have registered for

■ Progress-Properties
• Announcer should be able to announce

events independent of state of Listeners

10© Wolf gang Emmerich, 1998/99

Announcer-Listener Analysis

■ Safety Properties:
property

 SAFE=(register[p:Pattern]->SAFE[p]),

 SAFE[p:Pattern]=(event[p]->SAFE[p]

 |deregister->SAFE).

■ Progress Properties:
 progress ANNOUNCE[p:Pattern]={announce[p]}

6

11© Wolf gang Emmerich, 1998/99

Announcer-Listener Example

■ Game:
• Coloured Blocks are moving around on a

canvas
• Hit them with a mouse press
• A hit block turns black and stops moving
• Blocks are threads that listen for mouse

events
• Events are announced by the display canvas
• Events are generated by the AWT classes for

Event handling
Demo

12© Wolf gang Emmerich, 1998/99

Announcer Listener Design

ThreadApplet

Canvas

display

listener

movers 1..*

BoxMover
- hit : Boolean = false

+ run()
- isHit()

displays

BoxCanvas

+ addMouseListener()
+ removeMouseListener()

EventDemo

+ init()
+ go()
+ ended()
+ stop()
+ handleEvent()

BoxMover::MyListener

+ mousePressed()

MouseAdapter

MouseListener

7

13© Wolf gang Emmerich, 1998/99

Summary

■ Announcer-Listener
■ Applications for Announcer-Listener
■ Announcer-Listener Model
■ Announcer-Listener Safety and Progress
■ Announcer-Listener Implementation
■ Summary

