
1

1© Wolf gang Emmerich, 1998/99

Wolfgang Emmerich

C340 Concurrency:
Dynamic Systems

2© Wolf gang Emmerich, 1998/99

Outline

■ Motivation

■ Golf Club Design

■ Golf Club FSP Model

■ Liveness Analysis in Dynamic Systems

■ Java Joins

2

3© Wolf gang Emmerich, 1998/99

Static versus Dynamic Systems

■ Threads and processes considered so far
created during initialization and run until
termination

■ Static organization of thread structure
■ This lecture: dynamic creation and

termination of threads
■ Example: Operating System Processes

4© Wolf gang Emmerich, 1998/99

Example: Golf Club Program

Players hire golf balls from their club and
return them after use. The better players
tend not to lose balls and only hire a few.
Less experienced players hire more balls,
so that they have spares during games.
They are required to buy replacements for
lost balls and return the same number
originally hired. The club groundsman
decides to treat players as Java threads
and to write a monitor to allocate golf balls
to players, if available, or to delay the
players if insufficient are available. Demo

3

5© Wolf gang Emmerich, 1998/99

Golf Club Design

SlotCanvas

+ enter()
+ leave()

Applet

Allocator

+ get()
+ put()

Thread

display StringCanvas

alloc

SimpleAllocator

<<implements>>

new

1..*
gc

Player
- name : String
- nballs : int

+ run()

allocDisplay

DisplayAllocator

<<implements>>

starting
waiting

playing
ending

gc
PlayerArrival

1..*

GolfClub

+ init()
+ start()
+ getGolfBalls()
+ relGolfBalls()

6© Wolf gang Emmerich, 1998/99

Class Player

class Player extends Thread {
 private GolfClub gc;
 private String name;
 private int nballs;

 Player(GolfCloub g, int n, String s) {
 gc =g; name = s; nballs=n);
 }

 public void run() {
 try {
 gc.getGolfBalls(nballs,name);
 Thread.sleep(gc.playTime);
 gc.relGolfBalls(nballs,name);
 } catch (InterruptedException e){}
 }
}

4

7© Wolf gang Emmerich, 1998/99

Modelling Dynamic Systems

■ Problem: Finite State Processes demand
a fixed number of processes

■ This is a pre-requisite to enable static
analysis of dynamic models

■ In FSP, however, we can model repetitive,
i.e. infinite behaviour

■ Trick: simulate unknown number of
similar terminating processes by
modelling fixed number of processes that
repeat that behaviour infinitely

8© Wolf gang Emmerich, 1998/99

Golf Club Model

const N=5
range B=0..N
ALLOCATOR = BALL[N],
BALL[b:B]=(when (b>0)get[i:1..b]->BALL[b-i]
 |put[j:1..N]->BALL[b+j]
).
range R=1..N
PLAYER= (need [b:R]->PLAYER[b]),
PLAYER[b:R]=(get[b]->put[b]->PLAYER[b]).
set Experts = {alice,bob,chris}
set Novices = {dave,eve}
set Players = {Experts,Novices}
HANDICAP = ({Novices.{need[4]},Experts.need[1]}
 -> HANDICAP)+{Players.need[R]}.
||GOLFCLUB=(Players:PLAYER||Players::ALLOCATOR||HANDICAP).

5

9© Wolf gang Emmerich, 1998/99

Liveness Analysis of Golf Club Model

const N=5
range B=0..N
ALLOCATOR = BALL[N],
BALL[b:B]=(when (b>0)get[i:1..b]->BALL[b-i]
 |put[j:1..N]->BALL[b+j]
).
range R=1..N
PLAYER= (need [b:R]->PLAYER[b]),
PLAYER[b:R]=(get[b]->put[b]->PLAYER[b]).
set Experts = {alice,bob,chris}
set Novices = {dave,eve}
set Players = {Experts,Novices}
HANDICAP = ({Novices.{need[4]},Experts.need[1]}
 -> HANDICAP)+{Players.need[R]}.
||GOLFCLUB=(Players:PLAYER||Players::ALLOCATOR||HANDICA

P).

progress NOVICE = {Novices.get[R]}
progress EXPERT = {Experts.get[R]}
||PROGRESSCHECK = GOLFCLUB>>{Players.put[R]}.

LTSA

10© Wolf gang Emmerich, 1998/99

Fair Golf Club Model

const TM=4
const N=4
range B=0..N
range T=1..TM
range R=1..N
set Experts = {alice,bob,chris}
set Novices = {dave}
set Players = {Experts,Novices}
TICKET = NEXT[1],
NEXT[t:T]=(ticket[t]->NEXT[t%TM+1]).
PLAYER = (need[b:B]->PLAYER[b]),
PLAYER[b:R]=(ticket[t:T]->get[b][t]->put[b]->PLAYER[b]).
ALLOCATOR=BALL[N][1],
BALL[b:B][t:T]=(when (b>0)get[i:1..b][t]->BALL[b-i][t%TM+1]
 |put[j:1..N]->BALL[b+j][t]).
HANDICAP = ({Novices.{need[4]},Experts.need[1]}
 -> HANDICAP)+{Players.need[R]}.
||GOLFCLUB=(Players:PLAYER||Players::ALLOCATOR||
 HANDICAP||TICKET).
progress NOVICE = {Novices.get[R][T]}
progress EXPERT = {Experts.get[R][T]}
||PROGRESSCHECK = GOLFCLUB>>{Players.put[R]}.

6

11© Wolf gang Emmerich, 1998/99

Revised Golf Ball Allocator

public class FairAllocator implements Allocator {
 private int available;
 private long turn=0;
 private long next=0;
 public FairAllocator(int n){available=n;}
 synchronized public void get(int n)
 throws InterruptedException {
 long myturn = turn; ++turn;
 while (n>available || myturn|=next) wait();
 ++next; available -=n;
 notifyAll();
 }
 synchronized public void put(int n) {
 available+=n;
 notifyAll();
 }
}

Demo

12© Wolf gang Emmerich, 1998/99

Joins in Java

■ The Player threads did not need to
communicate results back to the GolfClub
thread - we just could let them die

■ Often it is necessary to communicate
results back to main thread

■ Example: Asynchronous RMI
■ This can be achieved using the Java
join() operation which waits for a client
thread to die

7

13© Wolf gang Emmerich, 1998/99

Example: Master/Slave

■ Master launches a Slave thread, which
communicates result back to Master upon
termination.

■ Implemented using Java joins
■ Master creates a new thread object st for

Slave execution
■ Master invokes st.join() to wait for thread

to die
■ Master then calls operation from Slave to

obtain result. Demo

14© Wolf gang Emmerich, 1998/99

Modelling join() in FSP

■ Use explicit action for join
■ Synchronize

SLAVE=(start->rotate->join->SLAVE).

MASTER=(slave.start->rotate->slave.join->rotate->MASTER).

||MASTER_SLAVE = (MASTER || slave:SLAVE).

LTSA

8

15© Wolf gang Emmerich, 1998/99

Summary

■ Static vs. Dynamic Processes
■ Example: Golf Club
■ Modelling Dynamic Processes
■ Golf Club FSP Model
■ Liveness Analysis in Dynamic Systems
■ Java Joins
■ Modelling Java Joins

