
1© Wolf gang Emmerich, 1997

Wolfgang Emmerich
Mark Levene

Wolfgang Emmerich
Mark Levene

C340 Concurrency:
Starvation and Liveness

C340 Concurrency:
Starvation and Liveness

2© Wolf gang Emmerich, 1997

GoalsGoals

■ Reader/Writer problem

■ Starvation

■ Dining Philosophers Problem

■ Deadlocks

■ Liveness Analysis using LTS

■ Reader/Writer problem

■ Starvation

■ Dining Philosophers Problem

■ Deadlocks

■ Liveness Analysis using LTS

3© Wolf gang Emmerich, 1997

Reader / Writer ProblemReader / Writer Problem

■ Monitors and Java’s synchronize
statement guarantee mutual access to
objects / methods

■ Often it is ok for multiple readers to
access the object concurrently

■ Properties required:

■ Monitors and Java’s synchronize
statement guarantee mutual access to
objects / methods

■ Often it is ok for multiple readers to
access the object concurrently

■ Properties required:

Demo: Reader/Writer

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteLock.html

4© Wolf gang Emmerich, 1997

Read/Write MonitorRead/Write Monitor

class ReadWrite {
 private protected int readers = 0;
 private protected boolean writing = false;
 // Invariant: (readers>=0 and !writing) or
 // (readers==0 and writing)
 synchronized public void acquireRead() {
 while (writing) {… wait(); …} ++readers;
 }
 synchronized public void releaseRead() {
 --readers; if(readers==0) notify();
 }
 synchronized public void acquireWrite() {
 while (readers>0||writing) {… wait(); …}
 writing = true;
 }
 synchronized public void releaseWrite() {
 writing = false; notifyAll();
 }
}

class ReadWrite {
 private protected int readers = 0;
 private protected boolean writing = false ;
 // Invariant: (readers>=0 and !writing) or
 // (readers==0 and writing)
 synchronized public void acquireRead() {
 while (writing) {… wait(); …} ++readers;
 }
 synchronized public void releaseRead() {
 --readers; if (readers==0) notify();
 }
 synchronized public void acquireWrite() {
 while (readers>0||writing) {… wait(); …}
 writing = true ;
 }
 synchronized public void releaseWrite() {
 writing = false ; notifyAll();
 }
}

Starvation

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteLock.html

5© Wolf gang Emmerich, 1997

Writer StarvationWriter Starvation

■ NotifyAll awakes both readers and writers
■ Program relies on Java having a fair

scheduling strategy
■ When readers continually read resource:

Writer never gets chance to write. This is
an example of starvation.

■ Solution: Avoid writer starvation by
making readers defer if there is a writer
waiting

■ NotifyAll awakes both readers and writers
■ Program relies on Java having a fair

scheduling strategy
■ When readers continually read resource:

Writer never gets chance to write. This is
an example of starvation.

■ Solution: Avoid writer starvation by
making readers defer if there is a writer
waiting

6© Wolf gang Emmerich, 1997

Read/Write Monitor (Version 2)Read/Write Monitor (Version 2)

class ReadWrite {
 … // as before
 private int waitingW = 0;// # waiting Writers
 synchronized public void acquireRead() {
 while (writing || waitingW>0) {… wait(); … }
 ++readers;
 }
 synchronized public void releaseRead() {… }
 synchronized public void acquireWrite() {
 while (readers>0 || writing) {
 ++waitingW; … try{ wait(); … --waitingW; }
 writing = true;
 }
 synchronized public void releaseWrite() {… }
}

class ReadWrite {
 … // as before
 private int waitingW = 0; // # waiting Writers
 synchronized public void acquireRead() {
 while (writing || waitingW>0) {… wait(); … }
 ++readers;
 }
 synchronized public void releaseRead() {… }
 synchronized public void acquireWrite() {
 while (readers>0 || writing) {
 ++waitingW; … try{ wait(); … --waitingW; }
 writing = true;
 }
 synchronized public void releaseWrite() {… }
}

Demo: Reader/Writer v2

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteVs2.html

7© Wolf gang Emmerich, 1997

Reader StarvationReader Starvation

■ If there is always a waiting writer:
Readers starve

■ Solution: Alternating preference between
readers and writers

■ To do so: Another boolean attribute
readersturn in Monitor that indicates
whose turn it is

■ readersturn is set by releaseWrite()
and cleared by releaseRead()

■ If there is always a waiting writer:
Readers starve

■ Solution: Alternating preference between
readers and writers

■ To do so: Another boolean attribute
readersturn in Monitor that indicates
whose turn it is

■ readersturn is set by releaseWrite()
and cleared by releaseRead()

8© Wolf gang Emmerich, 1997

Read/Write Monitor (Version 3)Read/Write Monitor (Version 3)

class ReadWrite {
 … // as before
 private boolean readersturn = false;
 synchronized public void acquireRead() {
 while(writing ||(waitingW>0 && !readersturn))

{ … wait(); … }
 ++readers;
 }
 synchronized public void releaseRead() {
 --readers; readersturn=false;
 if(readers==0) notifyAll();
 }
 synchronized public void acquireWrite() {… }
 synchronized public void releaseWrite() {
 writing=false; readersturn=true; notifyAll();
 }
}

class ReadWrite {
 … // as before
 private boolean readersturn = false ;
 synchronized public void acquireRead() {
 while(writing ||(waitingW>0 && !readersturn))

{ … wait(); … }
 ++readers;
 }
 synchronized public void releaseRead() {
 --readers; readersturn= false ;
 if(readers==0) notifyAll();
 }
 synchronized public void acquireWrite() {… }
 synchronized public void releaseWrite() {
 writing= false ; readersturn= true ; notifyAll();
 }
} Demo: Reader/Writer v3

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteVs3.html

9© Wolf gang Emmerich, 1997

DeadlocksDeadlocks

■ Process is in a deadlock if it is blocked
waiting for a condition that will never
become true

■ Process is in a livelock if it is spinning
while waiting for a condition that will
never become true (busy wait deadlock)

■ Both happen if concurrent processes and
threads are mutually waiting for each
other

■ Example: Dining philosophers

■ Process is in a deadlock if it is blocked
waiting for a condition that will never
become true

■ Process is in a livelock if it is spinning
while waiting for a condition that will
never become true (busy wait deadlock)

■ Both happen if concurrent processes and
threads are mutually waiting for each
other

■ Example: Dining philosophers

10© Wolf gang Emmerich, 1997

Dining Philosopher ProblemDining Philosopher Problem

■ 5 Philosophers sit
around table

■ They think or eat
■ Eat with 2 chopsticks
■ Only 5 chopsticks

available
■ Each philosopher only

uses sticks to her left
and right

■ 5 Philosophers sit
around table

■ They think or eat
■ Eat with 2 chopsticks
■ Only 5 chopsticks

available
■ Each philosopher only

uses sticks to her left
and right

0

1

23

4
0

1

2

3

4

11© Wolf gang Emmerich, 1997

FSP Model of Dining PhilosophersFSP Model of Dining Philosophers

PHIL=(hungry->left.get->right.get->eating->

 left.put->right.put->rhinking->PHIL).

FORK = (left.get-> left.put -> FORK

 |right.get->right.put -> FORK).

||COLLEGE(N=5)=

(phil[0..N-1]:PHIL||fork[0..N-1]:FORK)

 /{phil[i:0..N-1].left/fork[i].left,

 phil[i:0..N-1].right/fork[((i-1)+N)%N].right}.

PHIL=(hungry->left.get->right.get->eating->

 left.put->right.put->rhinking->PHIL).

FORK = (left.get-> left.put -> FORK

 |right.get->right.put -> FORK).

||COLLEGE(N=5)=

(phil[0..N-1]:PHIL||fork[0..N-1]:FORK)

 /{phil[i:0..N-1].left/fork[i].left,

 phil[i:0..N-1].right/fork[((i-1)+N)%N].right}.

LTSA

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

12© Wolf gang Emmerich, 1997

Dining Philosophers in JavaDining Philosophers in Java

class Philosopher extends Thread {
 int identity;
 Chopstick left; Chopstick right;
 Philosopher(Chopstick left,Chopstick right){
 this.left = left; this.right = right;
 }
 public void run() {
 while (true) {
 try {
 sleep(…); // thinking
 right.get(); left.get(); // hungry
 sleep(…) ; // eating
 right.put(); left.put();
 } catch (InterruptedException e) {}
 }
 }
 }

class Philosopher extends Thread {
 int identity;
 Chopstick left; Chopstick right;
 Philosopher(Chopstick left,Chopstick right){
 this .left = left; this .right = right;
 }
 public void run() {
 while (true) {
 try {
 sleep(…); // thinking
 right.get(); left.get(); // hungry
 sleep(…) ; // eating
 right.put(); left.put();
 } catch (InterruptedException e) {}
 }
 }
 }

13© Wolf gang Emmerich, 1997

Chopstick MonitorChopstick Monitor

class Chopstick {
 boolean taken=false;
 synchronized void put() {
 taken=false;
 notify();
 }
 synchronized void get() throws
 InterruptedException
{

 while (taken) wait();
 taken=true;
 }
}

class Chopstick {
 boolean taken=false;
 synchronized void put() {
 taken=false;
 notify();
 }
 synchronized void get() throws
 InterruptedException
{

 while (taken) wait();
 taken=true;
 }
}

14© Wolf gang Emmerich, 1997

Applet for DinersApplet for Diners

for (int i =0; i<N; ++I)

 // create Chopsticks

 stick[i] = new Chopstick();

for (int i =0; i<N; ++i){

 // create Philosophers

 phil[i]=new Philosopher(

 stick[(i-1+N)%N],stick[i]);

 phil[i].start();

}

for (int i =0; i<N; ++I)

 // create Chopsticks

 stick[i] = new Chopstick();

for (int i =0; i<N; ++i){

 // create Philosophers

 phil[i]=new Philosopher(

 stick[(i-1+N)%N],stick[i]);

 phil[i].start();

}
Demo: Diners

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/Diners/Diners.html

15© Wolf gang Emmerich, 1997

Deadlock in Dining PhilosopherDeadlock in Dining Philosopher

■ If each philosopher has acquired her left
chopstick the threads are mutually
waiting for each other

■ Potential for deadlock exists independent
of thinking and eating times

■ Only probability is increased if these
times become shorter

■ If each philosopher has acquired her left
chopstick the threads are mutually
waiting for each other

■ Potential for deadlock exists independent
of thinking and eating times

■ Only probability is increased if these
times become shorter

16© Wolf gang Emmerich, 1997

Analysing cause of DeadlockAnalysing cause of Deadlock

■ We can use LTS for deadlock analysis
■ A dead state in the composed LTS is one

that does not have outgoing transitions
■ Are these dead states reachable?
■ Use of reachability analysis
■ Traces to dead states helps

understanding the causes of a deadlock

■ We can use LTS for deadlock analysis
■ A dead state in the composed LTS is one

that does not have outgoing transitions
■ Are these dead states reachable?
■ Use of reachability analysis
■ Traces to dead states helps

understanding the causes of a deadlock

LTSA

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

17© Wolf gang Emmerich, 1997

Deadlock AvoidanceDeadlock Avoidance

■ Deadlock in dining philosophers can be
avoided if one philosopher picks up sticks
in reverse order (right before left).

■ What is the problem with this solution?
■ Are there other solutions?
■ Deadlock can also be avoided there is

always one philosopher who thinks

■ Deadlock in dining philosophers can be
avoided if one philosopher picks up sticks
in reverse order (right before left).

■ What is the problem with this solution?
■ Are there other solutions?
■ Deadlock can also be avoided there is

always one philosopher who thinks

Demo: Deadlock free Diners

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/Diners/FixedDiners.html

18© Wolf gang Emmerich, 1997

SummarySummary

■ Reader / Writer Problem
■ Starvation
■ Avoidance of Starvation
■ Dining Philosophers Problem
■ Deadlocks and Livelocks
■ Deadlock Avoidance
■ Next Session: Safety

■ Reader / Writer Problem
■ Starvation
■ Avoidance of Starvation
■ Dining Philosophers Problem
■ Deadlocks and Livelocks
■ Deadlock Avoidance
■ Next Session: Safety

