UCL

C340 Concurrency:
Starvation and Liveness

Wolfgang Emmerich
Mark Levene

© Wolfgang Emmerich, 1997

UCL Goals
—

Reader/Writer problem
Starvation

Dining Philosophers Problem
Deadlocks

Liveness Analysis using LTS

© Wolfgang Emmerich, 1997

UCL Reader / Writer Problem

—

Monitors and Java’s synchronize
statement guarantee mutual access to
objects / methods

Often it Is ok for multiple readers to
access the object concurrently

Properties required.

iDemo: Reader/Writer

© Wolfgang Emmerich, 1997

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteLock.html

UCL Read/Write Monitor
—,

class ReadWrite {

private protected Int readers = 0O;

private protected boolean writing = false
// Invariant: (readers>=0 and !writing) or
Il (readers==0 and writing)

synchronized public void acquireRead() {
\ while (writing) {... wait(); ...} ++readers;
synchronized public void releaseRead() {
—-readers: if (readers==0) notify();
}
synchronized public void acquireWrite() {
while (readers>0||writing) {... wait(); ...}
writing = true ;
}
synchronized public void releaseWrite() {
writing = false ; notifyAll(); R
} ‘L Starvation
} © Wolfgang Emmerich, 1997 <

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteLock.html

UCL Writer Starvation

—

NotifyAll awakes both readers and writers

Program relies on Java having a fair
scheduling strategy

When readers continually read resource:

Writer never gets chance to write. This Is
an example of starvation.

Solution: Avoid writer starvation by
making readers defer if there is a writer
waiting

© Wolfgang Emmerich, 1997

et Read/Write Monitor (Version 2)

class ReadWrite {

... Il as before
private int waitingW = 0, [l # waiting Writers
synchronized public void acquireRead() {
while (writing || waitingW>0) {... wait(); ... }
++readers;

}

synchronized oublic void releaseRead() {... }
synchronized oublic void acquireWrite() {

while (readers>0 || writing) {

++waltingW, ... try{ wait(); ... --waitingW; }

writing = true;

}

synchronized public void releaseWrite() {... }
}

iDemo: Reader/Writer v21

© Wolfgang Emmerich, 1997 v

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteVs2.html

OCL Reader Starvation

—

If there is always a waiting writer:
Readers starve

Solution: Alternating preference between
readers and writers

To do so: Another bool ean attribute
reader st urn in Monitor that indicates

whose turn it Is

readersturnissetbyrel easeWite()
and cleared by r el easeRead()

© Wolfgang Emmerich, 1997

e Read/Write Monitor (Version 3)

class ReadWrite {

... Il as before
private boolean readersturn = false
synchronized public void acquireRead() {
while(writing ||(waitingW>0 && !readersturn))

{...wait(); ...}
++readers:
!
synchronized public void releaseRead() {
--readers: readersturn= false
If(readers==0) notifyAll();
}

synchronized public void acquireWrite() {... }
synchronized oublic void releaseWrite() {

writing= false ;reqdersturn: true ; notifyAll();
}}© woltgana Emmerch. 1697 Demo: Reader/Writer v3ﬂ g

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/ReadWriteLock/ReadWriteVs3.html

TCL Deadlocks

—

Process is in a deadlock if it is blocked
waiting for a condition that will never
become true

Process is in a livelock if it is spinning
while waiting for a condition that will
never become true (busy wait deadlock)

Both happen if concurrent processes and
threads are mutually waiting for each
other

Example: Dining philosophers

© Wolfgang Emmerich, 1997

UCL Dining Philosopher Problem

5 Philosophers sit
around table

They think or eat
Eat with 2 chopsticks

Only 5 chopsticks
available ‘

Each philosopher only
uses sticks to her left
and right

10

© Wolfgang Emmerich, 1997

ﬁ FSP Model of Dining Philosophers

PH L=(hungry->left.get->right.get->eating->
| eft. put->right. put->rhinking->PH L).
FORK = (left.get-> left.put -> FORK
| right.get->right.put -> FORK).
| | COLLEGE(N=5) =
(phil[0..N-1]:PH L| | fork[O..N 1] : FORK)
[{phil[1:0..N1].left/fork[i].left,
phil[1:0..N-1].right/fork[((iI-1)+N)%N .right}.

LTSA

© Wolfgang Emmerich, 1997 11

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

UCL Dining Philosophers in Java

class Philosopher extends Thread {
Int identity;
Chopstick left; Chopstick right;
Philosopher(Chopstick left,Chopstick right){
this .left = left; this .right = right;
}

oublic void run() {
while (true) {

try {
sleep(...); // thinking
right.get(); left.get(); // hungry
sleep(...) ; /[eating

right.put(); left.put();
} catch (InterruptedException e) {}

}
}

} © Wolfgang Emmerich, 1997

12

UCL Chopstick Monitor
Cm—

class Chopstick {
bool ean t aken=fal se;
synchroni zed void put() {
t aken=f al se:
notify();
}
synchroni zed void get() throws
{ | nt err upt edExcepti on

while (taken) wait();
t aken=t rue;

}

© Wolfgang Emmerich, 1997

13

UCL Applet for Diners

—

for (int 1 =0; 1<N, ++l)
[/ create Chopsticks
stick[iI] = new Chopstick();
for (int 1 =0; 1<N, ++i){
/] create Phil osophers
phil [1]=new Phil osopher (
stick[(i-1+N) %N, stick[i]);
phil[1].start();

Demo: Diners

© Wolfgang Emmerich, 1997

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/Diners/Diners.html

o Deadlock in Dining Philosopher

—

If each philosopher has acquired her left
chopstick the threads are mutually
waiting for each other

Potential for deadlock exists independent
of thinking and eating times

Only probability is increased iIf these
times become shorter

© Wolfgang Emmerich, 1997 15

OCL Analysing cause of Deadlock

—

We can use LTS for deadlock analysis

A dead state in the composed LTS is one
that does not have outgoing transitions

Are these dead states reachable?
Use of reachability analysis

Traces to dead states helps
understanding the causes of a deadlock

LTSA

© Wolfgang Emmerich, 1997 16

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/LTSA/LTSA.html

UCL Deadlock Avoidance

Deadlock in dining philosophers can be
avoided if one philosopher picks up sticks
In reverse order (right before left).

;Demo: Deadlock free Diners;

What is the problem with this solution?
Are there other solutions?

Deadlock can also be avoided there is
always one philosopher who thinks

© Wolfgang Emmerich, 1997 17

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/concurrency/classes/Diners/FixedDiners.html

OCL Summary

—

Reader / Writer Problem
Starvation

Avoidance of Starvation
Dining Philosophers Problem
Deadlocks and Livelocks
Deadlock Avoidance

Next Session: Safety

© Wolfgang Emmerich, 1997

18

