
1

Program Slicing

Nicholas Cameron

Nicholas Cameron UCL CS 2005 2

Program Slicing

 Overview and example

 Motivation

 Types of slicing

 Implementation

 Tools

 Tool demo - Bandera

 Summary and further reading

Nicholas Cameron UCL CS 2005 3

Program Slicing

 Debugging technique
 A slice consists of all statements that

affect the values at a point of interest
 Produces reduced, executable program

value at point of interest unchanged

 More difficult for certain features:
control flow (procedures, goto)
pointers/arrays
object oriented programs
concurrent programs

2

Nicholas Cameron UCL CS 2005 4

Example
1: f(int x)
2: {
3: int y := 25;
4: String z := “”;
5: for (int i:=0; i<x; ++i)
6: {
7: z := z ++ “ “ ++ y;
8: y := y + 2 * i;
9: }
10:
11: print(x ++ “: “ ++ z ++ “ “ ++
y);

12: }

Nicholas Cameron UCL CS 2005 5

Example: (11, {y})
1: f(int x)
2: {
3: int y := 25;
4: String z := “”;
5: for (int i:=0; i<x; ++i)
6: {
7: z := z ++ “ “ ++ y;
8: y := y + 2 * i;
9: }
10:
11: print(x ++ “: “ ++ z ++ “ “ ++
y);

12: }

Nicholas Cameron UCL CS 2005 6

Example (11, {y})
1: f(int x)
2: {
3: int y := 25;
5: for (int i:=0; i<x; ++i)
6: {
8: y := y + 2 * i;
9: }
11: print(x ++ “: “ ++ z ++ “ “ ++
y);

12: }

3

Nicholas Cameron UCL CS 2005 7

Example (cont.)

(11, {x})

f(int x)
{

print(x ++ “: “ ++ z
++ “ “ ++ y);

}

(11, {z})

f(int x)
{

int y := 25;
String z := “”;
for{int i:=0; i<x; ++i)
{

z := z ++ “ “ ++ y;
y := y + 2 * i;

}

print(x ++ “: “ ++ z
++ “ “ ++ y);

}

Nicholas Cameron UCL CS 2005 8

Motivation

 Debugging is hard: finding the bugs is
hard
Too much ‘noise’

 Weiser noticed programmers automatically
filter out irrelevant statements whilst trying
to find a fault

 Automation of this process: program
slicing

Nicholas Cameron UCL CS 2005 9

Applications

 Debugging
 Comprehension

Maintenance and evolution

 Cohesion measurement
And other metrics

 Other uses suggested
Compiler tuning
Testing
…

4

Nicholas Cameron UCL CS 2005 10

Types of slicing
 Forward vs Backward

 Chopping
 Slice consists of statements that ‘transmit an effect’

from source to target

 Static vs Dynamic
 Static slice: no assumptions regarding input

 Dynamic slice: for a given input

 Syntax preserving vs amorphous

 Others: quasi-static, conditional, dicing, barrier
slicing, etc.

Nicholas Cameron UCL CS 2005 11

Dataflow analysis

 Weiser’s implementation uses
dataflow analysis

 General technique widely used
by optimising compilers

 Works on a control flow graph:
an intermediate representation
of a program

 Analyse program flow and
variable assignments

 A semantic analysis

Control Flow Graph

Nicholas Cameron UCL CS 2005 12

Weiser’s Slicing Algorithm

 Iterative algorithm
 Notation

 Slicing criterion: C = (n, V)
 i_cfgj means there is an edge from i to j in the control

flow graph
 Def(i) is the set of variables defined in a statement i
 Ref(i) is the set of variables referenced in a

statement i

 Example: 4: a := b + 1
 Def(4) = {a}
 Ref(4) = {b}

5

Nicholas Cameron UCL CS 2005 13

Weiser’s Slicing Algorithm

 Find R0, the set of directly relevant variables for
each node in the control flow graph, i

 Work back through graph finding relevant
variables

 Directly relevant statements, S0 found from R0

 A branching statement b is indirectly relevant if
i∈S0 and i is in the range of influence of b, Infl(b)

Nicholas Cameron UCL CS 2005 14

Weiser’s Slicing Algorithm

 We continue by calculating the indirectly
relevant variables, Rk

Rk-1 and variables affecting b ∈ Bk-1

 And indirectly relevant statements, Sk

Bk-1 and statements defining Rk

 The fixpoint of Sk is the desired program
slice

Nicholas Cameron UCL CS 2005 15

Weiser’s Slicing Algorithm

Taken from [Tip 95], see further reading

6

Nicholas Cameron UCL CS 2005 16

Interprocedural slicing
 Slicing across procedure boundaries
 First calculate slice in procedure containing C
 For procedure calls to Q use:

 variables that may be modified by Q as Def(call Q)
 variables that may be used by Q as Ref(call Q)

 Then calculate slices for all procedures that are
called or call the original procedure

 Criterion:
 Callee: (Last statement in called proc, relevant vars in

P, in scope of called proc)
 Caller: (Any call to P, relevant vars in first statement

of P, in scope of calling proc)

Nicholas Cameron UCL CS 2005 17

Alternative Implementations
 Other implementations based on

 Information flow relations
 Dependence graphs

 Need to extend algorithms to cope with
 Unstructured control flow (break, goto, etc)
 Arrays, pointers and datatypes
 Distribution and concurrency

 Algorithms vary in accuracy and efficiency,
especially when dealing with above factors

 Also algorithms for dynamic and quasi-static
slicing

 Language specific issues

Nicholas Cameron UCL CS 2005 18

Note on the Halting Problem

 Program Slicing in the most general case
is undecidable

 Therefore define a slice as equivalent to
the original program only when the
program terminates

 Weiser also argues that calculating a
minimal slice is undecidable
We can not find equivalence of two code

fragments
But slices are small enough

7

Nicholas Cameron UCL CS 2005 19

Tools

 Mostly do simple, static slicing

 Advanced program slicing only so far
implemented on toy languages

 Most are not comprehensive

 BUT still powerful and very useful

Nicholas Cameron UCL CS 2005 20

Tools

 Wisconsin Program-Slicing Tool/CodeSurfer
 Multi-platform, C and C++

 Forward and backward slicing, chopping. Static

 Unravel
 C, only static backward slicing

 Bandera/Indus/Kaveri
 Implements slicing as part of a tool set for model

checking

 Concurrent Java.

 Eclipse plugin – multi-platform

Nicholas Cameron UCL CS 2005 21

Summary

Program Slicing:

 Reduces complexity for debugging and
comprehension

 Filters statements that do not affect the
values at a point of interest

 Many implementations
eg: dataflow analysis

 Tool support

8

Nicholas Cameron UCL CS 2005 22

Further Reading

 An Overview of Program Slicing. M Harman & R Hierons.
Software Focus, 2001.
http://www.dcs.kcl.ac.uk/staff/mark/sf.html

 Program Slicing. Mark Weiser. IEEE Transactions on
Software Engineering, 1984.

 A Survey of Program Slicing Techniques. Frank Tip.
Journal of Programming Languages, 1995.

 Program Slicing Literature Survey. Jeff Russel.
http://www.ece.utexas.edu/~jrussell/seminar/slicing_survey.pdf.
2001

 Google!

