
1

Distributed Software

Architectures using

Middleware

Robert Nunn

© Robert Nunn 2002 2

Who am I?

� I am a 4th year undergraduate on the MSci

Computer Science program

� Currently working on a distributed publish-

subscribe content-based networking system

� Vaguely related to this talk.

� You can contact me at r.nunn@cs.ucl.ac.uk

© Robert Nunn 2002 3

Outline

� Distributed systems

� Middleware

� Types of middleware

� Pub-sub systems

� My project: XBN

© Robert Nunn 2002 4

Distributed Systems

� Components of the system are not all held on
the same host

� Hosts are connected by a computer network

� Appears to users as a single, integrated

computing facility

© Robert Nunn 2002 5

Distributed Systems

� Integration of existing systems.

� Increased performance and reliability.
� Possibly, but depends on what we are aiming for.

� Can be cheaper than a centralised system.

� However: complicated, lots of possible errors,

multiple points of failure, network speeds an

issue, …

© Robert Nunn 2002 6

Middleware

� Software sitting between the operating system

and the application

� Hides the underlying network protocols from

the programmer

� Common environment across platforms and

programming languages

� E.g. Microsoft COM, OMG CORBA, Java RMI,

etc.

2

© Robert Nunn 2002 7

Middleware

� Makes a programmers life easier:

� Resolves heterogeneity

� Provides transparency

�Higher level of abstraction

� Can deal with (some) failures automagically

� But can add complexity and cost

� May not be appropriate in all circumstances

© Robert Nunn 2002 8

Types of Middleware

� Transactional middleware

� Supports transactions

� Message-oriented middleware

� Supports message exchange

� Procedural middleware

� Supports remote procedure calls (RPCs)

� Object/Component middleware

�OO version of procedural middleware

© Robert Nunn 2002 9

Transactional Middleware

� Supports transactions involving components on
different hosts.

� Transactions ensure that operations occur on all
hosts or no hosts.

� Assumes servers use two-phase commit
protocol (2PC).

� Keeps entire system in a consistent state.

� Communication can be synchronous or
asynchronous

© Robert Nunn 2002 10

Transactional Middleware

� Advantages:

� Easy to integrate with database management systems

�Guarantees consistency

� Disadvantages:

� Transactions not always needed

�Marshalling (and, therefore, unmarshalling) needs to

be done by programmer

© Robert Nunn 2002 11

Message-Oriented Middleware

� Lovely for publish-subscribe systems (my

project, discussed later) and distributed event

notification

� Communication by message exchange

� Asynchronous: Client sends message and carries

on, eventually gets a response

© Robert Nunn 2002 12

Message-Oriented Middleware

� Advantages:

�Great for group communication

� Easy to make fault tolerant

� Client and server decoupled

� Disadvantages:

�No access transparency

� Apps have to do marshalling/unmarshalling

3

© Robert Nunn 2002 13

Procedural Middleware

� Support remote procedure calls (RPCs)

� Uses an interface definition language (IDL)

� Synchronous actions between one client and one

server

� Middleware deals with marshalling and

unmarshalling

� Used across multiple platforms and programming

languages

© Robert Nunn 2002 14

Procedural Middleware

� Advantages:

� Simple for programmers

� Familiar

� Bindings for many programming languages

� Disadvantages:

�No support for multicast or asynchronous

communication

�Not scalable

�Not fault tolerant

© Robert Nunn 2002 15

Object/Component Middleware

� OO extension of procedural middleware

� Adds inheritance, references, exceptions, etc.

� Can also support transactions, messaging,

synchronous and asynchronous comms, load

balancing

© Robert Nunn 2002 16

Object/Component Middleware

� Advantages:

� Integrate features of the other forms of middleware

� Very powerful, flexible, etc.

� Disadvantages:

� Limited scalability

�Not always applicable in non-OO environments

© Robert Nunn 2002 17

Pub-Sub Systems

� Publish-Subscribe can implement a content-

based network

� Pub-sub is a clever type of message oriented

middleware (MOM)

� The normal MOM way:

� Client chooses channels to listen to

�Messages published to channel

� Clients receive all messages published to channel

© Robert Nunn 2002 18

Pub-Sub Systems

� In pub-sub:

� clients specify what they want to receive
� I.e. the content they are interested in

� Publishers send messages to network

�Network figures out where messages should go

4

© Robert Nunn 2002 19

Subscriptions

� A list of restrictions on content of messages
�E.g. news involving Iraq, changes in share price of BT, …

� I.e. defines a subset of messages

� A subscriber sends a subscription to the network

which then propagates it

� Subscriber only receives messages from the

subset it has defined

© Robert Nunn 2002 20

Publications

� Sent by publishers

� Contain information which is of interest to

subscribers

�Although, it may not be received by anyone!

� Forwarded by dispatchers to all subscribers that

should get it

© Robert Nunn 2002 21

Dispatchers

� Like routers in IP networks

� Routing table contains subscriptions

� If a subscription matches a publication then

forward it to the subscriber

�Matches = “publication is in the subset defined by

the subscription”

�Nastiness from set theory involved in creating

efficient dispatcher

© Robert Nunn 2002 22

Pub-Sub Systems

� Advantages:

� Intuitive method of communication

� Subscribers are anonymous to publishers and most

of the dispatchers

� Disadvantages:

� Scalability of system vs. expressiveness of

subscription language

� Subscribers are anonymous to publishers and most

of the dispatchers

© Robert Nunn 2002 23

XBN

� XML Based Networking

� Subscriptions are a list of XPath expressions
� I really use a subset of XPath (don’t ask why)

� Publications are XML documents

� P2P arrangement:

� Publishers look and act like dispatchers

�Dispatchers look and act like subscribers

© Robert Nunn 2002 24

XBN

� XPaths are slow to evaluate: need real

computers as dispatchers

� Cannot use whole XPath language

� But still allows for a very expressive subscription

language

� Everyone loves XML!

5

© Robert Nunn 2002 25

Summary

� Distributed systems are lovely but complicated

to build and maintain

� Middleware hides many of the complications of

building a distributed system

� Therefore, middleware is also lovely!

� Finally, XBN is also lovely! (well, it will be!)

© Robert Nunn 2002 26

References

� For information about SIENA, an existing pub-

sub system, visit:
� http://www.cs.colorado.edu/serl/dot/siena.html

� For more information about the types of

middleware I have discussed, read:

� http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/
ICSE2000/SOTAR

