Pattern - Oriented Software Architecture.

Somewhere in the deeply remote past it seriously traumatized a
small random group of atoms drifting through the empty sterility
of space and made them cling together in the most extraordinary

unlikely patterns. These patterns quickly learnt to copy
themselves (this was part of most extraordinary about the
patterns) and went on to cause massive trouble on every planet
they drifted on to.

That was how life began in the Universe...

Douglas Adams, The Hitchhikers’s guide to the Galaxy.

When experts need to solve a problem, they seldom invent a totally new solution. More often
they will recall a similar problem they have solved previously and reuse the essential aspects of
the old solution to solve the new problem. They tend to think in problem-solution pairs.
Identifying the essential aspects of specific problem - solution pairs leads to descriptions of
problem - solving patterns that can be reused. The concept of a pattern as used in software
architecture is borrowed from the field of (building) architecture, in particular from the writings
of architect Christopher Alexander.

The goal of patterns within the software community is to help software developers resolve
recurring problems encountered throughout all of software development. Patterns help create a
shared language for communicating insight and experience about these problems and their
solutions.

One of the widely used definitions is: "A pattern for software architecture describes a particular
recurring design problem that arises in specific design contexts and presents a well-proven
generic scheme for its solution. The solution scheme is specified by describing its constituent
components, their responsibilities and relationships, and the ways in which they collaborate."
[Buschmann].

Each pattern is a three-part rule, which expresses a relation between a certain context, a certain
system of forces which occurs repeatedly in that context, and a certain software configuration
which allows these forces to resolve themselves. Context section describes the situation in which
the design problem arises. Problem section describes the problem that arises repeatedly in the
context. And finally, solution section describes a proven solution to the problem.

So aside from recurrence, a pattern must describe Zow the solution balances or resolves its
forces, and why this is a "good" resolution of forces. We need both of these to convince us that
the pattern is neither sheer speculation (pure theory) nor is the pattern blindly following others
(rote practice). We want to show that the practice is more than just "theory", and that the theory
really has been practiced. We might even say that: A pattern is where theory and practice meet to
reinforce and complement one another, by showing that the structure it describes is useful,
useable, and used!

A pattern must be useful because this shows how having the pattern in our minds may be
transformed into an instance of the pattern in the real world, as something thing that adds value
to our lives as developers and practitioners. A pattern must also be useable because this shows
how a pattern described in literary form may be transformed into a pattern that we have in our
minds. And a pattern must be used because this is how patterns that exist in the real world first
became documented as patterns in literary form.

1/4



This yields a continuously repeating cycle from pattern writers, to pattern readers, to pattern
users: writers documenting patterns in literary form make them usable to pattern readers, who
can then remember them in their minds, which makes them useful to practitioners and
developers, who can use them in the real world, and enhance the user's quality of life.
Patterns categorized into three levels: architectural patterns, design patterns, and idioms
(idioms are sometimes called coding patterns). The authors of Patterns of Software
Architecture define three types of patterns as follows:

Architectural Patterns
An architectural pattern expresses a fundamental structural organization or schema for
software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them.

Design Patterns
A design pattern provides a scheme for refining the subsystems or components of a
software system, or the relationships between them. It describes commonly recurring
structure of communicating components that solves a general design problem within a
particular context.

Idioms
An idiom is a low-level pattern specific to a programming language. An idiom describes
how to implement particular aspects of components or the relationships between them
using the features of the given language.

The differences between these three kinds of patterns are in their corresponding levels of
abstraction and detail. Architectural patterns are high-level strategies that concern large-scale
components and the global properties and mechanisms of a system. They have wide-sweeping
implications which affect the overall skeletal structure and organization of a software system.
Design patterns are medium-scale tactics that flesh out some of the structure and behaviour of
entities and their relationships. They do not influence overall system structure, but instead define
micro-architectures of subsystems and components. Idioms are paradigm-specific and language-
specific programming techniques that fill in low-level internal or external details of a
component's structure or behaviour.

Alexander says that "every pattern we define must be formulated in the form of a rule which
establishes a relationship between a context, a system of forces which arises in that context, and
a configuration, which allows these forces to resolve themselves in that context." A pattern
consists of the following elements:

Name
It must have a meaningful name. This allows us to use a single word or short phrase to
refer to the pattern, and the knowledge and structure it describes. Sometimes a pattern
may have more than one commonly used or recognizable name in the literature. In this
case it is common practice to document these nicknames or synonyms under the heading
of Aliases or Also Known As. Some pattern forms also provide a classification of the
pattern in addition to its name.

Problem
A statement of the problem which describes its intent: the goals and objectives it wants
to reach within the given context and forces. Often the forces oppose these objectives as
well as each other.

2/4



Context
The preconditions under which the problem and its solution seem to recur and for which
the solution is desirable. This tells us the pattern's applicability. It can be thought of as
the initial configuration of the system before the pattern is applied to it.

Forces
A description of the relevant forces and constraints and how they interact/conflict with
one another and with goals we wish to achieve (perhaps with some indication of their
priorities). A concrete scenario which serves as the motivation for the pattern is
frequently employed. Forces reveal the intricacies of a problem and define the kinds of
trade-offs that must be considered in the presence of the tension or dissonance they
create. A good pattern description should fully encapsulate all the forces which have an
impact upon it

Solution
Static relationships and dynamic rules describing how to realise outcome. The description
of the pattern's solution may indicate guidelines to keep in mind (as well as pitfalls to
avoid) when attempting a concrete implementation of the solution. Sometimes possible
variants or specializations of the solution are also described.

Examples
One or more sample applications of the pattern which illustrate: a specific initial context;
how the pattern is applied to, and transforms, that context; and the resulting context left
in its wake. Examples help the reader understand the pattern's use and applicability.
Visual examples and analogies can often be especially illuminating. An example may be
supplemented by a sample implementation to show one way the solution might be
applied.

One of the most famous patterns is MVC (Model — View — Controller) pattern. This pattern is
used when we developing an interactive system. In any program that requires user actions there
are two things to consider:
1. Changes to user interface shall be easy and possible at runtime (the last is optional).
2. Changes in the user interface should not have impact in the main core (engine) of the
application.

To solve these problems as Buschmann’s book advices we should divide an interactive
application into three categories: processing, output and input:

a) The Model the core of the application. This maintains the data and state that the
application represents. When significant changes occur in the model, it updates all of its
views.

b) View: the user interface which displays information about the model to the user. Any
objects that needs information about the model needs to be a registered view with the
model.

c) Controller: the user interface presented to the user to manipulate the application.
Controllers receive input as events of mouse clicks or keyboard. Events are translated to
service which are sent to Model or View. User may interact with the system only by
controllers.

3/4



To conclude patterns are not invented, they discovered from practical experience and are not a
"silver bullet"! They are extremely valuable tools to improve software quality and productivity
by addressing fundamental issues in the development of software.

Perhaps the final remarks from Pattern-Oriented Software Architecture best describe the
significance of patterns for software:

Patterns expose knowledge about software construction that has been gained by many experts
over many years. All work on patterns should therefore focus on making this precious resource
widely available. Every software developer should be able to use patterns effectively when
building software systems. When this is achieved, we will be able to celebrate the human
intelligence that patterns reflect, both in each individual pattern and in all patterns in their
entirety.

Bibliography and References:
1. Pattern-Oriented Software Architecture - A System of Patterns
2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.
Wiley and Sons Ltd., 1996
3. http://www.sts.tu-harburg.de/teaching/ss-02/SoftArch/entry.html

4. http://www.cs.olemiss.edu/~hcc/softArch/notes/patterns.html

5. http:// www.enteract.com

4/4



