
1

1© 2001, Zuhlke Engineering

3C05: Software Development Team
Structures

2© 2001, Zuhlke Engineering

Unit 6: SW Development Team Structures

Objective:
– To discuss the different roles involved in large-

scale software engineering projects
– To show the qualifications and capabilities for team

members adopting these roles
– To review how teams are composed and projects

are staffed.

2

3© 2001, Zuhlke Engineering

Creating an OO Team

• OO Learning Curve
– 1 month to learn language syntax
– 6 to 9 months to become proficient in OO
– 12 to 18 months to become moderately proficient

in modelling and methodology

0
5

10
15
20

L
a
n

g
u

a
g

e O
O

M
o

d
e

ll
i

n
g

months

4© 2001, Zuhlke Engineering

How to Kick-Start an OO Project

• Mentoring!
• Seed project with experienced people
• External/internal consultants at key stages

– Planning
– Project start up
– Regular design and

code reviews
– Post-project review

3

5© 2001, Zuhlke Engineering

Case Study

• A company took a group of non OO programmers
and over a period of one month trained them in C++
and an OO methodology. They then launched them
straight into a full-blown OO Project. Naturally the
Project failed badly. How did this happen?
Management did not understand that OT is different
to conventional software development.

6© 2001, Zuhlke Engineering

The OO Project Team

Core

Supplemental

Peripheral
Core - Software production
Supplemental - Supports core
Peripheral - at project edges

But where does Booch
put Project Managers?

According to
Booch!

4

7© 2001, Zuhlke Engineering

Sub-teams

Architecture
Team

Analysis
Team

Design
Team

Implementation
Team

Deployment
Team

Aim for fluid sub-teams:
Roles blur in an OO project

Task Force
(Tiger Team)

8© 2001, Zuhlke Engineering

Abstractionists

• To simplify our discussion, we introduce the role of
Abstractionist

• Abstractionists embrace the following USDP roles:
– Use-Case Specifier
– Use-Case Engineer
– System Analyst
– System Integrator

• These USDP roles are often done by the same person
anyway!

5

9© 2001, Zuhlke Engineering

Core Team: Structure

Architect

Abstractionist Abstractionist

Component
Engineers

10© 2001, Zuhlke Engineering

What about testing?

• Testers can be a member of an Abstractionists team
(just like a Component Engineer)

• Testers may belong to a separate Test Team

This often depends on company policy!

6

11© 2001, Zuhlke Engineering

Staffing

Architects 10%

Abstractionists
30%
Component
Engineers 50%
Supplemental
10%

These are
just average

figures!

12© 2001, Zuhlke Engineering

Staffing Profiles

Architect

Abstractionists

Component Engineers

N
um

be
rs

Time

7

13© 2001, Zuhlke Engineering

Core Team: Roles

• Architect
– System architecture and vision

• Abstractionist
– Micro-architectures
– One Abstractionist per class package

• Component Engineer (programmer)
– Implementing abstractions

14© 2001, Zuhlke Engineering

Architect: Responsibilities

• System Architecture
• Assess technical risks
• Define content of successive iterations

– Help in planning
• Consultancy
• Marketing

– Future product definition

8

15© 2001, Zuhlke Engineering

Architect: Skills

• Experience
– Problem domain
– Software engineering

• Vision
• Leadership
• Communication
• Proactive and goal-oriented
• Risk taker

16© 2001, Zuhlke Engineering

Abstractionist: Responsibilities

• Identify classes, packages, subsystems, mechanisms,
frameworks

• Define interfaces
• Direct implementation and (possibly) testing
• Advise and support the Architect
• Mentor and lead Component Engineers

9

17© 2001, Zuhlke Engineering

Abstractionist: Skills

• Experience
– Must know how to find abstractions
– Strong programming skills

• Leadership
– Ability to manage a small team of developers

• Communication
– Able to express complex ideas simply

• Proactive and goal-oriented

18© 2001, Zuhlke Engineering

Component Engineer: Responsibilities

• Implement scenarios, mechanisms and classes
• Tactical class design
• Class-level testing
• Advise abstractionist about tactical risk
• Participate in Task Forces and code walkthroughs

10

19© 2001, Zuhlke Engineering

Component Engineer: Skills

• Good coding skills and likes to code!

• Perhaps has specialisations e.g. GUI

• Familiar with OOA/OOD principles

20© 2001, Zuhlke Engineering

Myth of the replaceable programmer

• Some Project Managers view programmers as the
“lowest form of life”. They are just replaceable parts

• This ignores the fact that a good programmer may be
up to 10 times more productive than a bad
programmer

• Good programmers are very valuable and need to be
encouraged and rewarded

11

21© 2001, Zuhlke Engineering

OO as an Amplifier

• Object orientation acts like an amplifier - it makes the
best programmers much better, and the worse
programmers much worse!

• The same is true for Abstractionists !

22© 2001, Zuhlke Engineering

The Supplemental Team

•Project Manager
•Integration
•Quality Assurance

•Documentor
•Toolsmith
•System Administrator
•Librarian

12

23© 2001, Zuhlke Engineering

Project Manager: Responsibilities

• Oversee the Project’s deliverables
• Establish and drive schedules
• Staffing
• Work break down
• Budgeting
• Co-ordinate with patrons and user community

24© 2001, Zuhlke Engineering

Project Manager: Skills

• Experience
– Leadership

Proactive
Goal oriented

– Communication
• Pragmatic
• Risk-aversive
• Politically aware

13

25© 2001, Zuhlke Engineering

The Peripheral Team

• Patron
– Champions the Project

• Product Manager
– Manages a product line
– Manages marketing, training, support

• End user
– Client of the Project

• Technical support

26© 2001, Zuhlke Engineering

Key Points

• The key to successful operation of the USDP or any
other OO lifecycle is to organise into small flexible
teams

• There should be a “chain of responsibility” and
continuity of ownership for artefacts from
requirements down to code

• A good policy is to give responsibility for whole chains
to individual teams

