
1

Software Engineering for
Security

3C05 Advanced Software Engineering Unit ??

Daniel J. Hulme & Bruno Wassermann

Objectives

l Make a point for why security cannot be a side
issue

l Argue that security concerns must inform every
phase of software development

l Show how security requirements are incorporated
into software systems today

2

Background

l 60% of organizations have suffered security
breach in the last two years

l only 37% of organizations undertake a risk
assessment identifying critical assets

l 40% of companies that have experienced serious
security breaches still do not have any
contingency plans to deal with future attacks

l Source: Information Security Breaches Survey
2000, Technical Report, Department of Trade and
Industry

Background 2

l E-commerce value expected to be around £6
billion in UK by 2004)

l US DoD found that 88% of their computers were
penetrable - 96%(!) of those did not notice
penetration

3

Security System

l A security system consists of hardware + software
+ people + procedures + culture

l Asset = something to protect
l Security Policy = mechanism to protect assets
l Vulnerability->Security attack->Security breach

->Compromise of confidentiality or integrity

New Technologies

l The way software is being built has changed
– Networking
– Distributed Systems
– Mobile Code
– Commercial off-the-shelf components

4

Mobile Code

l Consider JAVA:
– Programs sent and received via networks
– Applets and RMI using object serialization
– Can execute system functions

l JAVA has a security architecture but it has
(known) flaws

l Need to import and run such programs safely
l Protect users, programs and systems from each

other

COTS

l Are increasingly used due to promises of cost-
efficiency

l Are distributed by vendors as binaries (protection
of IP)

l Risk of building systems out of black box
components

l Need mechanisms that find mutual trust by vendor
and buyer/developer

l Can’t achieve that without formal methods of
proving reliability, correctness, security, etc.

5

Distributed Systems

l Multiple organizations may co-operate via
networked systems

l Each organization may use different platforms,
security policies, procedures, and implementations

l Information about user permission may be held in
different formats

l Dynamic population of objects with large variance
in lifetime

Importance

l Advent of networking and open, distributed
systems, plus the involvement of monetary
resources makes approaching issues of security in
efficient ways to be of utmost importance

l Our current model only identifies the user but not
potential enemies

6

Security Policy

l The DoD Trusted Computer System Evaluation
Criteria Glossary defines security policy as: “…
the set of laws , rules and practices that regulate
how an organization manages protects, and
distributes sensitive information”

l Security policy establishes what must be done to
protect information stored on electronic
information systems

l Tells us “what” to do so that one can plan the
“how”

Security Policy 2

l A security policy not only protects information but
also people inside an organisation

l It reduces personal liability for employees
l An efficient security policy shall help to react and

recover from situations in minimal time and
damage

7

Security Policy 3

l A security policy normally covers the following
areas:
– Risk Assessment

l Identify assets
l Identify potential enemies
l Identify needed solutions

– Password Policies:
l Procedures for choosing/storing passwords

– Administrator Responsibilities:
l When purchasing new hardware needs to make sure that

default user and account names are changed

Security Policy 4

– User Responsibilities:
l Training
l Adherence to policies and procedures

– Email Policies:
l Viruses
l What kinds of emails to be sent

– Internet Policies:
l Forbidden sites, URLs
l Firewall policies

– Disaster Recovery:
l Backup schedule, etc

8

Security Requirements

l A security requirement is a detailed instantiation
of a high-level organisational policy, I.e. detailed
requirements of a specific system with respect to
security policy

l Security requirements are non-functional
requirement

l Often, security requirements come to light only
after the functional ones have

l Often added as an afterthought to the system

Formal Security Models –
Mandatory Access Control

l Objects have associated security classifications
(secret, top-secret, etc.)

l Subjects have access to objects only if they have
got an appropriate classification

9

Formal Security Models-
Discretionary Access Control
l Users belong to groups and/or processes
l Access restrictions based on identity of user
l User can pass access permissions to other users

Formal Security Models –
Multilevel Security Model

l Each subject as well as object are assigned
security level

l Objects can be read or written
l Subjects can only read objects at levels below

them
l Subjects can write to objects at levels above them

10

Formal Security Models

l Multilevel security model enabled proof that information
never trickled down the hierarchy

l All these formulations are clear and well-defined
l BUT

– Access control works on a subject-object model
– It considers the privileges of users and not of software

l The previous models are expressed in policy languages
– Check out: www.camb .opengroup.org ADAGE policy language)

l We want to integrate security requirements analysis with
the already known standard requirements process

Security Engineering

l Industry has long accepted the view that a
structured analysis and design process has many
advantages

l Functional requirements are being handled in a
rational manner

l This is not true for security requirements

11

Security Requirements

l Building a 100% secure system is hardly possible
l Would be very expensive
l Would inhibit users of the system carrying out their tasks
l Don’t need to defend against all possible threats
àAdding security features consists of many compromises
l Planning for such features and adding them at a later point

in the life cycle makes this task a lot more difficult
l Need to incorporate security requirements into our analysis

and design

Unifying Security and System
Models

l Tools that are used for requirements analysis and
design are high-level OO models such as UML

l The business case drives requirements analysis
l Security modelling is still largely independent

from standard modelling in practice

12

Advancing Security Models

l We need the same benefits for analysis of security
requirements:
– Requirements traceability
– Automated analysis and reasoning

l We want engineering not craftsmanship
l Security requirements are “ilities” as found by

other engineering disciplines

Advancing Security Models 2

l Extend UML to incorporate constructs such as
permissions, levels of security, etc?

l Would give us:
– Unified design of systems and security policies
– Modularity
– Reuse
– Traceability

13

Legacy Security Mismatches

l A very serious problem is a mismatch between
security frameworks in legacy systems and a
target standard protocol

l The challenge here is to develop uniform policies
and their implementation for a group of services
that span different platforms

Legacy Security Mismatches
Example

l CORBA
l Kerberos-based authentication
l Credentials (owned by CORBA

client and each CORBA servant
has its access control policy)

l UNIX
l User-password authentication
l File system uses access

control(user, group, world)

E.g. making services of a UNIX application A available via a
CORBA object

Now, if a particular login is not allowed to use A then the
same user must not be allowed to invoke A’s services through
CORBA

14

One Source of Mismatches

l Remember “ilities”:
– Their implementation will be scattered throughout the

code of the system
– Likely to find tangled code

l Problem is identifying these parts of the code,
changing them and integrating changes back into
the system

l Makes maintenance of security features a very
difficult task

Software Piracy

l Costs around $20 billion annually
l Most vulnerable are office suits etc

– Approx same cost as a machine
– Large incentive to commit piracy

l Organized piracy is biggest threat
– Lax enforcement and copyright laws
– Ability to produce thousands/millions of copies

l Law is a deterrent not solution – need more
– Technologies to combat piracy
– Model the economics of piracy

15

Piracy Economics

l n * Cb >> Ch + n * Cc + P11(n) * C11(n)
– Cb cost of the software
– Ch cost of breaking the protection
– Cc the value of the pirate software
– P11 the risk of getting caught
– C11 the cost of getting caught
– n number of copies required

Approaches to Protection

l Need to increase variables
– Ch cant hack
– P11 C11 wont hack

l Software and Hardware Tokens
l Dynamic Decryption of Code
l Watermarking
l Code Partitioning

16

Software and Hardware
Tokens

l SOFTWARE
l Licence file shipped with software

– Most common technique
– Checked every time software is run

l May include specific site information
– E.g. network card address

l HARDWARE
l Physical ‘dongle’

– Attached too serial or parallel port
– Software checks for token presence

Raise the cost
of breaking the

protection
mechanism, Ch

Software and Hardware
Tokens 2

l CRACK
l Locate token-checking code an patch around it

– Try not to use ‘Licence’ or ‘Dongle’ in your code
– Use code debugger

l What about self-destructing code?
– Use system-level debugger
– Patch around tamper-resistant, self-checking and self-

destruct mechanisms

17

Dynamic Decryption of Code

l Software is stored in encrypted form
– Only decrypted prior to execution
– Using independently stored key
– Key could be associated with machine during

manufacture
l Disadvantages

– Unacceptable performance overhead
– Would be difficult to legitimately move application from

retired machine to new
l Not a common technique in industry

Dynamic Decryption of Code 2

l CRACK
l Memory harvest

– Code has to be in memory prior to execution
– Monitor memory to harvest decryption code

Raise the cost
of breaking the

protection
mechanism, Ch

18

Watermarking

l Embed secret watermark in the software
– Specific to the customer
– Pirated copy can be traced back

l Stealth embedding
– Difficult to find watermark

l Resilient embedding
– Hard to tamper without damaging the media

l Static watermarks
– A pattern in the program properties

l Dynamic watermarks
– State activated – “Easter eggs”

Watermarking 2

l ALTERNATIVE CRACK
l Hire someone difficult to prosecute

– Juvenile
– Someone in a foreign country

l DISADVANTAGES
l Privacy concerns

– Individuals may not want to be associate in buying
particular software

– May seek to mask purchase via cash or anonymous
transaction

Increase the
risk of getting
caught, P11

19

Code Partitioning

l Placing portion (substantial) of software in
inaccessible memory
– Partition in RAM and ROM

l Unfortunately has performance issues
l ROM is protected – (but can be harvested)
l Also should protect processor and memory bus

– More secure
– Could store ROM partition remotely

Code Partitioning 2

l CRACK
l Harvest software

– Use bus analyser
– Not all the code it visible in RAM
– Create an address -> instruction mapping to harvest

software from ROM
l Storing remotely issues

– Well protected
– Degraded performance
– Reliability of remote source

Raise the cost
of breaking the

protection
mechanism, Ch

20

Attacker Cost Models

l There are still no accurate values on the cost of
cracking software

l We need a better piracy economics model
l Attackers have full access to the hardware and

software of the operating system
l Best solution would be to use tamper-resistant co-

processor executing partitioned software – but still
can be hacked

Trusting Software
Components

l Reference too: Judith & Raj – Safety
l Software development today integrate COTS

– Fraught with safety and security risk
– Vendors may be unwilling to provide propriety

information
l Vendors have two choices:

– Black-box approach
– Grey-box verification

21

Black-box Approaches

l Two approaches for user confidence:
– In suit testing

l Makes sure the components don’t misbehave
– System testing

l Makes sure the system doesn't misbehave even if the
components do

l Both require extensive testing
l Vendor does not have to disclose any

intellectual property

Grey-box Verification

l One technique:
l Cryptographic Coverage Verification

– User chooses basic code blocks at random and the
vendor should provide test cases as evidence of testing

– Gain confidence after every challenge

l Example:
– Vendor claims 80% coverage
– after 25 challenges we can reduce probability of failure

down to 0.05

22

Conclusions

l Intrusion detection community (CERT) deals with
the status quo

l Don’t come up with new designs or architectures
l We need to incorporate security engineering into

standard analysis and design process
l Must not leave security requirements to be dealt

with as a side-issue, an afterthought

References

l Software Engineering for Security: a Roadmap. In A. Finkelstein,
editor, “The Future of Software Engineering”, Special Volume
published in conjunction with ICSE 2000

l J. Estublier. Software configuration management: a Roadmap. Ditto
l Information Security Breaches Survey 2000, Technical Report,

Department of Trade and Industry
l www.camb .opengroup.org ADAGE policy language)
l AOP, Proceeding of the European Conference on OOP (ECOOP),

Finland, 1997, Springer-Verlag)
l SANS Institute Information Security Reading Room,

www.sans.org/infosecFAQ/
l B. Nusebi and S. Easterbrook. Requirements engineering: a Roadmap.

See above

