
1

© Judith Hankin, Rajender Bakshi 2001
1

Software Engineering for Safety

Rajender S. Bakhshi
Judith Hankin

© Judith Hankin, Rajender Bakshi 2001
2

Agenda

• We will look at what a safety critical system is.

• We will look the current techniques used to
engineer safety critical systems.

• We will also introduce you to some directions that
can be taken to improve safety engineering.

2

© Judith Hankin, Rajender Bakshi 2001
3

Introduction

• Many safety-critical systems rely on software to
achieve their purposes.

• Safety-critical systems are:
A computer, electronic or electromechanical
system whose failure may cause injury or death to
human beings. E.g. an aircraft or nuclear power
station control system.

© Judith Hankin, Rajender Bakshi 2001
4

Cont…

• Important: Safety is a system problem.
• Software can contribute to:

• A system’s safety or
• Compromise the system into a dangerous state.

• Thus, Software Engineers require a clear
understanding of the software’s role in, and
interactions with the system.

3

© Judith Hankin, Rajender Bakshi 2001
5

Hazard Analysis

• What is hazard analysis?
The process involves analysing the system to find:
Ø its potential dangerous states
Ø associating levels of risk with these states
Ø estimating their probability of occurrence

• Why should we carry out a hazard analysis?
Ø performing one is vital in order to develop a safe system.
Ø they help us identify & categorise hazards the system must deal with
Ø It helps us determine requirement priorities & resources allocated to

them at the requirements stage.

© Judith Hankin, Rajender Bakshi 2001
6

Some definitions

• Accident/mishap – an unplanned event / chain of
events that can lead to human death or injury.
Can also be extended to include damage to the
environment & property.

• Hazard – a danger or risk (dictionary definition).

• System level hazard – a state that can lead to an
accident.

4

© Judith Hankin, Rajender Bakshi 2001
7

More detail

• Who should carry out the hazard analysis?
Ø Systems engineers
Ø Domain experts
Ø Safety advisors

• When should we carry out a hazard analysis?
Ø Prior to the requirements stage of the project.

• How should we carry out the hazard analysis?
Ø Often, especially with large systems, it is more efficient to

structure a hazard analysis into different phases. (N. G. Leveson,
1986).

These groups should carry out the hazard analysis
together and draw from their different areas of
expertise to identify the hazards.

© Judith Hankin, Rajender Bakshi 2001
8

Phases (1)

1. Preliminary hazardanalysis

2. Sub-system hazard analysis

3. System hazard analysis

Principle hazards identified.
Risk of hazard assessed.

Conduct more detailed analysis
For safety-critical sub-components.

Hazards that arise when when s
Sub-system components are
Integrated.

5

© Judith Hankin, Rajender Bakshi 2001
9

Phases (2)

4. Software hazard analysis

5. Operational hazard analysis

Concerned with finding software
related hazards.
Can be done in phases 2 & 3.

Deals with hazards which appear as
Result of using the system.
Concerned with user interface &
Operator error.

We need to record details about the hazards identified during the different
stages of analysis e.g hazard identified, p(occurrence), severity of

occurrence & estimated risk.

© Judith Hankin, Rajender Bakshi 2001
10

Analysis Techniques

• We can use a variety of methods to determine the
components that contribute to the existence of hazards
and those that prevent the occurrence of a hazard.
Such methods include:

Ø Fault tree analysis
Ø FMECA - failure modes, effects & criticality analysis
Ø HAZOP - hazards & operability analysis.

6

© Judith Hankin, Rajender Bakshi 2001
11

Hazard Analysis & Requirements

• By performing a hazard analysis we can identify the safety
requirements that need to be incorporated into our
software.

• The safety requirements act as constraints on the software
which may be required to have methods of:

Ø Prevention - not allowing the system to enter hazardous states.
Ø Detection - spot when the system has entered dangerous state(s).

Ø Correction - move the system from a dangerous state.

© Judith Hankin, Rajender Bakshi 2001
12

Safety Requirements
Specification & Analysis

• Common tools used in the design of safety-critical
systems are redundancy and formal methods.

• Redundancy (focussed more on hardware):
Used to detect and recover from errors, either in
hardware or software.

• Formal:
Mathematically based techniques for the
specification, development and verification of
software and hardware systems.

7

© Judith Hankin, Rajender Bakshi 2001
13

Specification cont…

• Formal methods also enable to investigate whether
safety properties are reserved.

• Example – Avionics System
“If the backup channel is in control and is in safe
state, it will stay in a safe state”.

© Judith Hankin, Rajender Bakshi 2001
14

Specification cont…

System safety requirements V Software requirements

There has been a problem in the translation between
the system safety and software requirements.
(I.e. safety cases focus more on which software
components are critical whereas software focuses
more on development process rather than whether it
satisfies the system safety requirement.)

8

© Judith Hankin, Rajender Bakshi 2001
15

Specification cont…

• To reduce this discontinuity we could reflect on
how users actually use specifications to think
about the complex systems.

Example:
• Focus on interface between user and controller

(displays).

© Judith Hankin, Rajender Bakshi 2001
16

Designing For Safety

• Dependability is a common theme. Concerned with fault
tolerance - providing acceptable service even if faults
occur (not possible in all systems). Also common to real-
time & secure systems.

• Software design must incorporate methods for:
Ø Prevention - by e.g mutual exclusion, timeouts etc...
Ø Detection
Ø Correction

Exception handling, warnings to operators/users,
self -tests etc...

9

© Judith Hankin, Rajender Bakshi 2001
17

Obstacles to Designing Safe
Systems

• Design trade -offs
 The safety - desirable attributes trade-off. Design methods for fault

tolerance can both contribute to (e.g providing predictable timing
behaviour) and compromise (e.g by introducing more interactions
between system components) system safety.

 Vulnerability to simple design errors
Many accidents have simple causes. Assuming “small errors have
small consequences” is not true in all cases e.g. Mars Climate
Orbiter.

• Limited use of known design techniques
 Known good practice design techniques are not always used.

© Judith Hankin, Rajender Bakshi 2001
18

Testing

During development it is important
 to test to ensure software executes
 in a safe runtime on the system.

Development

Testing provides some evidence to show
that the software runs safely on

the system to be certified for useage.

Certification

Testing for a safe system.

10

© Judith Hankin, Rajender Bakshi 2001
19

Testing

• Can verify fault tolerant aspects of the software.
• Can determine software responds appropriately.

• When testing systems we can categorise 3 main
assumptions.

• Assumptions about environment - Unsafe systems
can arise due to incorrect assumptions in which
the system will operate.

© Judith Hankin, Rajender Bakshi 2001
20

Testing cont…

• Assumptions about users – Unsafe systems can
also arise due to incorrect assumptions of the user
or operator of a system.

• Assumptions about operations – Deep knowledge
and experience with an application is required for
test cases to be drawn.

• Testing is not a sufficient condition for a safe
system. Failure-free tests need to be generated
after failures, showing a safer system.

11

© Judith Hankin, Rajender Bakshi 2001
21

Certification & Standards

• Currently there are a number of problems regarding safety standards.

• To certify such a system is more complex & less well defined process
than certifying non-safety critical software.

• Large safety critical systems could be comprised of many sub-systems
of different domains. They could contain COTS (commercial off the
shelf) software certified by less rigorous standards and by differing
bodies which if integrated, would have to be re-certified.

• There is a growing need for international certification standards to be
put into place.

© Judith Hankin, Rajender Bakshi 2001
22

Resources

• Safety Critical Systems (SCS):

• IEEE video on “Developing Software for
Safety Critical Systems”.

• Bowen’s website on SCS:
http://www.afm.sbu.ac.uk/

12

© Judith Hankin, Rajender Bakshi 2001
23

DIRECTIONS

• There is work needed in the following areas to improve the
current status of safety engineering.

Ø Further integration of formal & informal methods.
Ø Constraints on safe product families & reuse.
Ø Testing & evaluating safety critical systems.
Ø Runtime monitoring.
Ø Education.
Ø Collaboration.

© Judith Hankin, Rajender Bakshi 2001
24

Further Integrating Formal &
Informal Models

• Automatic translation of informal notations into formal
models.

 Recent research in software engineering concentrates on
trying to close the gap between descriptive notations &
formal models.

 Descriptive notations are widely used by software
engineers but do not lend themselves to automatic analysis
unlike formal models.

 Descriptive Notations - e.g UML.
 Formal Models - e.g Fault tree analysis.

13

© Judith Hankin, Rajender Bakshi 2001
25

Integrating previously distinct
formal methods

• Different methods have different strengths.

• Integrating different methods allows you to specify/analyse
software at the level of detail that you want.

• Further use of formal methods aids when specifying the
software/system interface. Incorrect assumptions about this
interface can lead to states occurring that could
compromise safety.

© Judith Hankin, Rajender Bakshi 2001
26

Constraints on safe product
families and safe reuse

Safety analysis of product
families

This entails how systems
with similar requirements
can reuse requirements
analyses.
In terms of safety it is hard
to characterise, formalise,
and verify due to minor
variations amongst
systems (requirements,
environment, platform).

Safe reuse of COTS software
2 main problem areas
associated with this field:

• COTS software does what
it is supposed to do
(fitness for application)!

• COTS software confirms
that it does not do what
it’s not supposed to do!

14

© Judith Hankin, Rajender Bakshi 2001
27

Testing & Evaluation

• Requirements based testing
Ø Need to link safety requirements & test cases better. This can be done

by improving test case generation & further integration of testing &
requirements tools.

• Evaluation from multiple sources
Ø “the safety & trustworthiness of the system will rest on a tripod made

up of testing, mathematical review, and certification of personnel and
process” Parnas, van Schouwen & Kwan.

• Model consistency
Ø Model actual behaviour of the system as well as the operator’s mental

model of how they think the system behaves. Both models can be cross
checked to make sure that any inconsistencies are identified & dealt
with.

© Judith Hankin, Rajender Bakshi 2001
28

Runtime Monitoring
• RM = When software is used to monitor and

respond to operational activity.
• It can detect and recover from hazardous states

enhancing safety.
• Detection of faults leads to Problems:

• Tradeoffs between increased safety / increased
complexity.

• Decreased availability.
• Decreased performance.

• Example of use: against hacker attacks!!!

15

© Judith Hankin, Rajender Bakshi 2001
29

Education

• Suggestions include increasing the amount of
exposure that undergraduate students at university
get to issues concerning safety critical systems.

• There is also a need for safety courses to be aught
with more links to fault-tolerance, security,
systems engineering & experimental techniques.

© Judith Hankin, Rajender Bakshi 2001
30

Safety Related Fields

• Security + Survivability
• Software Architecture
• Theoretical computer science
• Human factors engineering

16

© Judith Hankin, Rajender Bakshi 2001
31

Summary

• We have examined a number of techniques used in safety
engineering to develop safety critical systems.

• It is clear that there are some limitations to these
techniques which have resulted in software failure within
such systems.

• The future of safety engineering lies in advances in related
fields, better testing and analysis techniques and exposing
future developers to issues concerning SCS’s earlier in
their careers.

© Judith Hankin, Rajender Bakshi 2001
32

References

• “Safeware” N. Leveson. Addison-Wesley.

• “Software Engineering” Ian Sommerville. Addison-
Wesley.

• “Software safety: why, what and how?” ACM Computing
Surveys.

